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Complement of the reduced non-zero component graph of

free semimodules

T. Tamizh Chelvam K. Prabha Ananthi

Abstract. Let M be a finitely generated free semimodule over a semiring S with identity

having invariant basis number property with a basis α = {α1, . . . , αk}. The complement Γ∗(M)

of the reduced non-zero component graph Γ∗(M) of M, is the simple undirected graph with

V = M∗ \ {
k∑

i=1

ciαi : ci ̸= 0 ∀ i} as the vertex set and such that there is an edge between two

distinct vertices a =
k∑

i=1

aiαi and b =
k∑

i=1

biαi if and only if there exists no i such that both ai, bi

are non-zero. In this paper, we show that the graph Γ∗(M) is connected and find its domination

number, clique number and chromatic number. In the case of finite semirings, we determine

the degree of each vertex, order, size, vertex connectivity and girth of Γ∗(M). Also, we give a

necessary and sufficient condition for Γ∗(M) to be Eulerian or Hamiltonian or planar.

§1 Introduction

In recent years, the interplay between an algebraic structure and a graph structure is s-

tudied by many researchers. One of the important graph constructed from finite groups is the

Cayley graph. Cayley graphs have been well studied as they are used as an underlying net-

work for routing problems in parallel computing. In fact, Cayley graphs are vertex transitive

and regular. Another important graph construction from commutative rings is the zero-divisor

graph. Actually, the concept of a graph from a commutative ring was introduced by Beck [6]

and later modified and named as the zero-divisor graph by Anderson and Livingston [3]. In

these attempts, researcher defines a graph whose vertices are a set of elements or a set of ideals

in the ring and edges are defined with respect to an algebraic condition on the elements of
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the vertex set. Certain well-studied classes of graphs from commutative rings are zero-divisor

graph, total graph, annihilating graph, comaximal graph, unit graph, Cayley graph, Jacob-

son graph, generalized total graph, Cayley sum graph and trace graph of matrices. One can

translate some algebraic properties of commutative rings to graph theoretic language and then

the geometric properties of graphs help to explore some interesting results related to commu-

tative rings [1, 2, 4, 5, 13–15, 17, 19]. Similar to these graphs, Das [10, 11] has introduced and

investigated a graph called the non-zero component graph of a finite dimensional vector space.

Recently, it was generalized for semimodules by Bhuniya and Maity [7] and named the graph

as the reduced non-zero component graph Γ∗(V). In this paper, we study the complement of

the reduced non-zero component graph [7, 10] of a finitely generated free semimodule M over

a semiring S with identity having invariant basis number property. A semiring S is said to

have invariant basis number property if any two bases of a finitely generated free semimodule

over S have the same cardinality. If S is a semiring having invariant basis number property,

then by Corollary 3.1 [20], it follows that every vector of a finitely generated free semimodule

M over S can be expressed uniquely in terms of basis elements. If {α1, . . . , αk} is a basis of

a semimodule M over a semiring S, then every element a ∈ M can be expressed uniquely as

a = a1α1 + · · ·+ akαk, where ai ∈ S. We call ai as the ith component of a. One may refer to

Golan [12] for basic notions and results on semirings and semimodules.

By a graph G = (V,E), we mean an undirected simple graph with vertex set V and edge

set E. The complement G of G is the graph whose vertex set is V (G) and two vertices u, v

are adjacent in G if and only if they are not adjacent in G. For a subset A ⊆ V (G), ⟨A⟩
denotes the subgraph of G induced by A. For undefined graph theoretical terms, one may refer

to [8,21]. Let M be a finitely generated free semimodule over a semiring S with identity having

invariant basis number property and α = {α1, . . . , αk} is a basis for M. Then the reduced

non-zero component graph Γ∗(M) [7] of M with respect to the basis α, is the graph with vertex

set V = M∗ \ {
k∑

i=1

ciαi : ci ̸= 0 ∀ i} and two distinct vertices a and b ∈ V are adjacent if there

exists i such that both ai, bi are non-zero. The complement Γ∗(M) of Γ∗(M) is the graph with

vertex set M∗ \ {
k∑

i=1

ciαi : ci ̸= 0 ∀ i} and two distinct vertices a =
k∑

i=1

aiαi and b =
k∑

i=1

biαi are

adjacent if and only if there exists no i such that both ai, bi are non-zero.

Throughout this paper, by S, we mean a commutative semiring S with additive identity 0

and multiplicative identity 1. Also, by a semimodule M, we always mean M is finitely generated

free over S with invariant basis number property. We take α = {α1, . . . , αk} as a basis where

k = dimS(M) or (rankS(M)). We state below certain results which are used in this paper.

Theorem 1.1. ( [21, Whitney, Theorem 4.1.9]) If G is a simple graph, then κ(G) ≤ λ(G) ≤
δ(G).

Theorem 1.2. ( [21, Proposition 7.2.1]) Every Hamiltonian graph is 2-connected.

Theorem 1.3. ( [21, Proposition 7.2.3]) If G has a Hamiltonian cycle, then for each nonempty

set A ⊆ V , the graph G−A has at most |A| components.
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Theorem 1.4. ( [9, Strong Perfect Graph Theorem]) A graph G is perfect if and only if neither

G nor its complement G contains an odd cycle of length at least 5 as an induced subgraph.

§2 Basic properties of Γ∗(M)

In this section, we obtain some basic properties of the graph Γ∗(M) like diameter, girth,

connectedness and domination number. After obtaining these parameters of Γ∗(M), we prove

that Γ∗(M) is weakly perfect. The following concerns about Γ∗(Mα) and Γ∗(Mβ) with respect

to two bases α and β of M of equal cardinality.

Theorem 2.1. Let M be a finitely generated free semimodule over a semiring S with two bases

α = {α1, α2, . . . , αk} and β = {β1, β2, . . . , βk} of M. Then the graphs Γ∗(Mα) and Γ∗(Mβ) are

isomorphic.

Proof. Define Φ : M −→ M by Φ(c1α1 + · · · + ckαk) = c1β1 + · · · + ckβk. Clearly Φ is an

S-semimodule isomorphism on M such that Φ(αi) = βi for all i ∈ {1, 2, . . . , k}. One can check

that the restriction map Φ
′
: V (Γ∗(Mα)) −→ V (Γ∗(Mβ)) of Φ on M∗ \ {

k∑
i=1

ciαi : ci ̸= 0 ∀ i}

induces a graph isomorphism.

In view of Theorem 2.1, properties of Γ∗(M) are independent on the choice of the basis for

M. So one can take any basis of M to study Γ∗(M) henceforth, we take standard basis of M to

study Γ∗(M).

Note 2.2. If dim(M) = 1, then Γ∗(M) is null graph. Further if dim(M) = 2 and |S| = 2, then

Γ∗(M) is K2.

In the following results, we prove that Γ∗(M) is connected in the remaining cases.

Lemma 2.3. Let M be a finitely generated free semimodule over a semiring S. If dim(M) = 2

and |S| ≥ 3, then Γ∗(M) is connected and diam(Γ∗(M)) = 2.

Proof. Let a and b be two distinct vertices in Γ∗(M). If a and b are adjacent in Γ∗(M), then

d(a, b) = 1. Suppose a and b are not adjacent. Since dim(M) = 2, either of the following is true

for the components of a and b: (i) a1 ̸= 0, a2 = 0, b1 ̸= 0 and b2 = 0; (ii) a1 = 0, a2 ̸= 0, b1 = 0

and b2 ̸= 0.

Suppose (i) is true. Since |S| ≥ 3, there exists a vertex c ∈ Γ∗(M) with c1 = 0 and c2 ̸= 0.

Then, a− c− b is a path in Γ∗(M) and so d(a, b) = 2. Similar fact is true in the case of (ii).

Theorem 2.4. Let M be a finitely generated free semimodule over a semiring S. If dim(M) ≥ 3,

then Γ∗(M) is connected and diam(Γ∗(M)) = 3.

Proof. Let dim(M) = k. Let a and b be two distinct vertices in Γ∗(M). If a and b are adjacent in

Γ∗(M), then d(a, b) = 1. Otherwise, there exists at least one i ∈ {1, . . . , k} such that ai, bi ̸= 0.

Since a, b ∈ V (Γ∗(M)), there exist j and ℓ in {1, . . . , k} such that aj and bℓ are zero.
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If j = ℓ, then we take a vertex c such that cj ̸= 0 and ci = 0 for all 1 ≤ i ̸= j ≤ k. Then

a− c− b is a path in Γ∗(M) and hence d(a, b) = 2.

If j ̸= ℓ, then we take vertices c and d with cj ̸= 0, ci = 0 for all 1 ≤ i ̸= j ≤ k and dℓ ̸= 0,

di = 0 for all 1 ≤ i ̸= ℓ ≤ k. Hence a− c−d− b is a path in Γ∗(M) and so d(a, b) = 3. Therefore

diam(Γ∗(M)) = 3.

Now we characterize when Γ∗(M) is a complete bipartite or a complete graph.

Theorem 2.5. Let M be a finitely generated free semimodule over a semiring S. Then Γ∗(M)

is complete bipartite if and only if dim(M) = 2.

Proof. Assume that Γ∗(M) is complete bipartite and so Γ∗(M) does not contain an odd cycle.

Suppose that dim(M) > 2. Then there exist α1, α2, α3 ∈ M such that α1, α2, α3 are in a basis

of M. It is easy to observe that the induced subgraph ⟨{α1, α2, α3}⟩ of Γ∗(M) is K3, which is

a contradiction to Γ∗(M) does not contain an odd cycle. Therefore dim(M) = 2.

Conversely, assume that dim(M) = 2 with {α1, α2} as a basis of M. Since dim(M) = 2, the

vertices of Γ∗(M) is of the form {aα1 + bα2 ∈ M : a = 0 or b = 0}. Note that H1 = {aα1 ∈ M :

a ̸= 0} and H2 = {bα2 ∈ M : b ̸= 0} are independent sets and every vertex in H1 is adjacent to

every vertex in H2. Hence Γ∗(M) is a complete bipartite graph.

Theorem 2.6. Let M be a finitely generated free semimodule over a semiring S. Then Γ∗(M)

is complete if and only if dim(M) = 2 and |S| = 2.

Proof. Assume that Γ∗(M) is complete. From this Γ∗(M) is totally disconnected. Suppose

that dim(M) ≥ 3. By [7, Theorem 3.1], Γ∗(M) is connected and diam(Γ∗(M)) = 2, which is a

contradiction. Therefore dim(M) ≤ 2. By Note 2.2, we have dim(M) = 2. Let {α1, α2} be a

basis of M. If |S| ≥ 3, then there exists a1 ∈ S, a1 ̸= 0, a1 ̸= 1 and so α1 is not adjacent to a1α1

in Γ∗(M) which is a contradiction. Hence |S| = 2.

Conversely, assume that dim(M) = 2 and |S| = 2. Then Γ∗(M) is K2 as observed in

Note 2.2.

Next, we obtain the girth of Γ∗(M).

Theorem 2.7. Let M be a finitely generated free semimodule over a semiring S of dimension

k. Then

gr(Γ∗(M)) =


3 if k ≥ 3;

4 if k = 2 and |S| ≥ 3;

∞ if k = 2 and |S| = 2.

Proof. Case 1. Let k ≥ 3. Assume that A = {α1, . . . , αk} be a basis for M with |A| = k ≥ 3.

The subgraph induced by A is complete and so ⟨A⟩ is Kk with k ≥ 3. Hence gr(Γ∗(M)) = 3.

Case 2. Let k = 2 and |S| ≥ 3. By Theorem 2.5, Γ∗(M) is complete bipartite and hence

gr(Γ∗(M)) = 4.

Case 3. If k = 2 and |S| = 2, then as observed in Note 2.2, Γ∗(M) is K2 and hence

gr(Γ∗(M)) = ∞.
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Next we are interested in the domination number γ(Γ∗(M)).

Remark 2.8. (i) If dim(M) = 2 and |S| = 2, then by Note 2.2, γ(Γ∗(M)) = 1.

(ii) If dim(M) = 2 and |S| ≥ 3, then by Theorem 2.5, Γ∗(M) is complete bipartite. This implies

that γ(Γ∗(M)) = 2.

Theorem 2.9. Let M be a finitely generated free semimodule over a semiring S with dim(M) ≥
3. Then γ(Γ∗(M)) = dim(M).

Proof. Let dim(M) = k and A = {α1, . . . , αk} be a basis for M. For any a ∈ V (Γ∗(M)) \
A, there exist i, j, i ̸= j such that ai ̸= 0 and aj = 0. Hence a is adjacent to αj . Hence

A is a dominating set of Γ∗(M). Suppose A′ ⊂ A and A′ is a dominating set of Γ∗(M).

Note that |A′| < |A| = k and so ∃ αi ∈ A and αi /∈ A′. It is clear that any vertex in

{
k∑

j=1

cjαj : ∃ only one i such that ci = 0 and cj ̸= 0 ∀ 1 ≤ j ̸= i ≤ k} is not dominated by

A′. Therefore A′ is not a dominating set. Hence A is a minimal dominating set of Γ∗(M). To

complete the proof it is enough to prove that no set with less than k elements is a dominating

set.

Assume that there exists a dominating set of cardinality less than k. Let A
′′
= {a1, . . . , ak−1}

be a dominating set. Now, one can partition the vertex set of Γ∗(M) into three sets namely

H1, H2, H3, where

H1 = {
k∑

j=1

cjαj : ∃ only one i such that ci ̸= 0 and cj = 0 ∀ 1 ≤ j ̸= i ≤ k},

H2 = {
k∑

j=1

cjαj : ∃ only one i such that ci = 0 and cj ̸= 0 ∀ 1 ≤ j ̸= i ≤ k}

and H3 = V (Γ∗(M)) \ (H1 ∪H2).

Note that the elements in H2 are dominated only by the elements of H1 and also H2 is

an independent set in Γ∗(M) − ⟨H1⟩. Clearly |H1| ≥ k and |H2| ≥ k. Next, we partition H1

into k-independent sets each one containing vertices with non-zero components in the same

position. Now, choose a subset H ′
2 of H2 containing k-elements from H2 such that these k

elements are not having zero in the same component. By the adjacency of Γ∗(M), there is a

bijection between elements of H ′
2 and k independent sets of H1. Therefore at least k-elements

from H1 are needed for dominating elements of H2. Hence A
′′
is not a dominating set.

Theorem 2.10. Let M be a finitely generated free semimodule over a semiring S with dim(M) =

k. Then ω(Γ∗(M)) = k = χ(Γ∗(M)), i.e., Γ∗(M) is weakly perfect.

Proof. Let A = {α1, . . . , αk} be a basis for M. Clearly ⟨A⟩ is a complete subgraph of Γ∗(M).

Suppose there exists a ∈ V (Γ∗(M)), a ̸= αi for every i and ⟨A ∪ {a}⟩ is a clique of Γ∗(M). Let

a =
k∑

i=1

aiαi. Since a is adjacent to αi for every i, we have that ai = 0 for every 1 ≤ i ≤ k. This

implies that a /∈ V (Γ∗(M)), which is a contradiction. Thus, A is a maximal clique of size k.

Suppose A′ = {x1, x2, . . . , xk+1} be a clique of size k + 1. Then anyone of the xi and xj must

have non-zero in the same component. Hence xi is not adjacent to xj which is a contradiction.
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Thus ω(Γ∗(M)) = k. We know that for any graph G, ω(G) ≤ χ(G). So, we have k ≤ χ(Γ∗(M)).

Assign color 1 to all the vertices having first component as non-zero and color 2 to all the

vertices having first component as zero and 2nd component as non-zero. Continuing in this

way, we assign color k to all the vertices having only k-th component as non-zero. By this way

of coloring, one can see that the vertices having same color can never be adjacent. Thus, we

get a proper coloring for Γ∗(M) and hence χ(Γ∗(M)) ≤ k.

§3 Γ∗(M) over finite semirings

In this section, we discuss some basic properties of Γ∗(M) where M is a finitely generated

free semimodule over a finite semiring S. More specifically, we obtain the degree of vertices in

Γ∗(M).

Theorem 3.1. Let M be a finitely generated free semimodule over a finite semiring S with q

elements and Γ∗(M) be its associated graph with respect to the basis {α1, . . . , αk}. Then, the

degree of the vertex c1αi1 + · · ·+ crαir , where ci’s are non-zero, is qk−r − 1.

Proof. Note that the vertex αi1 is adjacent to the vertices with c2αi2 + · · ·+ crαir , where ci’s

are non-zero. Therefore deg(αi1) = qk−1 − 1. The vertices of the form αi1 + αi2 are adjacent

to vertices of the form c3αi3 + · · ·+ crαir , where ci’s are non-zero. Therefore deg(αi1 + αi2) =

qk−2 − 1. Proceeding in this way, we get that deg(αi1 + · · · + αir ) = qk−r − 1. It is easy to

verify that the set of all vertices adjacent to αi1 + · · · + αir is same as the set of all vertices

adjacent to c1αi1 + · · ·+ crαir i.e., N(αi1 + · · ·+ αir ) = N(c1αi1 + · · ·+ crαir ) where ci’s are

non-zero. Hence deg(c1αi1 + c2αi2 + · · ·+ crαir ) = qk−r − 1, where ci’s are non-zero.

From Theorem 3.1, we have the following characterization for Γ∗(M) to be Eulerian.

Corollary 3.2. Let M be a finitely generated free semimodule over a finite semiring S with

|S| = q. Then Γ∗(M) is Eulerian if and only if q is odd.

Theorem 3.3. Let M be a finitely generated free semimodule over a finite semiring S with

dim(M) = k and |S| = q. Then the number of vertices of Γ∗(M) is (qk − 1)− (q − 1)k and the

number of edges (m) of Γ∗(M) is (2q−1)k−2qk+1
2 .

Proof. Note that A = {
k∑

i=1

ciαi : ci ̸= 0 ∀ i} contains (q − 1)k elements and so number of

vertices in Γ∗(M) = |M∗| − |A| = (qk − 1)− (q− 1)k. By Theorem 3.1, the degree of the vertex

c1αi1 + c2αi2 + · · · + crαir , where ci’s are non-zero is qk−r − 1. Now, there are
(
k
r

)
(q − 1)r

vertices with exactly r components as non-zero in its basic representation. Since the sum of

degrees of all vertices in Γ∗(M) is 2m, we have

2m =
k−1∑
r=1

(
k
r

)
(q − 1)r(qk−r − 1)

=
k−1∑
r=1

(
k
r

)
(q − 1)rqk−r −

k−1∑
r=1

(
k
r

)
(q − 1)r

= (q + q − 1)k − qk − (q − 1)k − [(q − 1 + 1)k − 1− (q − 1)k]
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= (2q − 1)k − qk − (q − 1)k − qk + 1 + (q − 1)k

= (2q − 1)k − 2qk + 1

and hence m = (2q−1)k−2qk+1
2 .

In the following result, we obtain the minimum and maximum degrees of Γ∗(M).

Theorem 3.4. Let M be a finitely generated free semimodule over a finite semiring S with

dim(M) = k and |S| = q. Then the minimum degree δ(Γ∗(M)) = q− 1 and the maximum degree

∆(Γ∗(M)) = qk−1 − 1.

Proof. From Theorem 3.1, the degree of the vertex c1αi1+c2αi2+· · ·+crαir , where ci’s are non-

zero is qk−r−1. Thus the minimum degree corresponds to r = k−1 and hence δ(Γ∗(M)) = q−1

where as the maximum degree corresponds to r = 1 and hence ∆(Γ∗(M)) = qk−1 − 1.

Lemma 3.5. Let M be a finitely generated free semimodule over a finite semiring S with

dim(M) = k and |S| = q. Then the following statements hold:

(i) The number of vertices of maximum degree in Γ∗(M) is k(q − 1);

(ii) The number of vertices of minimum degree in Γ∗(M) is
(

k
k−1

)
(q − 1)k−1.

Proof. (i) Note that each vertex with exactly one component as non-zero is of maximum degree.

Since |S| = q and M is k-dimensional, we get the number of vertices of maximum degree in

Γ∗(M) is k(q − 1).

(ii) Each vertex with exactly k − 1 components as non-zero is of minimum degree and the

number of vertices of minimum degree in Γ∗(M) is
(

k
k−1

)
(q − 1)k−1.

Next, we find the vertex connectivity and edge connectivity of Γ∗(M).

Theorem 3.6. Let M be a finitely generated free semimodule over a finite semiring S with

dim(M) = k and |S| = q. Then κ(Γ∗(M)) = q − 1.

Proof. Consider the case k = 2. By Theorem 2.5, Γ∗(M) is complete bipartite. Hence in this case

Γ∗(M) ∼= Kq−1,q−1. Furthermore, Γ∗(M) = {c1α1+c2α2 : either c1 = 0 (or) c2 = 0} = A1∪A2,

where A1 = {c1α1 : c1 ̸= 0} and A2 = {c2α2 : c2 ̸= 0}. Clearly |A1| = q−1 and |A2| = q−1.

Hence κ(Γ∗(M)) = κ(Kq−1,q−1) = q − 1 if k = 2.

Consider the case k ≥ 3. By Theorem 3.4, δ(Γ∗(M)) = q− 1. In fact, every vertex in the set

X = {
k∑

i=1

ciαi : ∃ only one j such that cj = 0 and ci ̸= 0 ∀ i ̸= j and 1 ≤ j ≤ k} is a minimum

degree vertex. For a fixed j, consider the set Aj = {cjαj : cj ̸= 0}. Clearly |Aj | = q − 1 for

every j.

Now we claim that Aj is a minimal vertex cut of Γ∗(M). For, let Bj = {
k∑

i=1

ciαi : cj =

0 and ci ̸= 0 ∀ i ̸= j}. Clearly |Bj | = (q − 1)k−1. One can see that all vertices in Bj ⊂ X are

of minimum degree and so N(v) = Aj for every v ∈ Bj . Hence every vertex in Bj is isolated in

Γ∗(M)−Aj . Hence Aj(1 ≤ j ≤ k) is a vertex cut with q − 1 vertices of Γ∗(M).
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To prove the minimality of Aj , let Hj = H1j ∪H2j , where H1j = (
k∪

i=1

Ai) \ Aj and H2j =

{
k∑

i=1

ciαi : at least two ci’s are non zero} \Bj .

Claim.⟨Hj⟩ is connected.
Let a, b ∈ H1j . Then a = at1αt1 where at1 ̸= 0, 1 ≤ t1 ≤ k and t1 ̸= j and b = bt2αt2 where

bt2 ̸= 0, 1 ≤ t2 ≤ k and t2 ̸= j. If t1 ̸= t2, then by adjacency in Γ∗(M), we get a and b are

adjacent. If t1 = t2, since k ≥ 3, there exists d ∈ H1j such that d = dsαs where s ̸= t1, j and

1 ≤ s ≤ k. Therefore a− d− b is a path in Γ∗(M). Hence ⟨H1j⟩ is connected.
Next, we want to prove that every vertex in H2j is adjacent to at least one vertex in H1j . For,

let e ∈ H2j . By the choice of vertex set in Γ∗(M), one can choose es = 0 for some s ̸= j.

Consider a vertex u ∈ H1j with us ̸= 0. By adjacency in Γ∗(M), we get that e is adjacent to u.

Hence ⟨Hj⟩ is connected.
Note that Γ∗(M)−Aj = ⟨Hj ∪Bj⟩ is a disconnected graph and has (q−1)k−1+1 connected

components. Suppose A
′

j ⊂ Aj . Then there exists a vertex d = djαj ∈ Aj such that dj ̸= 0 in

Γ∗(M)−A
′

j . Clearly d is adjacent to all vertices in H1j and Bj . Hence Γ∗(M)−A
′

j is connected

and hence A
′

j is not a vertex cut. Therefore Aj is a minimal vertex cut of Γ∗(M).

Suppose there exists a subset A such that |A| ≤ q − 2. To conclude the proof, it is enough

to show that Γ∗(M) − A is connected. For let H =
k∪

i=1

Ai, where Ai = {ciαi : ci ̸= 0}. Since

each Ai contains q−1 vertices, ⟨H \A⟩ is a complete multi-partite graph and hence connected.

Let a ∈ V (Γ∗(M)) \ (H ∪A). By choice of vertex set for Γ∗(M), one can choose at = 0 for some

1 ≤ t ≤ k. Choose a vertex b ∈ H \A with bt ̸= 0. Clearly a is adjacent to b. Thus Γ∗(M)−A

is connected. Hence Aj is a vertex cut with minimum cardinality in Γ∗(M).

From Theorems 1.1, 3.4 and 3.6, we have the following corollary.

Corollary 3.7. Let M be a finitely generated free semimodule over a finite semiring S with q

elements and dim(M) = k. Then the edge connectivity of Γ∗(M) is λ(Γ∗(M)) = q − 1.

Next we obtain a necessary and sufficient condition for Γ∗(M) to be Hamilitonian.

Theorem 3.8. Let M be a finitely generated free semimodule over a finite semiring S with

dim(M) = k and |S| = q. Then Γ∗(M) is Hamilitonian if and only if k = 2 and q ≥ 3.

Proof. Assume that Γ∗(M) is Hamiltonian. Suppose q = 2. By Theorem 3.6, κ(Γ∗(M)) = 1.

This implies Γ∗(M) is not 2-connected, which is a contradiction to Theorem 1.2. Therefore

q ≥ 3.

Assume that k ≥ 3. Let A be a minimum vertex cut of Γ∗(M). By Theorem 3.6, |A| = q−1

and as observed in the proof of Theorem 3.6, the number of connected components of Γ∗(M)−A

is (q − 1)k−1 + 1 > q − 1 = |A|. This is a contradiction to Theorem 1.3. Thus k = 2 and q ≥ 3.

Conversely, assume that k = 2 and q ≥ 3. By Theorem 2.5, Γ∗(M) is complete bipartite

and Γ∗(M) is Kq−1,q−1. Hence Γ∗(M) is Hamiltonian.
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§4 Perfectness of Γ∗(M)

Throughout this section, we assume that M is finite dimensional with dimension k over a

semiring S. It was shown in the Theorem 2.10 that Γ∗(M) is weakly perfect, i.e. ω(Γ∗(M)) =

χ(Γ∗(M)) = dim(M). In this section, we characterize k for which Γ∗(M) is perfect.

Theorem 4.1. Let M be a finitely generated free semimodule over a semiring S with dim(M) =

k. Then Γ∗(M) is perfect if and only if k ≤ 4.

Proof. Let {α1, . . . , αk} be a basis of M. Assume that Γ∗(M) is perfect. Suppose that k ≥ 5.

Let x1 = α1 +α2, x2 = α3 +α4, x3 = α1 +α5, x4 = α2 +α3, and x5 = α4 +α5 in V (Γ∗(M)).

Then the subgraph induced by Ω = {x1, x2, x3, x4, x5} is C5 in Γ∗(M). By Theorem 1.4, Γ∗(M)

is not perfect, which is a contradiction. Therefore k ≤ 4.

Conversely assume that k ≤ 4.

Claim 1. Γ∗(M) does not contain any induced odd cycle of length greater than or equal to

5.

Case 1.1. If k = 2, then by Theorem 2.5, Γ∗(M) is complete bipartite and hence Γ∗(M)

has no induced cycle of odd length.

Case 1.2. Assume that k = 3. Let C : x1 − x2 − · · · − x2ℓ+1 − x1 be an induced cycle with

ℓ ≥ 2 where xi = xi1α1 + xi2α2 + xi3α3, for 1 ≤ i ≤ 2ℓ+ 1 in Γ∗(M).

Without loss of generality, let x11 ̸= 0 and x13 = 0. Since x1 is adjacent to x2, we have

x21 = 0.

Subcase 1.2.1. Suppose that x12 ̸= 0. Since x1 is adjacent to x2, then x22 = 0. This

implies that x1 = x11α1 + x12α2 and x2 = x23α3 with x23 ̸= 0. If x43 = 0, then x2x4 is an edge

and so it is a chord. If x43 ̸= 0, then x53 = 0 and so the edge x2x5 is a chord.

Subcase 1.2.2. Suppose that x12 = 0. Then x1 = x11α1 with x11 ̸= 0. If x31 = 0, then

x1x3 is a chord. Otherwise x31 ̸= 0. Since x3 is adjacent to x4, we have x41 = 0 and in this

case there is a chord between x1 and x4.

Case 1.3. Assume that k = 4. Consider an induced cycle C : x1 − x2 − · · · − x2ℓ+1 − x1

with ℓ ≥ 2 where xi = xi1α1+xi2α2+xi3α3+xi4α4, for 1 ≤ i ≤ 2ℓ+1 in Γ∗(M). Without loss

of generality, let x11 ̸= 0 and x14 = 0. Since x1 is adjacent to x2, we get that x21 = 0.

Subcase 1.3.1. Suppose that x12 ̸= 0 and x13 ̸= 0. Now we have x1 = x11α1+x12α2+x13α3.

As argued in the Subcase 1.2.1, we get a chord in C.

Subcase 1.3.2. Suppose that x12 = 0 and x13 = 0. Now the basic representation of x1 is

x11α1. As argued in the Subcase 1.2.2, we get a chord in C.

Subcase 1.3.3 Suppose that x12 ̸= 0 and x13 = 0. Now the vertex x1 is of the form

x11α1 + x12α2. Since x1 is adjacent to x2, we get that x22 = 0.

If x23 = 0, then x24 ̸= 0. Now the vertex x2 = x24α4. Suppose x44 = 0, then the edge

between x4 and x2 is a chord. Suppose not, since x4 is adjacent to x5, then x54 = 0 and in this

case the edge between x5 and x2 is a chord.

If x23 ̸= 0 and x24 ̸= 0, then x2 = x23α3 + x24α4. Since x2 is adjacent to x3, we have that

x33 = x34 = 0.
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Suppose that x31 ̸= 0 and x32 ̸= 0. Then x41 = x42 = 0 and so the edge between x4 and x1

is a chord.

Suppose x31 ̸= 0 and x32 = 0. If x51 = 0, then the edge between x5 and x3 is a chord. If

not, x51 ̸= 0, and so x5 is not adjacent to x1. Since x5 is adjacent to x6, we get that x61 = 0

and so the edge between x6 and x3 is a chord.

Claim 2. Γ∗(M) does not contain any induced odd cycle of length greater than or equal to

5.

Case 2.1. If k = 2, then by Theorem 2.5, Γ∗(M) is complete bipartite. Thus Γ∗(M) is

a disconnected graph with two connected components each of which is a complete graph and

hence Γ∗(M) has no induced cycle of odd length greater than or equal to 5.

Case 2.2. Assume that k = 3. For, let C : x1 − x2 − · · · − x2ℓ+1 − x1 be an induced cycle

with ℓ ≥ 2 in Γ∗(M). Since x1 is adjacent to x2 and x2ℓ+1 is adjacent to x1, there exist i and

j such that x1i and x2i are non-zero and x(2ℓ+1)j and x1j are non-zero. If i = j, then the edge

x2x2l+1 is a chord. Suppose that i ̸= j. Since x2 is adjacent to x3, then there exists t such that

x2t and x3t are non-zero.

Suppose that t = i or t = j, then the edge x1x3 is a chord. Suppose that t ̸= i and t ̸= j.

Since x3 is adjacent to x4, then there exists s such that x3s and x4s are non-zero. Since k = 3,

either s = i or s = j or s = t. If s = i or s = j, then the edge x4x1 is a chord. If s = t, then the

edge x4x2 is a chord.

Case 2.3. Assume that k = 4. Let C : x1 − x2 − · · · − x2ℓ+1 − x1 be an induced cycle

with ℓ ≥ 2 in Γ∗(M). In similar to the arguments in the Case 2.2, we get that s ̸= i, s ̸= j and

s ̸= t. Since x4 is adjacent to x5, then there exists r such that x4r and x5r are non-zero. Since

k = 4, either r = i or r = j or r = t or r = s. Suppose r = i or r = j, then the edge x4x1 is a

chord. If r = t or r = s, then the edge x5x3 is a chord.

From the above assertions, Γ∗(M) and Γ∗(M) contain no induced cycle of odd length greater

than or equal to 5 when k ≤ 4. By Theorem 1.4, we get that Γ∗(M) is perfect if k ≤ 4.

§5 Genus of Γ∗(M)

One of the most important topological properties of a graph is the genus of graphs. The

problem of finding the genus of a graph associated with commutative rings and vector spaces

have been studied in [16, 18]. In this section, we characterize the planar and toroidal nature

of Γ∗(M). For details on the notion of embedding a graph in a surface, one can refer [22]. We

state below certain results related to genus of graphs.

Theorem 5.1. ( [8, Kuratowski]) A graph G is planar if and only if it contains no subdivision

of K5 or K3,3.

Lemma 5.2. ( [22, Theorem 6.37]) g(Km,n) =
⌈
(m−2)(n−2)

4

⌉
if m,n ≥ 2.

Lemma 5.3. ( [22, Theorem 6.38]) g(Kn) =
⌈
(n−3)(n−4)

12

⌉
if n ≥ 3. In particular, g(Kn) = 1

if n = 5, 6, 7.
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Lemma 5.4. ( [22, Corollary 6.14]) If G is a connected graph with n ≥ 3 vertices and m edges,

then g(G) ≥ m
6 − n

2 + 1. Furthermore, equality holds if and only if a triangular imbedding can

be found for G.

Theorem 5.5. Let M be a finitely generated free semimodule over a finite semiring with

dim(M) = k and |S| = q. Then Γ∗(M) is planar if and only if (k = 2 and q ≤ 3) or (k = 3 and

q = 2).

Proof. Let {α1, . . . , αk} be the basis of Γ∗(M). Assume that Γ∗(M) is planar.

Claim 1. k ≤ 3. Suppose k ≥ 4. Let x1 = α1, x2 = α2, x3 = α3, x4 = α4, x5 = α1 + α2

and x6 = α3 + α4. Then Ω = {xi : 1 ≤ i ≤ 6} is a subset of the vertex set of Γ∗(M) and

the subgraph induced by Ω contains K3,3, which is a contradiction to Γ∗(M) is planar. Hence

k ≤ 3.

Claim 2. If k = 3, then q must be 2. Suppose q ≥ 3. Let x1 = α1, x2 = α2, x3 = α3,

x4 = a1α1, x5 = a1α2, x6 = α2 +α3 and x7 = α1 +α3. Then Ω = {xi : 1 ≤ i ≤ 7} is a subset

of the vertex set of Γ∗(M) and the subgraph of Γ∗(M) induced by Ω contains a subdivision of

K5 as a subgraph, which is a contradiction. Hence q = 2.

Claim 3. If k = 2, then q ≤ 3. Suppose q ≥ 4. Since k = 2, by Theorem 2.5, Γ∗(M) =

Kq−1,q−1 with q ≥ 4. Therefore K3,3 is a subgraph of Γ∗(M), which is a contradiction. Hence

q ≤ 3.

Conversely, assume that (k = 2 and q ≤ 3) or (k = 3 and q = 2).

Case 1. If k = 2 and q = 2, then Γ∗(M) = K1,1, a planar graph.

Case 2. If k = 2 and q = 3, then by Theorem 2.5, Γ∗(M) = K2,2, a planar graph.

Case 3. Assume that k = 3 and q = 2. A planar embedding of Γ∗(M) is given in Figure 1.

Figure 1. Planar Embedding of Γ∗(M).

Next, we characterize all finitely generated free semimodules M over a finite semirings for

which Γ∗(M) is toroidal.

Theorem 5.6. Let M be a finitely generated free semimodule over a finite semiring S with

dim(M) = k ≥ 2 and |S| = q. Then Γ∗(M) is toroidal if and only if either of the following is

true:

(a) k = 2 and q = 4; (b) k = 2 and q = 5; (c) k = 3 and q = 3; (d) k = 4 and q = 2.

Proof. Let {α1, . . . , αk}(k ≥ 2) be a basis of Γ∗(M). Assume that Γ∗(M) is toroidal.

Claim 1. k ≤ 4 and q ≤ 5. Suppose not, we have k ≥ 5 or q ≥ 6.
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If q ≥ 6, let x1 = α1, x2 = a1α1, x3 = a2α1, x4 = a3α1, x5 = a4α1, x6 = α2, x7 =

a1α2, x8 = a2α2 and x9 = a3α2. Then the subgraph of Γ∗(M) induced by Ω = {xi : 1 ≤ i ≤ 9}
contains K5,4 as a subgraph. By Lemma 5.2, g(Γ∗(M)) ≥ 2, which is a contradiction to Γ∗(M)

is toroidal. Hence q ≤ 5.

If k ≥ 5, let x1 = α1, x2 = α2, x3 = α3, x4 = α4, x5 = α5, x6 = α2 + α3, x7 =

α1 + α2, x8 = α1 + α3, x9 = α4 + α5, x10 = α2 + α4 and x11 = α1 + α4. Then the subgraph

of Γ∗(M) induced by Ω = {xi : 1 ≤ i ≤ 11} contains a subdivision of K5,4. By Lemma 5.2,

g(Γ∗(M)) ≥ 2, which is a contradiction. Hence k ≤ 4.

Claim 2. When k = 2, q must be either 4 or 5. If q ≤ 3, by Theorem 5.5, g(Γ∗(M)) = 0

which is a contradiction. Since q ≤ 5, q must be 4 or 5.

Claim 3. When k is 3, q must be 3. Suppose q ≥ 4. Consider the elements x1 =

α1, x2 = a1α1, x3 = a2α1, x4 = α2, x5 = a1α2, x6 = a2α2, x7 = α3, x8 = a1α3, x9 =

a2α3, x10 = α1 + α3 and x11 = a1α1 + a1α3 of V (Γ∗(M)). Then the subgraph induced by

Ω = {xi : 1 ≤ i ≤ 11} contains a subdivision of K5,4. By Lemma 5.2, g(Γ∗(M)) ≥ 2, which is a

contradiction. Hence q ≤ 3.

If q = 2, by Theorem 5.5, g(Γ∗(M)) = 0, which is a contradiction. Therefore q = 3.

Claim 4. When k is 4, q must be 2. Suppose q ≥ 3. Consider the elements x1 = α1, x2 =

a1α1, x3 = α2, x4 = a1α2, x5 = α1 + α2, x6 = α3, x7 = a1α3, x8 = α4 and x9 = a1α4 of

V (Γ∗(M)). Then the subgraph induced by Ω = {xi : 1 ≤ i ≤ 9} contains K5,4. By Lemma 5.2,

g(Γ∗(M)) ≥ 2, which is a contradiction. Hence q = 2.

For converse part, let us consider the following cases.

Case 1. Assume that k = 2 and q = 4 or 5. By Theorem 2.5, Γ∗(M) ∼= K3,3 or K4,4 and

so by Lemma 5.2 g(K3,3) = 1 = g(K4,4) .

Case 2. Assume that k = 3 and q = 3. Now the vertices of Γ∗(M) are x1 = α1, x2 =

α2, x3 = α3, x4 = a1α1, x5 = a1α2, x6 = a1α3, x7 = α1 + α2, x8 = α1 + a1α2, x9 =

a1α1 + α2, x10 = a1α1 + a1α2, x11 = α1 + α3, x12 = α1 + a1α3, x13 = a1α1 + α3, x14 =

a1α1 + a1α3, x15 = α2 + α3, x16 = a1α2 + α3, x17 = α2 + a1α3 and x18 = a1α2 + a1α3. An

embedding of Γ∗(M) in the torus is given in the Figure 2.

Figure 2. Embedding of Γ∗(M) in the torus.

Case 3. Assume that k = 4 and q = 2. Then the vertices of Γ∗(M) are x1 = α1, x2 =

α2, x3 = α3, x4 = α4, x5 = α1 + α2, x6 = α2 + α3, x7 = α3 + α4, x8 = α1 + α4, x9 =
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Figure 3. Embedding of Γ∗(M) in the torus.

α2 + α4, x10 = α1 + α3, x11 = α2 + α3 + α4, x12 = α1 + α3 + α4, x13 = α1 + α2 + α3 and

x14 = α1 + α2 + α4. An embedding of Γ∗(M) in the torus is given in the Figure 3.

Theorem 5.7. Let M be a k-finitely generated free semimodule over a finite semiring S with q

elements. Then

g(Γ∗(M)) =


0 if (k = 2 and q ≤ 3) or (k = 3 and q = 2);

1 if (k = 2 and q = 4 or 5) or (k = 3 and q = 3)

or (k = 4 and q = 2);

≥ 3 otherwise.

Proof. Let {α1, α2, . . . , αk} be the basis of Γ∗(M).

Suppose k ≥ 5. Let x1 = α1, x2 = α2, x3 = α3, x4 = α1+α2, x5 = α1+α3, x6 = α4, x7 =

α5, x8 = α4 + α5, x9 = α2 + α3, x10 = α2 + α4 + α5, x11 = α1 + α4, x12 = α1 + α5, x13 =

α2 + α3 + α4, x14 = α3 + α4 and x15 = α2 + α4. Then the subgraph of Γ∗(M) induced by

Ω = {xi : i = 1 to 15} contains a subdivision of K5,5. Hence, by Lemma 5.2, g(Γ∗(M)) ≥ 3 .

If q ≥ 6, let x1 = α1, x2 = a1α1, x3 = a2α1, x4 = a3α1, x5 = a4α1. Since k ≥ 2,

x6 = α2, x7 = a1α2, x8 = a2α2, x9 = a3α2 and x10 = a4α2. Then the subgraph of Γ∗(M)

induced by Ω = {xi : i = 1 to 10} contains K5,5. Therefore, by Lemma 5.2, g(Γ∗(M)) ≥ 3.

Hence we have k ≤ 4 and q ≤ 5.

Case 1.1. If k = 2 and q ≤ 3, then by Theorem 5.5, g(Γ∗(M)) = 0.

Case 1.2. If k = 3 and q = 2, then by Theorem 5.5, g(Γ∗(M)) = 0.

Case 2.1. If k = 2 and q = 4 or 5, then by Theorem 5.6, g(Γ∗(M)) = 1.

Case 2.2. If k = 3 and q = 3, then by Theorem 5.6, g(Γ∗(M)) = 1.

Case 2.3. Assume that k = 4. If q = 2, then by Theorem 5.6, g(Γ∗(M)) = 1.

Case 3.1. Assume that k = 3 and q = 4. By Theorem 3.3, n = 27 and m = 108. Now, by

Theorem 5.4, g(Γ∗(M)) ≥ m
6 − n

2 + 1 ≥ 2.5 and so g(Γ∗(M)) ≥ 3.
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Case 3.2. Assume that k = 3 and q ≥ 5. Let x1 = α1, x2 = a1α1, x3 = a2α1, x4 =

a3α1, x5 = α2, x6 = a1α2, x7 = α3, x8 = a1α3, x9 = a2α3, x10 = a3α3 and x11 = α1 + α3.

Then the subgraph of Γ∗(M) induced by Ω = {xi : i = 1 to 11} contains a subdivision of K5,5

as a subgraph. Therefore by Lemma 5.2, g(Γ∗(M)) ≥ 3.

Case 3.3 Assume that k = 4 and q ≥ 3. Let x1 = α1, x2 = a1α1, x3 = α2, x4 = a1α2, x5 =

α1 + α2, x6 = α3, x7 = a1α3, x8 = α4, x9 = a1α4 and x10 = α3 + α4. Then the subgraph of

Γ∗(M) induced by Ω = {xi : i = 1 to 10} ⊆ V (Γ∗(M)) contains K5,5 as a subgraph. Therefore,

by Lemma 5.2, g(Γ∗(M)) ≥ 3.

§6 Conclusion

In this paper, we study various properties of the complement graph Γ∗(M) of the reduced

non-zero component graph Γ∗(M) of a finitely generated free semimodule over a semiring S.
In fact, we have studied about the connectedness, diameter, girth, domination number, clique

number and chromatic number of the graph Γ∗(M). Using these parameters, it is proved that

Γ∗(M) is a perfect graph. Further, we obtain a characterization for Γ∗(M) to be complete or

complete bipartite. When S is finite, we could find the degree of all vertices, maximum degree

and minimum degree in Γ∗(M). In the last part of the paper, we have characterized all finite

dimensional free semimodules M over a semiring S for Γ∗(M) is planar and torodial. At last it

is proved that there exists no free semimodules M for which the graph Γ∗(M) is of genus 2. As

a further study, one can study about various domination parameters of Γ∗(M).
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