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Symmetries and conservation laws associated with a

hyperbolic mean curvature flow

GAO Ben YIN Qing-lian

Abstract. Under investigation in this paper is a hyperbolic mean curvature flow for convex

evolving curves. Firstly, in view of Lie group analysis, infinitesimal generators, symmetry groups

and an optimal system of symmetries of the considered hyperbolic mean curvature flow are

presented. At the same time, some group invariant solutions are computed through reduced

equations. In particular, we construct explicit solutions by applying the power series method.

Furthermore, the convergence of the solutions of power series is certificated. Finally, conservation

laws of the hyperbolic mean curvature flow are established via Ibragimov’s approach.

§1 Introduction

As the mean curvature of the hypersurface is the main driving factor, LeFloch established

a model and referred to this model as the hyperbolic mean curvature flow (HMCF) [17]. The

hyperbolic mean curvature flow for convex evolving curves was introduced in [18],

∂2γ

∂t2
(u, t) =

1

2
(1 + |∂γ

∂t
|2)k(u, t)N⃗(u, t)− ▽ρ(u, t), ∀(u, t) ∈ I × [0, T ), (1)

where I ⊂ (−∞,+∞), k stands for the mean curvature of curve γ(u, t), N⃗ represents the

inner unit normal of curve γ(u, t), ▽ρ = ( ∂2γ
∂s∂t ,

∂γ
∂t )T⃗ . Hyperbolic mean curvature flow has

been widely studied both in mathematics and physics. The lifespan of the classical solution to

the Cauchy problem was derived in [18], the uniqueness of the short-time smooth solution and

nonlinear wave equations for curvatures were obtained in [9], self-similar solutions were provided

in [8], development of singularity was discussed in [15], local solvability of the hyperbolic Gauss

curvature flow and several results on finite time blow-up were given in [4], contraction of the

hyperbolic curve was analyzed in [14], applications in Einstein equations were studied in [16].

Two forced hyperbolic mean curvature flows were investigated in [19], the asymptotical behavior

of a strictly convex closed planar curve driven by a hyperbolic normal flow was shown in [26].
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As everyone knows, Lie group method plays an important role in studying the geometric

properties of the geometric flow [23,24,25]. The main thoughts of the symmtery method are to

construct invariance condition and obtain reductions to differential equations [3,5,7,20]. Once

the reduced equations are given, a large number of corresponding exact solutions can be ob-

tained. In order to obtain the classification of all reduction equations, we require an optimal

system of one-dimensional subalgebra constructed by the symmetry method [20]. Utilizing Lie

group analysis, we are going to get an optimal system of (1), in which some fascinating special

solutions are presented. Another significant field is the conservation laws of PDEs which have

a major effect on constructing solutions of PDEs [7,22]. We will obtain conservation laws of

Eq.(1) by using Ibragimov’s method [10].

The remaining of the paper is arranged as follows. Symmetries and related optimal system of

the hyperbolic mean curvature flow are analyzed in Section 2; Section 3 considers the symmetry

reductions by means of similar variables; in Section 4, some new explicit solutions are provided

with help of the power series method, and the convergence of the solutions of power series is

presented; in Section 5, nonlinearly self-adjointness of Eq.(1) is proved and its conservation

laws are established by using Ibragimov’s technique. These conservation laws can be used to

interpret some physical phenomena.

§2 Lie point symmetry

Through the support function of convex evolving curves, an associated hyperbolic equation

of Eq.(1) is obtained as follows(see [18] for more details)

hhττ + hττhθθ − h2
θτ +

1

2
(1 + h2

τ ) = 0, ∀(θ, τ) ∈ I × [0, T ). (2)

Next, we perform Lie symmetry technique for Eq.(2). First of all, let’s think about a vector

field of infinitesimal transformations of Eq.(2) with the form

X = ξ1(θ, τ, h)∂θ + ξ2(θ, τ, h)∂τ + η(θ, τ, h)∂h. (3)

Based on the transformation (3), applying the invariance conditions to Eq.(2), we get [2,20]

pr(2)X(∆)|∆=0 = 0,

where pr(2)X is the 2th-order prolongation of X [2,20] and ∆ = hhττ +hττhθθ−h2
θτ +

1
2 (1+h2

τ ).

For Eq.(2), pr(2)X is

pr(2)X = X + η(1)τ

∂

∂hτ
+ η

(2)
θθ

∂

∂hθθ
+ η

(2)
θτ

∂

∂hθτ
+ η(2)ττ

∂

∂hττ
,

where

η(1)τ = Dτ (η)− hθDτ (ξ
1)− hτDτ (ξ

2),

η
(2)
θθ = D2

θ(η − ξ1hθ − ξ2hτ ) + ξ1hθθθ + ξ2hθθτ ,

η
(2)
θτ = DθDτ (η − ξ1hθ − ξ2hτ ) + ξ1hθθτ + ξ2hθττ ,

η(2)ττ = D2
τ (η − ξ1hθ − ξ2hτ ) + ξ1hθττ + ξ2hτττ ,
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and Dθ, Dτ represent the total differential operators, for example,

Dτ =
∂

∂τ
+ hτ

∂

∂h
+ hθτ

∂

∂hθ
+ hττ

∂

∂hτ
+ · · · .

Next, we get an over determined system of equations of ξ1, ξ2 and η

ξ1θ = ξ1τ = ξ1h = 0,

ξ2θθ = ξ2τθ = ξ2ττ = 0, ξ2h = 0,

ητ = 0, ηh = ξ2τ , ηθθ = ξ2τh− η.

Solving above equations, one get

ξ1 = c1, ξ2 = c2τ + c3θ + c4, η = c2h+ c5sinθ + c6cosθ,

where c1, c2, c3, c4, c5 and c6 are arbitrary constants. Therefore, Lie algebra L6 of the transfor-

mations of Eq.(2) is spanned by the following vector fields

X1 = ∂θ, X2 = τ∂τ + h∂h, X3 = θ∂τ , X4 = ∂τ , X5 = sinθ∂h, X6 = cosθ∂h.

To obtain the symmetry groups, we solve the initial problems of the following ordinary

differential equations

dθ̃

dϵ
= ξ1(θ̃, τ̃ , h̃), θ̃|ϵ=0 = θ,

dτ̃

dϵ
= ξ2(θ̃, τ̃ , h̃), τ̃ |ϵ=0 = τ,

dh̃

dϵ
= η(θ̃, τ̃ , h̃), h̃|ϵ=0 = h,

then we get the one-parameter symmetry groups Gi : (θ, τ, h) → (θ̃, τ̃ , h̃) of the infinitesimal

generators Xi(i = 1, 2, · · · , 6) as follows,
G1 : (θ, τ, h) → (θ + ϵ, τ, h),

G2 : (θ, τ, h) → (θ, τeϵ, heϵ),

G3 : (θ, τ, h) → (θ, τ + ϵθ, h),

G4 : (θ, τ, h) → (θ, τ + ϵ, h),

G5 : (θ, τ, h) → (θ, τ, h+ ϵsinθ),

G6 : (θ, τ, h) → (θ, τ, h+ ϵcosθ).

Based on the above discussion, we obtain the following theorem.

Theorem 2.1. If h = f(θ, τ) is a solution of Eq.(2), then by applying the above-mentioned

groups Gi(i = 1, 2, · · · , 6), the corresponding new solutions hi(i = 1, 2, · · · , 6) can be presented

respectively as follows:

h1 = f(θ − ϵ, τ),

h2 = eϵf(θ, τe−ϵ),

h3 = f(θ, τ − ϵθ),

h4 = f(θ, τ − ϵ),
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h5 = f(θ, τ) + ϵsinθ,

h6 = f(θ, τ) + ϵcosθ.

In order to get the classification of all the invariant solutions, we require an optimal system

of subgroups. Next, we only use the commutator table to construct the optimal system of

one-dimensional subalgebras for Eq.(2) [6]. By applying the commutator [Xm, Xn] = XmXn −
XnXm, we determine the commutation relations of X1, X2, X3, X4, X5, X6 shown in Table 1.

Table 1. Table of Lie brackets.

[Xi, Xj ] X1 X2 X3 X4 X5 X6

X1 0 0 X4 0 X6 −X5

X2 0 0 −X3 −X4 −X5 −X6

X3 −X4 X3 0 0 0 0

X4 0 X4 0 0 0 0

X5 −X6 X5 0 0 0 0

X6 X5 X6 0 0 0 0

An arbitrary operator X ∈ L6 is shown as

X = l1X1 + l2X2 + l3X3 + l4X4 + l5X5 + l6X6.

To discover the linear transformations about the vector l = (l1, l2, l3, l4, l5, l6), we define

Ei = ckij lj∂lk , i = 1, 2, 3, 4, 5, 6, (4)

where ckij is given as the formula [Xi, Xj ] = ckijXk. Based on Eq.(4) and Table 1, E1, E2, E3, E4,

E5, E6 are shown as

E1 = l3∂l4 + l5∂l6 − l6∂l5 ,

E2 = −l3∂l3 − l4∂l4 − l5∂l5 − l6∂l6 ,

E3 = −l1∂l4 + l2∂l3 ,

E4 = l2∂l4 ,

E5 = −l1∂l6 + l2∂l5 ,

E6 = l1∂l5 + l2∂l6 .

For E1, E2, E3, E4, E5, E6, the Lie equations which have parameters a1, a2, a3, a4, a5, a6 with

the initial condition l̃|ai=0 = l, i = 1, 2, 3, 4, 5, 6 can be given as

dl̃1
da1

= 0,
dl̃2
da1

= 0,
dl̃3
da1

= 0,
dl̃4
da1

= l̃3,
dl̃5
da1

= −l̃6,
dl̃6
da1

= l̃5,

dl̃1
da2

= 0,
dl̃2
da2

= 0,
dl̃3
da2

= −l̃3,
dl̃4
da2

= −l̃4,
dl̃5
da2

= −l̃5,
dl̃6
da2

= −l̃6,

dl̃1
da3

= 0,
dl̃2
da3

= 0,
dl̃3
da3

= l̃2,
dl̃4
da3

= −l̃1,
dl̃5
da3

= 0,
dl̃6
da3

= 0,
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dl̃1
da4

= 0,
dl̃2
da4

= 0,
dl̃3
da4

= 0,
dl̃4
da4

= l̃2,
dl̃5
da4

= 0,
dl̃6
da4

= 0,

dl̃1
da5

= 0,
dl̃2
da5

= 0,
dl̃3
da5

= 0,
dl̃4
da5

= 0,
dl̃5
da5

= l̃2,
dl̃6
da5

= −l̃1,

dl̃1
da6

= 0,
dl̃2
da6

= 0,
dl̃3
da6

= 0,
dl̃4
da6

= 0,
dl̃5
da6

= l̃1,
dl̃6
da6

= l̃2.

Using the solutions of the above equations, the transformations are constructed as follows

T1 : l̃1 = l1, l̃2 = l2, l̃3 = l3, l̃4 = a1l3 + l4, l̃5 = −l6sina1 + l5cosa1, l̃6 = l6cosa1 + l5sina1,

T2 : l̃1 = l1, l̃2 = l2, l̃3 = e−a2 l3, l̃4 = e−a2 l4, l̃5 = e−a2 l5, l̃6 = e−a2 l6,

T3 : l̃1 = l1, l̃2 = l2, l̃3 = a3l2 + l3, l̃4 = −a3l1 + l4, l̃5 = l5, l̃6 = l6,

T4 : l̃1 = l1, l̃2 = l2, l̃3 = l3, l̃4 = a4l2 + l4, l̃5 = l5, l̃6 = l6,

T5 : l̃1 = l1, l̃2 = l2, l̃3 = l3, l̃4 = l4, l̃5 = a5l2 + l5, l̃6 = −a5l1 + l6,

T6 : l̃1 = l1, l̃2 = l2, l̃3 = l3, l̃4 = l4, l̃5 = a6l1 + l5, l̃6 = a6l2 + l6.

The structure of the optimal system demands a reduction of the vector

l = (l1, l2, l3, l4, l5, l6), (5)

via the transformations T1 − T6. Our work is to seek the simplest representative of each type

of similar vectors (5). The construction is divided into two situations.

Case 2.1 l2 ̸= 0

By letting a3 = − l3
l2
, a4 = − l4

l2
, a5 = − l5

l2
, and a6 = − l6

l2
in T3, T4, T5 and T6 respectively,

we can enable l̃3 = l̃4 = l̃5 = l̃6 = 0. The vector (5) is simplified as follows

(l1, l2, 0, 0, 0, 0).

We derive the representatives

X2, X1 ±X2. (6)

Case 2.2 l2 = 0

The vector (5) becomes to

(l1, 0, l3, l4, l5, l6). (7)

2.2.1 l1 ̸= 0

By letting a3 = l4
l1
, a5 = l6

l1
and a6 = − l5

l1
in T3, T5 and T6 respectively, we can enable l̃4 =

l̃5 = l̃6 = 0. We simplify the vector (7) to

(l1, 0, l3, 0, 0, 0).

Considering all the combinations, we get the representatives as follows

X1, X1 ±X3. (8)

2.2.2 l1 = 0

The vector (7) is simplified as follows

(0, 0, l3, l4, l5, l6). (9)

2.2.2.1 l3 ̸= 0
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By letting a1 = − l4
l3

in T1, we can make l̃4 = 0. The vector (9) is simplified as follows

(0, 0, l3, 0, l5, l6). (10)

2.2.2.1.1 l5 ̸= 0

By letting a1 = −arctan l6
l5

in T1, we can make l̃6 = 0. The vector (10) is equivalent to

(0, 0, l3, 0, l5, 0).

We get the representatives as follows

X3 ±X5. (11)

2.2.2.1.2 l5 = 0

The vector (10) becomes to

(0, 0, l3, 0, 0, l6).

We get the representatives as follows

X3, X3 ±X6. (12)

2.2.2.2 l3 = 0

The vector (9) is simplified as follows

(0, 0, 0, l4, l5, l6). (13)

2.2.2.2.1 l5 ̸= 0

By letting a1 = −arctan l6
l5

in T1, we can make l̃6 = 0. The vector (13) is equivalent to

(0, 0, 0, l4, l5, 0).

We get the representatives as follows

X5, X4 ±X5. (14)

2.2.2.2.2 l5 = 0

The vector (13) becomes to

(0, 0, 0, l4, 0, l6).

Thinking over all the combinations, we get the representatives as follows

X4, X6, X4 ±X6. (15)

Ultimately, by collecting the operators( 6,8,11,12,14 and 15 ), we obtain the theorem as

follows.

Theorem 2.2. An optimal system of {X1, X2, X3, X4, X5, X6} is created by:

X2, X1 ±X2, X1, X1 ±X3, X3 ±X5, X3, X3 ±X6, X5, X4 ±X5, X4, X6, X4 ±X6.

§3 Similarity reductions

In this section, with the help of Theorem 2.2, we are going to cope with similarity reductions

and find several exact solutions of Eq.(2).

Case 3.1
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For generator X2, the invariants are z = θ, f(z) = h
τ , Eq.(2) becomes to

−f ′2 +
1

2
f2 +

1

2
= 0, (16)

where f ′ = df
dz . By solving Eq.(16), one can obtain h(θ, τ) = τsinh(

√
2
2 (c1 − θ)) which is a

solution of separation variables of Eq.(2), where c1 is an arbitrary constant. Furthermore,

we have h(θ, τ) → ∞, as τ → +∞, which shows that the metric dilates infinitely. By us-

ing G1, G3, G4, G5, G6, we get more solutions to Eq.(2) by means of Theorem 2.1,

h(θ, τ) = (τ − ϵ4 − ϵ3θ)sinh(

√
2

2
(c1 − θ + ϵ1)) + ϵ5sinθ + ϵ6cosθ,

where ϵi, i = 1, 3, 4, 5, 6, are parameters.

Case 3.2

For generator X1, analogously, we have z = τ, h = f(z). The reduction of Eq.(2) is

ff ′′ +
1

2
f ′2 +

1

2
= 0, (17)

where f ′ = df
dz . The invariant solution of Eq.(2) is h(θ, τ) = f(τ). Obviously, in this case,

variable θ has no effect on the solution of Eq.(2).

Case 3.3

For generator X1 +X2, the invariants are z = τe−θ, f(z) = he−θ, Eq.(2) can be reduced to

−zf ′f ′′ + 2ff ′′ +
1

2
f ′2 +

1

2
= 0, (18)

where f ′ = df
dz . The group invariant solution to Eq.(2) is h(θ, τ) = eθf(τe−θ).

Case 3.4

For generator X1 +X3, we have z = − 1
2θ

2 + τ, f(z) = h. The reduction of Eq.(2) is

−f ′f ′′ + ff ′′ +
1

2
f ′2 +

1

2
= 0, (19)

where f ′ = df
dz . The group invariant solution to Eq.(2) is h(θ, τ) = f(− 1

2θ
2 + τ).

Remark 3.1 Unfortunately, the group invariant solutions can not be obtained for other

generators in the optimal system of Theorem 2.2.

§4 Power series solutions

Next, by means of power series method which is an very useful technique for treating

PDEs [1], we will discuss cases 3.2, 3.3 and 3.4.

For Case 3.2, assuming that the power series solution to Eq.(17) is as follows

f(z) =
∞∑

n=0

pnz
n, (20)

where the coefficients pn are constants to be resolved.
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Putting (20) into Eq.(17), we obtain
∞∑

n=0

n∑
k=0

(n− k + 1)(n− k + 2)pn−k+2pkz
n

+
1

2

∞∑
n=0

n∑
k=0

(n− k + 1)(k + 1)pn−k+1pk+1z
n +

1

2
= 0. (21)

Comparing coefficients for (21), we get

p2 = −1 + p21
4p0

. (22)

Generally, for n ≥ 1, we have

pn+2 = − 1

2(n+ 1)(n+ 2)p0
{(n+ 1)p1pn+1

+

n∑
k=1

(n− k + 1)[2(n− k + 2)pn−k+2pk + (k + 1)pn−k+1pk+1]}. (23)

In view of Eq.(23), the coefficients pi, (i ≥ 3) of (20) can be obtained, e.g.,

p3 = −2p1p2
3p0

,

p4 = −9p1p3 + 4p22
12p0

.

Therefore, for arbitrary constants p0 ̸= 0 and p1, the other terms of the sequences {pn}∞n=0,

according to (22) and (23), can be determined. This implies that there is a power series solution

(20) whose coefficients are composed of (22) and (23). Furthermore, for Eq.(17), we certificate

the convergence of (20). In fact, from (23), we get

|pn+2| ≤ M [|pn+1|+
n∑

k=1

(|pn−k+2||pk|+ |pn−k+1||pk+1|)],

where M = max{| p1

2p0
|, | 1

p0
|}.

Next, we construct another power series R = R(z) =
∑∞

n=0 rnz
n, by

ri = |pi|, i = 0, 1, 2,

and

rn+2 = M [rn+1 +
n∑

k=1

(rn−k+2rk + rn−k+1rk+1)],

where n = 1, 2, · · · . It is easily seen that

|pn|≤rn, n = 0, 1, 2, · · · .
Therefore, R = R(z) =

∑∞
n=0 rnz

n is a majorant series of (20). Next, we prove that R = R(z)
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has a positive radius of convergence.

R(z) = r0 + r1z + r2z
2 +

∞∑
n=1

rn+2z
n+2 = r0 + r1z + r2z

2 +M [

∞∑
n=1

rn+1z
n+2

+
∞∑

n=1

n∑
k=1

rn−k+2rkz
n+2 +

∞∑
n=1

n∑
k=1

rn−k+1rk+1z
n+2]

= r0 + r1z + r2z
2 +M [z(R− r0 − r1z) + (R− r0)(R− r0 − r1z)

+ (R− r0)(R− r0 − r1z)].

Then, we discuss the implicit functional equation about the independent variable z,

F (z,R) = R− r0 − r1z − r2z
2 −M [z(R− r0 − r1z) + (R− r0)(R− r0 − r1z)

+ (R− r0)(R− r0 − r1z)].

Based on the implicit function theorem [21], because F is analytic in the (z,R)−plane and

F (0, r0) = 0, F ′
R(0, r0) = 1 ̸= 0, we reach that R = R(z) is analytic in a neighborhood of the

point (0, r0) and has the positive radius. This shows that (20) converges in a neighborhood of

the point (0, r0) of the plane. The proof is completed. Thus the power series solution (20) for

Eq.(17) is analytic and can be described as

f(z) = p0 + p1z + p2z
2 +

∞∑
n=1

pn+2z
n+2

= p0 + p1z −
1 + p21
4p0

z2 −
∞∑

n=1

1

2(n+ 1)(n+ 2)p0
{(n+ 1)p1pn+1

+

n∑
k=1

(n− k + 1)[2(n− k + 2)pn−k+2pk + (k + 1)pn−k+1pk+1]}zn+2.

Moreover, the power series solution of Eq.(2) is

h(θ, τ) = p0 + p1τ + p2τ
2 +

∞∑
n=1

pn+2τ
n+2

= p0 + p1τ − 1 + p21
4p0

τ2 −
∞∑

n=1

1

2(n+ 1)(n+ 2)p0
{(n+ 1)p1pn+1

+
n∑

k=1

(n− k + 1)[2(n− k + 2)pn−k+2pk + (k + 1)pn−k+1pk+1]}τn+2, (24)

where p0 ̸= 0 and p1 are arbitrary constants, the other terms pn(n ≥ 2) can be provided

according to (22) and (23). Obviously, when τ → +∞, we have h(θ, τ) → ∞. We take the first

five terms of Eq.(24) as approximate to h(θ, τ). Then the approximations of h are depicted in

Fig.1.

By acting G2, G3, G4, G5, G6, we obtain more solutions to Eq.(2) by means of Theorem 2.1,

h(θ, τ) = p0e
ϵ2 + p1(τ − ϵ4 − ϵ3θ)−

1 + p21
4p0

(τ − ϵ4 − ϵ3θ)
2e−ϵ2
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−
∞∑

n=1

1

2(n+ 1)(n+ 2)p0
{(n+ 1)p1pn+1 +

n∑
k=1

(n− k + 1)[2(n− k + 2)pn−k+2pk

+ (k + 1)pn−k+1pk+1](τ − ϵ4 − ϵ3θ)
n+2e−(n+1)ϵ2 + ϵ5sinθ + ϵ6cosθ},

where ϵi, i = 2, 3, 4, 5, 6, are parameters.

Similarly, we can also get the power series solutions to (18) and (19) which are listed in

Table 2. Proofs of convergence of the power series solutions of (18) and (19) are similar to the

one of Eq.(17). The details are omitted here.

Table 2. Table of power series solutions.

Cases Power series solutions

X1 +X2 h(θ, τ) = p0e
θ + p1τ − 1+p2

1

8p0
τ2e−θ −

∑∞
n=1

1
2(n+1)(n+2)p0

{4p2pn + (1− n2)p1pn+1

+
∑n−1

k=1(n− k + 1)[2(n− k + 2)pn−k+2pk + (k + 1)(k − n+ 1
2 )pn−k+1pk+1]}

τn+2e−(n+1)θ, where p0 ̸= 0 and p1 are arbitrary constants.

X1 +X3 h(θ, τ) = p0 + p1(− 1
2θ

2 + τ) +
1+p2

1

4(p1−p0)
(−1

2θ
2 + τ)2 +

∑∞
n=1

1
2(n+1)(n+2)(p1−p0)

{(n+ 1)p1pn+1 +
∑n

k=1 2(n− k + 1)[(n− k + 2)pn−k+2(pk − (k + 1)pk+1)

+(k + 1)pn−k+1pk+1]}(− 1
2θ

2 + τ)n+2, where p0 and p1(p0 ̸= p1) are arbitrary

constants.

We take the first five terms of power series solutions of (18) and (19) as approximate to h(θ, τ)

respectively, then the approximations of h are depicted in Figs.2 and 3.

Fig 1. Power series soluti
on of Eq.(17) for p0 = 1, p1
= 1.

Fig 2. Power series soluti
on of Eq.(18) for p0 = 1, p1
= 1.

Fig 3. Power series soluti
on of Eq.(19) for p0 = 1, p1
= 2.

In the same way, based on Theorem 2.1, by using G3, G4, G5, G6 to power series solution of

(18), we obtain more solutions to Eq.(2) as follows,

h(θ, τ) = p0e
θ + p1(τ − ϵ4 − ϵ3θ)−

1 + p21
8p0

(τ − ϵ4 − ϵ3θ)
2e−θ

−
∞∑

n=1

(τ − ϵ4 − ϵ3θ)
n+2e−(n+1)θ + ϵ5sinθ + ϵ6cosθ

2(n+ 1)(n+ 2)p0
{4p2pn + (1− n2)p1pn+1

+
n−1∑
k=1

(n− k + 1)[2(n− k + 2)pn−k+2pk + (k + 1)(k − n+
1

2
)pn−k+1pk+1]},



GAO Ben, YIN Qing-lian. Symmetries and conservation laws associated with... 593

where ϵi, i = 3, 4, 5, 6, are parameters.

By acting G4, G5, G6 to power series solution of (19), we obtain more solutions to Eq.(2),

h(θ, τ) = p0 + p1(−
1

2
θ2 + τ − ϵ4) +

1 + p21
4(p1 − p0)

(−1

2
θ2 + τ − ϵ4)

2 + ϵ5sinθ + ϵ6cosθ

+
∞∑

n=1

1

2(n+ 1)(n+ 2)(p1 − p0)
{(n+ 1)p1pn+1 +

n∑
k=1

2(n− k + 1)[(n− k + 2)

pn−k+2(pk − (k + 1)pk+1) + (k + 1)pn−k+1pk+1]}(−
1

2
θ2 + τ − ϵ4)

n+2,

where ϵi, i = 4, 5, 6, are parameters.

§5 Conservation laws

In this section, via Ibragimov’s approach [10,11], we will establish conservation laws of

Eq.(2). Next, nonlinear self-adjointness of Eq.(2) is proved.

5.1 Nonlinear self-adjointness

First, conservation laws multiplier of Eq.(2) is defined as

Λ = Λ(θ, τ, h).

Then,

Eh[Λ(hhττ + hττhθθ − h2
θτ +

1

2
(1 + h2

τ ))] = 0, (25)

where the Euler operator Eh is shown as

Eh =
∂

∂h
−Dθ

∂

∂hθ
−Dτ

∂

∂hτ
+D2

θ

∂

∂hθθ
+D2

τ

∂

∂hττ
+DθDτ

∂

∂hθτ
· · · . (26)

Substituting (26) into (25), we obtain the following system which has only one unknown

variable Λ,

Λh = 0, Λτ = 0, Λθθ + Λ = 0.

Solving above equations, one get Λ = c1sinθ+c2cosθ, where c1 and c2 are arbitrary constants.

For a mth-order PDE system

Rα(x, u, · · · , u(k)) = 0, α = 1, · · · ,m, (27)

where x = (x1, x2, · · · , xn), u = (u1, u2, · · · , um) and u(1), u(2), · · · , u(k) express the set of all

first, second,. . . , kth-order derivatives of u associated with x.

The adjoint equations of Eq.(27) are defined as

(Rα)∗(x, u, v, · · · , u(k), v(k)) = 0, α = 1, · · · ,m, v = v(x).

Besides,

(Rα)∗(x, u, v, · · · , u(k), v(k)) =
δL
δuα

,

where L is the following form of Lagrangian

L = vβRβ(x, u, · · · , u(k)), β = 1, 2, · · · ,m,
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and the Euler-Lagrange operator is defined as

δ

δuα
=

∂

∂uα
+

∞∑
j=1

(−1)jDi1 · · ·Dij

∂

∂uα
i1···ij

, α = 1, 2, · · · ,m.

Definition 5.1[12]. The system (27) is nonlinearly self-adjoint if the adjoint system satisfies

all the solutions u of (27) upon a substitution v = φ(x, u) such that φ(x, u) ̸= 0. Particularly,

the system

(Rα)∗(x, u, φ, · · · , u(k), φ(k)) = 0, α = 1, · · · ,m,

can be replaced by the following system

λβ
αRβ(x, u, u, · · · , u(k), u(k)) = 0, β = 1, · · · ,m,

namely,

(Rα)∗|v=φ(x,u) = λβ
αRβ , β = 1, · · · ,m,

where λβ
α is a function.

Theorem 5.1 (13). . The overdetermined system of Λ(x, u) of system (27) can be replaced by

the system of nonlinearly self-adjoint substitution.

If the Lagrangian of Eq.(2) is written as

L = φ(θ, τ, h)(hhττ + hττhθθ − h2
θτ +

1

2
(1 + h2

τ )),

Applying the Theorem 5.1, we get

φ(θ, τ, h) = Λ(θ, τ, h) = c1sinθ + c2cosθ. (28)

Therefore, Eq.(2) is nonlinearly self-adjoint with substitution (28).

5.2 Structure of conservation laws

Theorem 5.2 (12). . The system of Eq.(27) is nonlinearly self-adjoint. Then each Lie point,

Lie-Bäcklund, nonlocal symmetry

X = ξi(x, u, u(1), · · · )
∂

∂xi
+ ηα(x, u, u(1), · · · )

∂

∂uα
,

recognized by the system of Eq.(27) leads to a conservation law, where the constituents Ci of the

conserved vector C = (C1, · · · , Cn) are computed by

Ci = Wα[
∂L
∂uα

i

−Dj(
∂L
∂uα

ij

)

+DjDk(
∂L

∂uα
ijk

)− · · · ] +Dj(W
α)[

∂L
∂uα

ij

−Dk(
∂L

∂uα
ijk

) + · · · ] +DjDk(W
α)[

∂L
∂uα

ijk

− · · · ],

and Wα = ηα − ξjuα
j . The Lagrangian L can be expressed in the symmetric form about mixed

derivatives uα
ij , u

α
ijk, · · · .

The Lagrangian L of Eq.(2) is given as follows

L = (c1sinθ + c2cosθ)(hhττ + hττhθθ − h2
θτ +

1

2
(1 + h2

τ )).

For the generator X = ξ1∂θ+ξ2∂τ +ϕ∂h, based on the Theorem 5.2, we get W = ϕ−ξ1hθ−
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ξ2hτ , so the constituents of the conservation vector are

Cθ = W [
∂L
∂hθ

−Dθ(
∂L
∂hθθ

)−Dτ (
∂L
∂hθτ

)] +Dθ(W )
∂L
∂hθθ

+Dτ (W )
∂L
∂hθτ

,

Cτ = W [
∂L
∂hτ

−Dτ (
∂L
∂hττ

)−Dθ(
∂L
∂hθτ

)] +Dτ (W )
∂L
∂hττ

+Dθ(W )
∂L
∂hθτ

.

By putting L into above constituents of the conservation vector, Cθ, Cτ are simplified as

Cθ = −W [(c1cosθ − c2sinθ)hττ − (c1sinθ + c2cosθ)hθττ ]

+Dθ(W )(c1sinθ + c2cosθ)hττ − 2Dτ (W )(c1sinθ + c2cosθ)hθτ , (29)

Cτ = W [2(c1cosθ − c2sinθ)hθτ + (c1sinθ + c2cosθ)hθθτ ]

+Dτ (W )(c1sinθ + c2cosθ)(h+ hθθ)− 2Dθ(W )(c1sinθ + c2cosθ)hθτ . (30)

For generator X1 = ∂θ, we have W = −hθ. According to the formulas (29) and (30), the

constituents of the conserved vector of X1 are

Cθ
1 = hθ[(c1cosθ − c2sinθ)hττ − (c1sinθ + c2cosθ)hθττ ] + (2h2

θτ − hθθhττ )(c1sinθ + c2cosθ),

Cτ
1 = −hθ[2(c1cosθ − c2sinθ)hθτ + (c1sinθ + c2cosθ)hθθτ ] + hθτ (hθθ − h)(c1sinθ + c2cosθ).

For generator X2 = τ∂τ + h∂h, we have W = h− τhτ . According to the formulas (29) and

(30), the constituents of the conserved vector of X2 are

Cθ
2 = (τhτ − h)[(c1cosθ − c2sinθ)hττ − (c1sinθ + c2cosθ)hθττ ]

+ hττ (hθ + τhθτ )(c1sinθ + c2cosθ),

Cτ
2 = (h− τhτ )[2(c1cosθ − c2sinθ)hθτ + (c1sinθ + c2cosθ)hθθτ ]

− [τhττ (h+ hθθ) + 2hθτ (hθ − τhθτ )](c1sinθ + c2cosθ).

For generator X3 = θ∂τ , we have W = −θhτ . According to the formulas (29) and (30), the

constituents of the conserved vector of X3 are

Cθ
3 = θhτ [(c1cosθ − c2sinθ)hττ − (c1sinθ + c2cosθ)hθττ ] + hττ (θhθτ − hτ )(c1sinθ + c2cosθ),

Cτ
3 = −θhτ [2(c1cosθ − c2sinθ)hθτ + (c1sinθ + c2cosθ)hθθτ ]

− [θhττ (h+ hθθ)− 2hθτ (hτ + θhθτ )](c1sinθ + c2cosθ).

For generator X4 = ∂τ , we have W = −hτ . According to the formulas (29) and (30), the

constituents of the conserved vector of X4 are

Cθ
4 = hτ [(c1cosθ − c2sinθ)hττ − (c1sinθ + c2cosθ)hθττ ] + hθτhττ (c1sinθ + c2cosθ),

Cτ
4 = −hτ [2(c1cosθ − c2sinθ)hθτ + (c1sinθ + c2cosθ)hθθτ ]

− [hττ (h+ hθθ)− 2h2
θτ ](c1sinθ + c2cosθ).

For generator X5 = sinθ∂h, we have W = sinθ. According to the formulas (29) and (30),

the constituents of the conserved vector of X5 are

Cθ
5 = −sinθ[(c1cosθ − c2sinθ)hττ − (c1sinθ + c2cosθ)hθττ ] + hττcosθ(c1sinθ + c2cosθ),

Cτ
5 = sinθ[2(c1cosθ − c2sinθ)hθτ + (c1sinθ + c2cosθ)hθθτ ]− 2hθτcosθ(c1sinθ + c2cosθ).

For generator X6 = cosθ∂h, we have W = cosθ. According to the formulas (29) and (30),
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the constituents of the conserved vector of X6 are

Cθ
6 = −cosθ[(c1cosθ − c2sinθ)hττ − (c1sinθ + c2cosθ)hθττ ]− hττ sinθ(c1sinθ + c2cosθ),

Cτ
6 = cosθ[2(c1cosθ − c2sinθ)hθτ + (c1sinθ + c2cosθ)hθθτ ] + 2hθτ sinθ(c1sinθ + c2cosθ).

Acknowledgement

The authors thank Professor Dexing Kong for his wonderful discussion.

References

[1] N H Asmar. Partial Differential Equations with Fourier Series and Boundary Value Problems,

China Machine Press, Beijing, 2005.

[2] G W Bluman, S C Anco. Symmetry and Integration Methods for Differential Equations,

Springer, New York, 2004.

[3] G W Bluman, S Kumei. Symmetries and Differential Equations, Springer-Verlag, Berlin, 1989.

[4] K S Chou, W F Wo. On hyperbolic Gauss curvature flows, Journal of Differential Geometry,

2011, 89: 455-485.

[5] B Gao, C F He. Analysis of a coupled short pulse system via symmetry method, Nonlinear

Dynamics, 2017, 90(4): 2627-2636.

[6] Y N Grigoriev, V F Kovalev, S V Meleshko. Symmetries of integro-differential equations: with

applications in mechanics and plasma physics, Springer, New York, 2010.

[7] B Gao, Y X Wang. Invariant Solutions and Nonlinear Self-Adjointness of the Two-Component

Chaplygin Gas Equation, Discrete Dynamics in Nature and Society, 2019, 2019: 9609357.

[8] C L He, S J Huang, X M Xing. Self-similar solutions to the hyperbolic mean curvature flow,

Acta Mathematica Scientia, 2017, 37(3): 657-667.

[9] C L He, D X Kong, K F Liu. Hyperbolic mean curvature flow, J Diff Equ, 2009, 246: 373-390.

[10] N H Ibragimov. A new conservation theorem, J Math Anal Appl, 2007, 333: 311-328.

[11] N H Ibragimov. Integrating factors, adjoint equations and Lagrangians, J Math Anal Appl,

2006, 318: 742-757.

[12] N H Ibragimov. Nonlinear self-adjointness and conservation laws, J Phys A, 2011, 44: 432002.

[13] N H Ibragimov. Nonlinear self-adjointness in constructing conservation laws, Arch ALGA, 2011,

7: 1-99.

[14] D X Kong, K F Liu, Z G Wang. Hyperbolic mean curvature flow: evolution of plane curves,

Acta Mathematica Scientia, 2009, 29: 493-514.

[15] D X Kong, Z G Wang. Formation of singularities in the motion of plane curves under hyperbolic

mean curvature flow, J Diff Equ, 2009, 247: 1694-1719.



GAO Ben, YIN Qing-lian. Symmetries and conservation laws associated with... 597

[16] K F Liu. Hyperbolic geometric flow, Lecture at International Conference of Elliptic and Parabolic

Differential Equations, Hangzhou, August 20, 2007, Available at preprint webpage of Center of

Mathematical Science, Zhejiang University.

[17] P G LeFloch, K Smoczyk. The hyperbolic mean curvature flow, Journal de Mathématiques
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