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Optical dromions for complex Ginzburg Landau model

with nonlinear media
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Abstract. This manuscript studies the optical dromions with beta derivative (BD) applied to

the Complex Ginzburg Landau equation (CGLE) with Kerr law, parabolic law, cubic quintic

septic law and quadratic cubic law. We obtain bright dromians by using the sine-cosine method

(SCM). We will also obtain domain walls with the assistance of Bernoulli equation approach

(BEA). Constraint conditions are also listed.

§1 Introduction

Optical solitons have far-reaching utilization in electromagnetic and telecommunications,

especially in the dynasty of ultrafast signal processing systems and optical soliton communica-

tions. The nonlinear Schrödinger equation (NLSE) is a universal nonlinear model that explains

many physical nonlinear systems. It can be used in nonlinear optics, quantum condensates,

nonlinear acoustics, hydrodynamics, plasma physics, heat pulses in solids and in many nonlin-

ear instability phenomena; There are so many methods to get optical solitons like as [1–10].

The NLSE has been used to explain a variety of effects in the propagation of optical pulses.

The balance between the self-phase modulation and group velocity dispersion leads to the so-

called soliton solutions for the NLSE [11–20]. This behavior of the pulse propagation offered

the potential for understanding pulse transmission over very long distances. The importance

of studying optical solitons comes from the fact that they have potential applications in optical

transmission and all-optical processing. Solitary wave solutions have been known to exist in a

variety of nonlinear and dispersive media for many years. Solitons propagation is explicated

by nonlinear Schrödinger equation (NLSE) with non-Kerr law nonlinearities. There are power

law, log law, dual power law, parabolic law, triple power law [25] etc. Recently, some new

non-Kerr laws have been observed. These are anti-cubic law [23], cubic quintic septic law [21],
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quadratic cubic law [21]. A lot of work has been done on these nonlinearities [1-13]. The

NLSE is transformed into cubic complex Ginzburg Landau (CGLC) equation after the linear

and nonlinear gains and losses. This paper genuinely examine the Kerr law and some non-Kerr

laws for beta-derivative (BD) to the optical solitons for CGLE with the aid of two integration

norms. The constraint conditions are also reported for optical solitons. We will use SCM to

get bright soliton and BEA to retrieve dark solitons.

Elucidation of the effect of memory in modelling has been a serious concern for quite a

long time. Classical techniques were insufficient for the exploration of memory [34–36]. Several

scientists contemplated that fractional derivatives are favorites to overcome the problem of

memory effect. Khalil et al. introduced a modish definition of derivative known as comformable

derivative (CD) [37]. Antangana gave introduction of a new derivative called beta derivative,

after the evaluation of CD through definitions and theorems [38]. The BD can be stated as [33]:

A
0 D

β
x(g(x)) = lim

δ→0

g(x+ δ(x+ 1
Γ(β) )− g(x)

δ
.

Here we are listing the various properties of BD

A
0 D

β
x(ag(x) + bh(x)) = aA0 D

β
xg(x)

A
0 + bA0 D

β
xh(x)

A
0 , (1)

Dβ
x(c) = 0, (2)

for any constant c

A
0 D

β
x(g(x) ∗ h(x)) = h(x)A0 D

β
xg(x) + g(x)A0 D

β
xh(x), (3)

A
0 D

β
x

(
g(x)

h(x)

)
=
h(x)A0 D

β
xg(x)− g(x)A0 D

β
xh(x)

h2(x)
, (4)

Considering δ = (x+ 1
Γ(β) )

β−1f , f → 0 when δ → 0 therefore we have

A
0 D

β
x(g(x)) =

(
x+

1

Γ(β)

)1−β
dg(x)

dx
, (5)

with

η =
l(x+ 1

Γ(β) )
β

β
, (6)

where l is a constant.

A
0 D

β
x

(
g(η)

h(x)

)
= l

dg(η)

dη
. (7)

§2 Mathematical Model

The CGLE equation is given by [33].

iE0 D
β
t q + aE0 D

2β
x q + bF (|q|2)q = 1

|q|2q∗

[
ϵE0 D

2β
x (|q|2)|q|2 −B(E0 D

β
xq)

2

]
+Aq, (8)

where q(x, t) is the normalized electric feild, E0 D
β
t and E

0 D
β
x are the beta derivatives [38], 0

< β ≤ 1, describing the order of fractional derivatives and a, b, A, B and ϵ are the real constants.
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We assume the following transformation,

q(x, t) = q(η)eiψ(x,t), (9)

q(x, t) represents the shape of the pulse so that,

η =
(x+ 1

Γ(β) )
β

β
−
v(t+ 1

Γ(β) )
β

β
, (10)

and the phase component is given by

ψ(x, t) =
−k(x+ 1

Γ(β) )
β

β
+
w(t+ 1

Γ(β) )
β

β
+ ϕ(η), (11)

where soliton frequency, wave number, phase function and speed of soliton are represented by

k, w, ϕ(η) and v respectively. Now substituting Eq. (9)- Eq. (11) into Eq. (8), we get the real

and imaginary parts

wq + a(q′′ − k2q) + bF (q2)q = 2(ϵ− 2B)
q′2

q
+ 2ϵq′′ +Aq, (12)

and

v = −2ak, (13)

v denotes the soliton velocity. Setting ϵ = 2β in Eq. (12), we get

(a− 4B)q′′ − (w + ak2 +A)q + bF (q2)q = 0. (14)

In the coming section, we will find bright soliton by virtue of SCM and dark soliton with

aid of BEA with Kerr law.

§3 Kerr law

Kerr law can be written as [21]

F (q) = q, (15)

Thus Eq. (14) becomes

(a− 4B)q′′ − (w + ak2 +A)q + bq3 = 0. (16)

3.1 SCM

We consider the following solutions [31]

q(η) = λcosβ(µη), (17)

q′(η) = −λβcosβ−1(µη)sin(µη), (18)

q′′(η) = λµ2β(β − 1)cosβ−2(µη)− λβ2µ2cosβ(µη), (19)

By using Eq. (17) - Eq. (19) into Eq. (16) and comparing different powers of cos(µη), we get

some equations, which provide the following solutions

β = −1, µ =

√
w + ak2 +A

4B − a
, (20)
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λ =

√
2(w + ak2 +A)

b
, (21)

Where a, b, B, k, A and w are the constants, also (w+ak2+A)(4B−a) > 0 and (w+ak2+A)b

> 0. As a result, the bright soliton for Eq. (8) can be shown as.

q11(x, t) =

√
2(w + ak2 +A)

b
sech

[√
w + ak2 +A

4B − a

( (x+ 1
Γ(β) )

β

β
−
v(t+ 1

Γ(β) )
β

β

)]
eiψ(x,t). (22)

Fig (1a) is 3D plot and Fig (1b) shows 2D plot for bright dromians for the given values of

parameters.

Figure 1. The graphical description of q11(x, t) in Eq. (22) given by these parameters ω =
5, θ = 1, β = 1, v = 1, κ = 3, a = 10, b = 2, A = 200, B = 100 in interval (-10,10) and (-10,10).
Fig. (a) shows 3D graph of q11(x, t) and Fig. (b) shows 2D plot of q11(x, t) in the interval
−4 ≤ x ≤ 4.

3.2 BEA

For BEA, we use the following substitution [31],

q(η) = A0 +A1u(η), (23)

where

u(η) =
δ

2

[
1 + tanh

(
δ

2
(η)

)]
, (24)

where A0 and A1 are constants and u satisfies

u′(η) = δu(η)− u2(η), (25)

By using Eq. (23)- Eq. (25) in Eq. (16), we procure various equations, which gives the specified

solutions

δ =
bA0A1

(a− 4B)
, (26)

A1 =

√(
(2a− 8B)

b

)
, A0 =

√(
(w + ak2 +A)

b

)
, (27)
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where κ, A0, A1 are arbitrary constants, also (2a − 8b)b > 0. After using above values in Eq.

(24) we obtain,

u(η) =
bA0A1

2(a− 4B)

[
1± tanh(

bA0A1

2(a− 4B)

( (x+ 1
Γ(β) )

β

β
−
v(t+ 1

Γ(β) )
β

β

)
)

]
,

Thus the dark soliton solutions for Eq. (8) can be shown as

q12(x, t)

=

[
A0 +

bA0A
2
1

2(a−4B)

(
1± tanh( bA0A1

2(a−4B)

(
(x+ 1

Γ(β)
)β

β −
v(t+ 1

Γ(β)
)β

β

)
)

)]
eiψ(x,t). (28)

Fig (2a) is 3D plot and Fig (2b) shows 2D plot for domain walls for the given values of param-

eters.

Figure 2. The graphical description of q12(x, t) in Eq. (28) given by these parameters ω =
5, θ = 1, β = 1, v = 1, k = 3, b = 2, B = 10. in interval (-1, 1) and (-10, 10). Fig. (a) shows 3D
graph of q12(x, t) and Fig. (b) shows 2D plot of q12(x, t).

In the upcoming section, we will retain bright soliton with the help of SCM and dark soliton

by the aid of BEA with parabolic law.

§4 Parabolic law

For parabolic, we assume [31]

F (q) = c1q + c2q
2, (29)

Thus Eq. (14) becomes

(a− 4B)q′′ − (w + ak2 +A)q + b(c1q
3 + c2q

5) = 0. (30)

4.1 SCM

By using Eq. (17) - Eq. (19) into Eq. (30) and comparing different powers of cos(µη), we

get so many equations, which provide the following solutions.

β =
−1

2
, µ =

√
(w + ak2 +A)

4(4B − a)
, (31)
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λ =

(
3(w + ak2 +A)

2bc2

) 1
4

, (32)

Where a, b, B, k, A and w are the constants, also (w+ ak2 +A)4(4B − a) > 0 and (w+ ak2 +

A)bc2 > 0. Thus we retrieve bright soliton solution for Eq. (8).

q21(x, t)

=

(
3(w+ak2+A)

2bc2

) 1
4

sech
1
2

[√
(w+ak2+A)
4(a−4B)

(
(x+ 1

Γ(β)
)β

β −
v(t+ 1

Γ(β)
)β

β

)]
eiψ(x,t). (33)

Fig (3a) is 3D plot and Fig (3b) shows 2D plot for bright dromians for the given values of

parameters.

Figure 3. The graphical description of q21(x, t) in Eq. (33) given by these parameters ω =
5, θ = 1, β = 1, v = 1, k = 10, A = 300, a = 10, b = 2, B = 15, c2 = 2 in interval (-1,1) and
(-1,1). Fig. (a) shows 3D graph of q21(x, t) and Fig. (b) shows 2D plot of q21(x, t).

4.2 BEA

Here we assume that [31],

q(η) = A1(u(η))
1
2 , (34)

where

u(η) =
δ

2

[
1 + tanh

(
δ

2
(η)

)]
, (35)

where A1 is a constant and u satisfies

u′(η) = δu(η)− u2(η). (36)

By using Eq. (34)- Eq. (36) into Eq. (30), we achieve a system of equations, which gives the

following solutions.

δ =

√
4w + ak2 +A

(a− 4B)
, (37)

A1 =

(
3(4− aB)

4bc3

) 1
4

, (38)
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where k, A1 are arbitrary constants, also (4w + ak2 + A)(a− 4B) > 0. Now after using above

values in Eq. (35) we gain,

u(η) =

√
4w + ak2 +A

4(a− 4B)

[
1± tanh(

√
4w + ak2 +A

4(a− 4B)
η)

]
,

Thus, the dark soliton for Eq. (8) is given by

q22

= A1

[√
4w+ak2+A
4(a−4B)

[
1± tanh

(√
4w+ak2+A
4(a−4B)

(
(x+ 1

Γ(β)
)β

β −
v(t+ 1

Γ(β)
)β

β

))]] 1
2

eiψ(x,t). (39)

Fig. (4a) is 3D plot and Fig. (4b) shows 2D plot for domain walls for the given values of

parameters.

Figure 4. The graphical description of q22(x, t) in Eq. (39) given by these parameters ω =
10, θ = 2, β = 1, v = 1, k = 3, A = 10, a = 10, b = 2, c3 = 10, B = 10 in interval (-4, 4) and (-4,
4). Fig. (a) shows 3D graph of q22(x, t) and Fig. (b) shows 2D plot of q22(x, t).

In the upcoming section, we will acquire bright soliton with the help of SCM and dark

soliton by the aid of BEA with cubic quintic septic law.

§5 Cubic quintic septic law

For cubic quintic septic law, we consider [21]

F (q) = c1q + c2q
2 + c3q

3, (40)

Thus Eq. (14) becomes

(a− 4B)q′′ − (w + ak2 +A)q + b(c1q
3 + c2q

5 + c3q
7) = 0. (41)

5.1 SCM

By using Eq. (17) - Eq. (19) in Eq. (41), we gather system of equations, possessing following

solution.

β =
−1

3
, µ =

√
(w + ak2 +A)

9(4B − a)
, (42)
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λ =

(
12(w + ak2 +A)

9bc3

) 1
6

, (43)

Where a, b, B, k, A and w are the constants, also (w+ ak2 +A)(4B − a) > 0. Thus the bright

soliton for Eq. (8) is given by

q31(x, t)

=

(
12(w+ak2+A)

9bc3

) 1
6

sech
1
3

[√
(w+ak2+A)
9(4B−a)

(
(x+ 1

Γ(β)
)β

β −
v(t+ 1

Γ(β)
)β

β

)]
eiψ(x,t). (44)

Fig(5a) is 3D plot and Fig(5b) shows 2D plot for bright dromion for the given values of param-

eters.

Figure 5. The graphical description of q31(x, t) in Eq. (44) given by these parameters ω =
5, θ = 1, β = 1, v = 1, k = 30, a = 10, b = 20, A = 300, B = 150, c = 20 in interval (-4, 4) and
(-4, 4). Fig. (a) shows 3D graph of q31(x, t) and Fig. (b) shows 2D plot of q31(x, t).

5.2 BEA

Here we consider [31],

q(η) = A1(u(η))
1
3 , (45)

where

u(η) =
δ

2

[
1 + tanh

(
δ

2
(η)

)]
, (46)

where A1 is a constant and u satisfies

u′(η) = δu(η)− u2(η). (47)

By using Eq. (51)-Eq. (53) into Eq. (44) and equating the coefficients, we retrieve few algebraic

equations, which produce the given solution.

δ =

√
9(w + ak2 +A)

(a− 4B)
, (48)

A1 =

(
−4(a− 4B)

abc3

) 1
6

, (49)
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where k, A1 are arbitrary constants.Also (w + ak2 + A)(4B − a) > 0. After using the above

values into Eq. (46) we gain,

u(η) =

√
9(w + ak2 +A)

4(a− 4B)

[
1± tanh(

√
9(w + ak2 +A)

4(a− 4B)
η)

]
,

Hence, the dark soliton for Eq. (8) can be written as

q32(x, t)

= A1

[√
9(w+ak2+A)

4(a−4B)

[
1± tanh(

√
9(w+ak2+A)

4(a−4B)

(
(x+ 1

Γ(β)
)β

β −
v(t+ 1

Γ(β)
)β

β

)
)

]] 1
3

eiψ(x,t). (50)

Fig(6a) is 3D plot and Fig(6b) shows 2D plot for domain walls for the given values of parameters.

Figure 6. The graphical description of q32(x, t) in Eq. (50) given by these parameters ω =
5, θ = 2, β = 1, v = 1, k = 2, b = 2, c3 = 10, a = 10, A = 10, B = 2 in interval (-4, 4) and (-4, 4).
Fig. (a) shows 3D graph of q32(x, t) and Fig. (b) shows 2D plot of q32(x, t).

In the next section, we will procure bright soliton and dark soliton with the help of SCM

and BEA respectively under quadratic cubic law.

§6 Quadratic cubic law

For quadratic cubic law, we assume that [21]

F (q) = c1
√
q + c2q, (51)

Thus Eq. (14) becomes

(a− 4B)q′′ − (w + ak2 +A)q + b(c1q
2 + c2q

3) = 0. (52)

6.1 SCM

By using Eq. (17) - Eq. (19) into Eq. (52) and comparing different powers of cos(µη), we

get various equations, which retain the specified values.

β = −1, µ =

√
(w + ak2 +A)

(4B − a)
, (53)
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λ =

√
2(w + ak2 +A)

bc2
, (54)

Where a, b, B, k, A and w are the constants, also (w+ ak2 +A)(4B− a) > 0. Thus, the bright

soliton for Eq. (8) is given as

q41(x, t)

=
√

2(w+ak2+A)
bc2

sech

[√
(w+ak2+A)

(4B−a)

(
(x+ 1

Γ(β)
)β

β −
v(t+ 1

Γ(β)
)β

β

)]
eiψ(x,t). (55)

Fig. (7a) is 3D plot and Fig. (7b) shows 2D plot for bright dromians for the given values of

parameters.

Figure 7. The graphical description of q41(x, t) in Eq. (55) given by these parameters ω =
5, θ = 1, β = 1, v = 1, k = 3, a = 10, b = 2, A = 300, B = 200, c = 5 in interval (-4, 4) and (-4,
4). Fig. (a) shows 3D graph of q41(x, t) and Fig. (b) shows 2D plot of q41(x, t).

6.2 BEA

Here we assume that [31],

q(η) = A0 +A1u(η), (56)

where

u(η) =
δ

2

[
1 + tanh

(
δ

2
(η)

)]
, (57)

where A1 and A0 are constants and u satisfies

u′(η) = δu(η)− u2(η). (58)

By using Eq. (56)- Eq. (58) in Eq. (52) and by comparing the coefficients, we retrieve some

algebraic equations, which yields the solutions.

δ =
A1(bc1 + 3bc2A0)

3(a− 4B)
, (59)

A1 =

(
2(a− 4B)

bc2

) 1
2

, A0 =

(
(w + ak2 +A)

b(c1 + c2)

)
, (60)

where k, A0, A1 are arbitrary constants, also 2(a− 4B)bc2 > 0. After using above equations in

Eq. (57) we obtain,

u(η) =
A1(bc1 + 3bc2A0)

6(a− 4B)

[
1± tanh(

A1(bc1 + 3bc2A0)

6(a− 4B)
η)

]
,
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so the dark soliton for Eq. (8) is given by

q42(x, t)

=

[
A0 +

A2
1(bc1+3bc2A0)

6(a−4B)

[
1± tanh(A1(bc1+3bc2A0)

6(a−4B)

(
(x+ 1

Γ(β)
)β

β −
v(t+ 1

Γ(β)
)β

β

)
)

]]
eiψ(x,t). (61)

Fig (8a) is 3D plot and Fig (8b) shows 2D plot for domain walls for the given values of param-

eters.

Figure 8. The graphical description of q42(x, t) in Eq. (61) given by these parameters ω =
5, θ = 1, β = 1, v = 1, k = 3, a = 10, b = 2, A = 10, B = 10, b = 0.5, c1 = 10, c2 = 10 in interval
(-5, 5) and (-5, 5). Fig. (a) shows 3D graph of q42(x, t) and Fig. (b) shows 2D plot of q42(x, t).

§7 Results and Discussion

In this paper, we studied complex Ginzburg Landau equation with beta derivative. Yusuf

et al. [33] studied this model and obtained dark and singular soliton by using generalized tanh

method and generalized Bernoulli sub-ODE method with Kerr law. But they were unable

to obtain bright soliton and other solitary wave solutions. We obtained bright dromion and

domain walls with the help of sine-cosine method and Bernoulli equation approach respectively.

Bright dromions are also referred as bell shaped solitons. When group velocity dispersion is

negative, bright dromions appear in the anomalous dispersion regime. As there is no phase

change for larger distance thats why bright solitons are also called non-topological solitons. In

nonlinear optics, the dark solitons are also termed as topological optical solitons. For domain

walls, the phase changes its form for large distance. We used four forms of nonlinearities like

Kerr law, parabolic law, cubic quintic septic law and quadratic cubic law. Since we know that

Kerr law nonlinearity is also known as cubic nonlinearity. This nonlinearity appears when a

light wave in an optical fiber responses nonlinearly. Although the nonlinear responses are so

weak, their effects emerge in several ways over long distance of propagation. Parabolic law is the

generalization of Kerr law nonlinearity and it appears due to the interaction between electrons

and Langmuir waves. Cubic quintic septic nonlinearity studies highly dispersive optical solitons.

To the best of our knowledge, no one used so many forms of nonlinearities for this model.

Fig. (1a), Fig. (3a), Fig. (5a) and Fig. (7a) shows 3D plot while Fig. (1b), Fig. (3b), Fig. (5b)
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and Fig. (7b) represents 2D plot of bright dromion in Eq. (22), Eq. (33), Eq. (44) and Eq.

(55) with Kerr law, parabolic law, cubic quintic septic law and quadratic cubic law respectively

by using Sine cosine method. Fig. (2a), Fig. (4a), Fig. (4a) and Fig. (8a) shows 3D plot while

Fig. (2b), Fig. (4b), Fig. (6b) and Fig. (8b) represents 2D plot of domain walls in Eq. (28),

Eq. (39), Eq. (50) and Eq. (61) with Kerr law, parabolic law, cubic quintic septic law and

quadratic cubic law respectively by using Bernaulli equation approach.

§8 Conclusions

We obtained two types of optical dromians i.e bright and dark solitons under various non-

linearities for CGLE. Previously, Yusuf et al. [33] studied CGLE equation with beta derivative

for optical dromians only with Kerr law. They used generalized tanh method and sub-ODE

method to obtain domain walls and singular dromians. In this paper, we used four nonlinearities

those are Kerr, parabolic, cubic quintic septic and quadratic cubic law with the help of SCM

and BEA. SCM retrieved bright dromians and BEA provided domain walls. Hence, we declare

that our work is quite original and the obtained results might be useful in nonlinear optics to

control internet bottleneck effect.
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