
Appl. Math. J. Chinese Univ.
2022, 37(4): 563-582

Fuzzy rough sets in Šostak sense

Ismail Ibedou1 S. E. Abbas2

Abstract. In this paper, we defined the fuzzy operator Φλ in a fuzzy ideal approximation

space (X,R, I) associated with a fuzzy rough set λ in Šostak sense. Associated with Φλ, there

are fuzzy ideal interior and closure operators intλΦ and clλΦ, respectively. r-fuzzy separation

axioms, r-fuzzy connectedness and r-fuzzy compactness in fuzzy ideal approximation spaces are

defined and compared with the relative notions in r-fuzzy approximation spaces. There are

many differences when studying these notions related with a fuzzy ideal different from studying

these notions in usual fuzzy approximation spaces. Lastly, using a fuzzy grill, we will get the

same results given during the context.

§1 Introduction

In 1982, Pawlak ( [15]) introduced the notion of rough sets dealing with the uncertainty of

intelligent systems. By an equivalence relation R on a set X, we have the notion of approx-

imation space (X,R). For a subset A ⊆ X, the boundary region set Ab = Au \ Al describes

the roughness of the set A whenever the upper approximation set Au is greater than the lower

approximation set Al of A. in the approximation space (X,R). If Au = Al, then the set A is

not a rough set. The notions of ideal and fuzzy ideal in sense of Chang [4] were given in [9]

and [18], respectively. Fuzzy ideals in Šostak sense [19] were given in [16]. The local closed set

A∗ of a set A was given in [20] associated with an ideal defined on the usual approximation

space(X,R). Many research papers were based on studying a topological space joined with

an ideal as in [5, 10, 11]. Studying the roughness of a fuzzy set was given in many articles

like [3, 12,13].

Fuzzy separation axioms with grades were given in [7], and studying separation axioms with

respect to an ideal was given in [2]. In [14], the authors studied fuzzy soft separation axioms

and fuzzy soft connectedness in fuzzy topological spaces in sense of Chang. The definition of

fuzzy grills was given in [1], and a research paper studying the fuzzy topological spaces via

ideals and grills was given in [8].
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The motivation of this paper is to define the fuzzy approximation lower and upper sets,

and moreover to define the fuzzy approximation interior and closure operators on a fuzzy

approximation space in sense of Šostak. During these fuzzy operators associated with some

r ∈ I0, we defied fuzzy approximation separation axioms, fuzzy approximation connectedness

and fuzzy approximation com- pactness. A generalization of these definitions is illustrated using

a fuzzy ideal constructed on the fuzzy approximation space.

In the paper, we define the local r-fuzzy closed set Φλ(µ, r) of a fuzzy set µ associated

with the rough fuzzy set λ and r ∈ (0, 1] as a new generalization of the notion of a local

fuzzy closed set. Also, we define the r-fuzzy cosets for each element x ∈ X, and introduce the

definitions of r-fuzzy lower and r-fuzzy upper approximation sets according to these r-fuzzy

cosets in the fuzzy approximation space (X,R). The fuzzy boundary region set is defined

according to the fuzzy difference given in [8]. The definitions of r-fuzzy lower, r-fuzzy upper

and r-fuzzy boundary region sets are satisfying most of the properties of the corresponding

ones in the general case. r-fuzzy approximation connectedness and r-fuzzy ideal approximation

connectedness are defined and studied. Also, r-fuzzy approximation compactness and r-fuzzy

ideal approximation compactness are defined and studied.

Throughout the paper, let X be a finite set of objects and I the closed unit interval [0, 1],

I0 = (0, 1]. Assume that an order-reversing involution α 7→ αc of I is fixed. IX denotes all

fuzzy subsets of X, and λc(x) = 1− λ(x) ∀x ∈ X for all λ ∈ IX . A constant fuzzy set t for all

t ∈ I is defined by t(x) = t ∀x ∈ X. Infimum and supremum of a fuzzy set λ ∈ IX are given

as: inf λ =
∧

x∈X

λ(x) and sup λ =
∨

x∈X

λ(x).

If f : X → Y is a mapping, µ ∈ IX , ν ∈ IY , then

(f(µ))(y) =
∨

x∈f−1(y)

µ(x) ∀y ∈ Y and f−1(ν) = ν ◦ f.

Assume a fuzzy relation R : X ×X → I is defined so that R(x, x) = 1 ∀x ∈ X, R(x, y) =

R(y, x) ∀x, y ∈ X and R(x, y) ≥ (R(x, z) ∧ R(z, y)) ∀x, y, z ∈ X. That is, R is a fuzzy

equivalence relation on X. (X,R) is called a fuzzy approximation space based on the fuzzy

equivalence relation R on X.

Definition 1.1. For each x ∈ X and r ∈ I0, define a fuzzy coset [x]r : X → I as follows:

[x]r(y) = r ∧R(x, y) ∀y ∈ X. (1)

Recall that [x]1(y) = R(x, y) ∀y ∈ X, which means that [x]1(y) = 1 iff R(x, y) = 1. All

elements y ∈ X with fuzzy relation value R(x, y) > 0 are elements in the fuzzy coset [x]r with

membership value (r ∧ R(x, y)), and any element y ∈ X with R(x, y) = 0 does not belong to

the fuzzy coset [x]r. Any fuzzy coset [x]r includes at least the element x ∈ X, and consequently∨
z∈X

[x]r(z) = r for all x ∈ X. Also,
∨

z∈X

[z]r(y) = r ∀y ∈ X (i.e.
∨

z∈X

[z]r = r). If R(x, y) > 0

and r ∈ I0, then the fuzzy cosets [x]r, [y]r (as fuzzy sets) are containing the same elements

of X with some non-zero membership values, and moreover if [y]r(z) = 0, then it must be

that [x]r(z) = 0 whenever R(x, y) > 0. That is, any two fuzzy cosets are either two fuzzy

sets containing the same elements of X with some non-zero membership values or containing

completely different elements of X with some non-zero membership values.
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Note that: [x]r ̸= 0 ∀x ∈ X, while may be all elements z ∈ X are given such that [x]r(z) > 0

in case of R(x, z) > 0 ∀z ∈ X, and thus the fuzzy approximation space (X,R) looks like fuzzy

partitioned into only one fuzzy coset. The fuzzy cosets could be such that [x]r(x) = r and

[x]r(z) = 0 ∀z ̸= x, which means (X,R) looks like fuzzy partitioned into completely disjoint

fuzzy cosets. Putting I = {0, 1} as a crisp case, we get exactly the usual meaning of partitioning

of a set X based on an equivalence relation R on X.

Recall that the fuzzy difference between two fuzzy sets was defined as follows ( [8]):

(λ ∧̄ µ) =

{
0 if λ ≤ µ,

λ ∧ µc otherwise.
(2)

§2 r-fuzzy lower, r-fuzzy upper and r-fuzzy boundary region sets

Definition 2.1. Let λ ∈ IX , r ∈ I0 and R a fuzzy equivalence relation on X and the fuzzy

cosets are defined as in (1). Then, the r-fuzzy lower set λr
R, the r-fuzzy upper set λR

r and the

r-fuzzy boundary region set λB
r are defined as follow:

λr
R(x) = λ(x) ∧ (

∨
λc(z)>0, z ̸=x

[x]r(z))
c ∀x ∈ X, (3)

λR
r (x) = λ(x) ∨

∨
λ(z)>0,z ̸=x

[x]r(z) ∀x ∈ X, (4)

λB
r = λR

r ∧̄ λr
R =

{
0 if λR

r ≤ λr
R

λR
r ∧ (λr

R)
c otherwise.

(5)

λr
R, λ

R
r and λB

r are then called r-fuzzy lower, r-fuzzy upper and r-fuzzy boundary region

sets associated with the fuzzy set λ in IX , r ∈ I0 and based on the fuzzy equivalence relation

R in a fuzzy approximation space (X,R).

From Equations (3) and (4), we get that λr
R ≤ λ ≤ λR

r ∀λ ∈ IX , ∀r ∈ I0. Whenever λR
r

be so that λR
r ≤ λr

R, we get that λ = λr
R = λR

r and then from Equation (5), we have λB
r = 0.

Otherwise, λB
r = λR

r ∧ (λr
R)

c. The fuzzy accuracy αr
R(λ) of approximation of the fuzzy set λ

could be characterized numerically by αr
R(λ) =

inf λr
R

sup λR
r
, where 0 ≤ αr

R(λ) ≤ 1. If αr
R(λ) = 1,

then λ is crisp with respect to R (λr
R = λR

r and λ is precise with respect to R). Otherwise, if

αr
R(λ) < 1, then λ is rough with respect to R.

Lemma 2.1. For any fuzzy set λ ∈ IX and r ∈ I0 we get that:

(1) λr
R ≤ λ ≤ λR

r ,

(2) 0
r
R = 0

R
r = 0 and 1

r
R = 1

R
r = 1,

(3) (λ ∨ µ)rR ≥ λr
R ∨ µr

R,

(4) (λ ∧ µ)Rr ≤ λR
r ∧ µR

r ,

(5) λ ≤ µ implies that λr
R ≤ µr

R and λR
r ≤ µR

r ,



566 Appl. Math. J. Chinese Univ. Vol. 37, No. 4

(6) (λ ∨ µ)Rr = λR
r ∨ µR

r ,

(7) (λ ∧ µ)rR = λr
R ∧ µr

R,

(8) (λR
r )

c = (λc)rR and (λr
R)

c = (λc)Rr

(9) (λr
R)

R
r ≥ (λr

R)
r
R = λr

R

(10) (λR
r )

r
R ≤ (λR

r )
R
r = λR

r

Proof. From Equations (3), (4), we get that (1), (2), (5), (8) are proved directly.

For (3), we have

(λ ∨ µ)rR(x) = (λ ∨ µ)(x) ∧ (
∨

(λ∨µ)c(z)>0, z ̸=x

[x]r(z))
c

≥ (λ(x) ∧ (
∨

λc(z)>0, z ̸=x

[x]r(z))
c) ∨ (µ(x) ∧ (

∨
µc(z)>0, z ̸=x

[x]r(z))
c)

= (λr
R ∨ µr

R)(x) ∀x ∈ X.

For (4), we have

(λ ∧ µ)Rr (x) = (λ ∧ µ)(x) ∨
∨

(λ∧µ)(z)>0, z ̸=x

[x]r(z)

≤ (λ(x) ∨
∨

λ(z)>0,z ̸=x

[x]r(z)) ∧ (µ(x) ∨
∨

µ(z)>0,z ̸=x

[x]r(z))

= (λR
r ∧ µR

r )(x) ∀x ∈ X.

For (6), we have

(λ ∨ µ)Rr (x) = (λ ∨ µ)(x) ∨
∨

(λ∨µ)(z)>0, z ̸=x

[x]r(z)

= (λ(x) ∨
∨

λ(z)>0,z ̸=x

[x]r(z)) ∨ (µ(x) ∨
∨

µ(z)>0,z ̸=x

[x]r(z))

= (λR
r ∨ µR

r )(x) ∀x ∈ X.

For (7), we have

(λ ∧ µ)rR(x) = (λ ∧ µ)(x) ∧ (
∨

(λ∧µ)c(z)>0, z ̸=x

[x]r(z))
c

= (λ(x) ∧ (
∨

λc(z)>0,z ̸=x

[x]r(z))
c) ∧ (µ(x) ∧ (

∨
µc(z)>0,z ̸=x

[x]r(z))
c)

= (λr
R ∧ µr

R)(x) ∀x ∈ X.

For (9), we have

(λr
R)

R
r (x) = λr

R(x) ∨
∨

λr
R(z)>0,z ̸=x

[x]r(z)

≥ λr
R(x)

= [λ(x) ∧ (
∨

λc(z)>0,z ̸=x

[x]r(z))
c] ∧ (

∨
λc(z)>0,z ̸=x

[x]r(z))
c

= (λr
R)

r
R (x) ∀x ∈ X.
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For (10), we have

(λR
r )

r
R(x) = λR

r (x) ∧ (
∨

(λR
r )c(z)>0, z ̸=x

[x]r(z))
c

≤ λR
r (x)

= [λ(x) ∨
∨

λ(z)>0,z ̸=x

[x]r(z)] ∨
∨

λ(z)>0,z ̸=x

[x]r(z)

= (λR
r )

R
r (x) ∀x ∈ X. �

Remark 2.1. According to the above two cases of the r-fuzzy boundary regions, we can say

that there are only two possible cases, one representing the non rough case and the other one

representing the rough case:

(B1) A crisp (an exact) (no roughness) fuzzy set λ with respect to the fuzzy equivalence relation

R when

λB
r = 0 whenever λr

R = λR
r = λ.

(B2) A roughly fuzzy R-definable set λ, that is, some elements of X have membership values

of both of λ and λc when

λB
r = λR

r ∧ (λr
R)

c whenever λR
r ̸≤ λr

R.

The following example for the case in which all elements are in fuzzy relation together with

a nonzero membership value.

Example 2.1. Let R be a fuzzy relation on a set X = {a, b, c, d} given as:

R a b c d

a 1 0.8 0.3 0.1

b 0.8 1 0.3 0.1

c 0.3 0.3 1 0.1

d 0.1 0.1 0.1 1

Assume that λ = {0.3, 0.4, 1, 0.2} and let r = 0.4. Then,

λr
R = {0.3, 0.4, 0.7, 0.2}, λR

r = {0.4, 0.4, 1, 0.2} and λB
r = {0.4, 0.4, 0.3, 0.2}.

If r = 0.6, then λr
R = {0.3, 0.4, 0.7, 0.2}, λR

r = {0.6, 0.6, 1, 0.2} and λB
r = {0.6, 0.6, 0.3, 0.2}.

For µ = {1, 0.2, 0, 0.9} and r = 0.2, we get that

µr
R = {0.8, 0.2, 0, 0.9}, µR

r = {1, 0.2, 0.3, 0.9} and µB
r = {0.2, 0.2, 0.3, 0.1}.

The following example for the case in which some elements have a fuzzy relation in between

with zero membership value.

Example 2.2. Let R be a fuzzy relation on a set X = {a, b, c, d} as shown below.

R a b c d

a 1 0.2 0.7 0

b 0.2 1 0.2 0

c 0.7 0.2 1 0

d 0 0 0 1
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Assume that λ = {0.2, 0.8, 0.6, 0.1} and r = 0.8. Then,

λr
R = {0.2, 0.8, 0.3, 0.1}, λR

r = {0.7, 0.8, 0.7, 0.1} and λB
r = {0.7, 0.2, 0.7, 0.1}.

If r = 0.5, then λr
R = {0.2, 0.8, 0.5, 0.1}, λR

r = {0.5, 0.8, 0.6, 0.1} and λB
r = {0.5, 0.2, 0.5, 0.1}.

For µ = {1, 0.7, 0, 0} and r = 0.5, we get that

µr
R = {0.5, 0.7, 0, 0}, µR

r = {1, 0.7, 0.5, 0} and µB
r = {0.5, 0.3, 0.5, 0}.

Associated with a fuzzy set λ and a value r ∈ I0 in a fuzzy approximation space (X,R), we

can define a fuzzy interior operator intλR : IX × I0 → IX as follows:

intλR(ν, r) = λr
R ∧ νrR ∀ ν ̸= 1 and intλR(1, r) = 1. (6)

This is called a fuzzy interior associated with λ and r ∈ I0 in the fuzzy approximation space

(X,R).

Also, we can define a fuzzy closure operator clλR : IX × I0 → IX as follows:

clλR(ν, r) = (λr
R)

c ∨ νRr ∀ ν ̸= 0 and clλR(0, r) = 0. (7)

It is called a fuzzy closure associated with λ and r ∈ I0 in the fuzzy approximation space

(X,R).

Note that: clλR(ν
R, r) = clλR(ν, r) ∀ν ∈ IX , intλR(νR, r) = intλR(ν, r) ∀ν ∈ IX , and moreover

intλR(ν
c, r) = (clλR(ν, r))

c and clλR(ν
c, r) = (intλR(ν, r))

c ∀ν ∈ IX .

Example 2.3. Let R be a fuzzy relation on a set X = {a, b, c} as shown below.

R a b c

a 1 0.8 0

b 0.8 1 0

c 0 0 1

Assume that λ = {0, 0, 0.5} and r = 0.6. Then,

λr
R = λ, λR

r = λ, λB
r = 0 and (λr

R)
c = {1, 1, 0.5}.

For µ = {0.8, 0.8, 0}, we get that µr
R = {0.4, 0.4, 0}, µR

r = {0.8, 0.8, 0} = µ. Hence,

intλR(µ, r) = λr
R ∧ µr

R = 0 and clλR(µ, r) = (λr
R)

c ∨ µR
r = {1, 1, 0.5}.

Now, if we changed λ to be λ = {0.2, 0.7, 1} and changed r to be r = 0.9. Then,

λr
R = {0.2, 0.2, 1}, λR

r = {0.8, 0.8, 1}, λB
r = {0.8, 0.8, 0} and (λr

R)
c = {0.8, 0.8, 0}.

Put the same µ = {0.8, 0.8, 0}, we get that µr
R = {0.2, 0.2, 0}, µR

r = {0.8, 0.8, 0} = µ.

Hence, intλR(µ, r) = λr
R ∧ µr

R = {0.2, 0.2, 0} and clλR(µ, r) = (λr
R)

c ∨ µR
r = {0.8, 0.8, 0}. Also, if

we have ν = {0.3, 1, 1}, r = 0.9, we get νrR = {0.3, 0.2, 1}, νRr = {0.8, 1, 1}.
Thus, intλR(ν, r) = {0.2, 0.2, 1} and clλR(ν, r) = {0.8, 1, 1}.

From these examples, we see that the computations depend on the fuzzy relation R, the

value of, r and the fuzzy set λ associated with the fuzzy approximation space (X,R).

Definition 2.2. Let (X,R) be a fuzzy approximation space associated with λ ∈ IX , r ∈ I0.

Then,

(1) µ is r-fuzzy preopen (resp. preclosed) set iff

µ ≤ intλR(cl
λ
R(µ, r), r) (resp. µ ≥ clλR(int

λ
R(µ, r), r)).
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(2) The r-fuzzy preinterior of µ, denoted by p intλR(µ, r) is defined by

p intλR(µ, r) =
∨
{ν ∈ IX : µ ≥ ν, ν is r−fuzzy preopen}.

(3) The r-fuzzy preclosure of µ, denoted by p clλR(µ, r) is defined by

p clλR(µ, r) =
∧
{ν ∈ IX : µ ≤ ν, ν is r−fuzzy preclosed}.

§3 Fuzzy ideal approximation spaces

A map I : IX → I is called a fuzzy ideal ( [16]) on X if it satisfies:

(1) I(0) = 1,

(2) λ ≤ µ ⇒ I(λ) ≥ I(µ) for all λ, µ ∈ IX ,

(3) I(λ ∨ µ) ≥ I(λ) ∧ I(µ) for all λ, µ ∈ IX .

If I1 and I2 are fuzzy ideals on X, we have I1 ≤ I2 iff I1(µ) ≤ I2(µ) ∀µ ∈ IX . The triple

(X,R, I) is called a fuzzy ideal approximation space. Define the fuzzy ideal I◦ as a fuzzy ideal

I so that I(µ) = 0 ∀µ ̸= 0.

Definition 3.1. Let (X,R, I) be a fuzzy ideal approximation space associated with λ ∈ IX ,

r ∈ I0. Then,

(1) The local r-fuzzy closed set Φλ(µ, r)(R, I) of a set µ ∈ IX is defined by:

Φλ(µ, r)(R, I) =
∧

{ν ∈ IX : I(µ∧̄ν) ≥ r, clλR(ν, r) = ν}. (8)

(2) The local r-fuzzy preclosed set Φp
λ(µ, r) of a set µ ∈ IX is defined by:

Φp
λ(µ, r) =

∧
{ν ∈ IX : I(µ∧̄ν) ≥ r, p clλR(ν, r) = ν}. (9)

We wrote Φλ(µ, r) and Φp
λ(µ, r) instead of Φλ(µ, r)(R, I) and Φp

λ(µ, r)(R, I), respectively.

Corollary 3.1. Let (X,R, I◦) be a fuzzy ideal approximation space, λ ∈ IX , r ∈ I0. Then,

for each µ ∈ IX , we have Φλ(µ, r) = clλR(µ, r), Φp
λ(µ, r) = p clλR(µ, r).

Proposition 3.1. Let (X,R, I) be a fuzzy ideal approximation space associated with λ ∈
IX , r ∈ I0. Then,

(1) µ ≤ ν implies Φλ(µ, r) ≤ Φλ(ν, r) and Φp
λ(µ, r) ≤ Φp

λ(ν, r).

(2) If I1, I2 are fuzzy ideals on X and I1 ≤ I2, then
Φλ(µ, r)(I1) ≥ Φλ(µ, r)(I2) and Φp

λ(µ, r)(I1) ≥ Φp
λ(µ, r)(I2).

(3) Φp
λ(µ, r) ≤ Φλ(µ, r) = clλR(Φλ(µ, r), r) ≤ clλR(µ, r), and

Φp
λ(µ, r) = p clλR(Φ

p
λ(µ, r), r) ≤ p clλR(µ, r) ≤ clλR(µ, r).

(4) (Φλ(Φλ(µ, r), r) ≤ clλR(Φλ(µ, r), r) = Φλ(µ, r),

(5) Φp
λ(Φ

p
λ(µ, r), r) ≤ pclλR(Φ

p
λ(µ, r), r) = Φp

λ(µ, r).
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(6) Φλ(µ, r) ∨ Φλ(ν, r) ≤ Φλ((µ ∨ ν), r) and Φλ(µ, r) ∧ Φλ(ν, r) ≥ Φλ((µ ∧ ν), r).

Proof. Obvious. �

Definition 3.2. Let (X,R, I) be a fuzzy ideal approximation space associated with

λ ∈ IX , r ∈ I0. Then, for any µ ∈ IX , define the fuzzy operators

clλΦ, p clλΦ, intλΦ, p intλΦ : IX × I0 → IX as follow:

clλΦ(µ, r) = µ ∨ Φλ(µ, r) , p clλΦ(µ, r) = µ ∨ Φp
λ(µ, r) ∀µ ∈ IX . (10)

intλΦ(µ, r) = µ ∧ (Φλ(µ
c, r))c , p intλΦ(µ, r) = µ ∧ (Φp

λ(µ
c, r))c ∀µ ∈ IX . (11)

Now, if I = I◦, then from Corollary 3.1,

(1) clλΦ(µ, r) = clλR(µ, r) = Φλ(µ, r) and intλΦ(µ, r) = intλR(µ, r) = (Φλ(µ
c, r))c ∀µ ∈ IX .

(2) p clλΦ(µ, r) = p clλR(µ, r) = Φp
λ(µ, r) and p intλΦ(µ, r) = p intλR(µ, r) = (Φp

λ(µ
c, r))c

∀µ ∈ IX .

Proposition 3.2. Let (X,R, I) be a fuzzy ideal approximation space associated with

λ ∈ IX , r ∈ I0. Then, for any µ, ν ∈ IX , we have:

(1) intλR(µ, r) ≤ p intλΦ(µ, r) ≤ intλΦ(µ, r) ≤ µ ≤ p clλΦ(µ, r) ≤ clλΦ(µ, r) ≤ clλR(µ, r).

(2) clλΦ(µ
c, r) = (intλΦ(µ, r))

c and intλΦ(µ
c, r) = (clλΦ(µ, r))

c.

(3) clλΦ((µ ∨ ν), r) ≥ clλΦ(µ, r) ∨ clλΦ(ν, r), clλΦ((µ ∧ ν), r) ≤ clλΦ(µ, r) ∧ clλΦ(ν, r).

(4) intλΦ((µ ∨ ν), r) ≥ intλΦ(µ, r) ∨ intλΦ(ν, r), intλΦ((µ ∧ ν), r) ≤ intλΦ(µ, r) ∧ intλΦ(ν, r).

(5) clλΦ(cl
λ
Φ(µ, r), r) ≥ clλΦ(µ, r) and intλΦ(int

λ
Φ(µ, r), r) ≤ intλΦ(µ, r).

(6) If µ ≤ ν, then clλΦ(µ, r) ≤ clλΦ(ν, r), intλΦ(µ, r) ≤ intλΦ(ν, r).

(7) pclλΦ(µ, r) ≤ pclλR(µ, r).

Proof. (1)− (6): Clear.

For (7): Suppose that pclλΦ(µ, r) ̸≤ pclλR(µ, r), and if pclλR(µ, r) = ν, then µ ≤ ν and ν

is r-fuzzy preclosed set with pclλΦ(µ, r) ̸≤ ν. But µ ≤ ν implies that I(µ∧̄ν) ≥ r, and thus

Φp
λ(µ, r) ≤ ν which means that pclλΦ(µ, r) = µ∨Φp

λ(µ, r) ≤ µ∧ ν ≤ ν, which is a contradiction.

Hence, pclλΦ(µ, r) ≤ pclλR(µ, r). �

Definition 3.3. (X,R, I) be a fuzzy ideal approximation space associated with λ ∈ IX , r ∈ I0.

Then,

(1) µ ∈ IX is said to be r-fuzzy Φ-open if µ ≤ intλR(Φλ(µ, r), r). The complement of r-fuzzy

Φ-open is said to be r-fuzzy Φ-closed.

(2) µ ∈ IX is called r-fuzzy dense in itself if µ ≤ Φλ(µ, r).

(3) µ ∈ IX is said to be r-fuzzy ideal preopen if µ ≤ intλR(cl
λ
Φ(µ, r), r). The complement of

r-fuzzy ideal preopen is said to be r-fuzzy ideal preclosed.
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Lemma 3.1. Let (X,R, I) be a fuzzy ideal approximation space associated with λ ∈ IX , r ∈ I0.

Then,

(1) If µ ∈ IX is r-fuzzy Φ-closed, then µ ≥ Φλ(int
λ
R(µ, r), r).

(2) If µ ∈ IX is r-fuzzy ideal preclosed, then µ ≥ clλR(int
λ
Φ(µ, r), r).

Proof. For (1): Let µ be r-fuzzy Φ-closed. Then,

µc ≤ intλR(Φλ(µ
c, r), r) ≤ intλR(cl

λ
R(µ

c, r), r) = intλR((int
λ
R(µ, r))

c, r)

= (clλR(int
λ
R(µ, r)), r)

c ≤ (Φλ(int
λ
R(µ, r)), r)

c. Therefore, Φλ(int
λ
R(µ, r), r) ≤ µ.

For (2), it is obvious. �

It is clear that:

r-fuzzy Φ-open (r-fuzzy Φ-closed) ⇒ r-fuzzy ideal preopen (r-fuzzy ideal preclosed)

⇒ r-fuzzy preopen (r-fuzzy preclosed).

Example 3.1. Let X = {a, b, c, d},
R a b c d

a 1 1 0 0

b 1 1 0 0

c 0 0 1 0.6

d 0 0 0.6 1

Assume that λ = {0, 0, 0.5, 0.5}, r = 0.8 and a fuzzy ideal I is defined on X so that

I(ν) ≥ 0.8 ∀ν ≤ {0.5, 0.5, 1, 1}. Then, λr
R = {0, 0, 0.4, 0.4} and (λr

R)
c = {1, 1, 0.6, 0.6}.

For µ = {0.3, 0, 3, 1, 1}, we get that µ is a r-fuzzy preopen set but neither r-fuzzy ideal

preopen nor r-fuzzy Φ-open.

Example 3.2. Let R be a fuzzy relation on a set X = {a, b, c, d, e} as shown down.

R a b c d e

a 1 1 1 0 0

b 1 1 1 0 0

c 1 1 1 0 0

d 0 0 0 1 0.2

e 0 0 0 0.2 1

Assume that λ = {1, 1, 1, 0.8, 0.6}, r = 0.6 and a fuzzy ideal I is defined on X so that

I(ν) ≥ 0.6 ∀ν ≤ {1, 1, 1, 0.8, 0.8}. Then, λr
R = {1, 1, 1, 0.8, 0.6} and (λr

R)
c = {0, 0, 0, 0.2, 0.4}.

For µ = {1, 1, 1, 0, 0}, we get that µ is a r-fuzzy ideal preopen set but it is not r-fuzzy

Φ-open.

Theorem 3.1. Let (X,R, I) be a fuzzy ideal approximation space associated with λ ∈ IX , r ∈
I0. Then, the following are equivalent.

(1) µ ∈ IX is r-fuzzy Φ-open.
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(2) µ ∈ IX is r-fuzzy ideal preopen and r-fuzzy ideal dense in itself.

Proof. (1) ⇒ (2): It is clear that every r-fuzzy Φ-open set is r-fuzzy ideal preopen. On the

other hand, µ ≤ intλR(Φλ(µ, r), r) ≤ Φλ(µ, r), which means µ is r-fuzzy ideal dense in itself.

(2) ⇒ (1): By assumption, µ ≤ intλR(cl
λ
Φ(µ, r), r) = intλR((µ∨Φλ(µ, r)), r) = intλR(Φλ(µ, r), r),

and hence µ is r-fuzzy Φ-open. �

The following example shows that r-fuzzy ideal preopen and r-fuzzy ideal dense in itself

are independent concepts.

Example 3.3. (1) In Example 3.2, we get that: For µ = {1, 1, 1, 0, 0}, we have µ is r-fuzzy

ideal preopen set but not r-fuzzy ideal dense in itself.

(2) Let X = {a, b, c, d},
R a b c d

a 1 1 0 0

b 1 1 0 0

c 0 0 1 0.8

d 0 0 0.8 1

Assume that λ = {1, 1, 0.2, 0}, r = 0.3 and a fuzzy ideal I is defined on X so that

I(ν) ≥ ν ≤ 0.3. Then, λr
R = {1, 1, 0.2, 0} and (λr

R)
c = {0, 0, 0.8, 0}.

For µ = {0, 0, 0.4, 0.4}, since I(µ) ̸≥ 0.3, then Φλ(µ, r) ̸= 0 and the smallest fuzzy set for

which clλR(η, r) = η is η = {0, 0, 0.8, 1}. That is, Φλ(µ, r) = {0, 0, 0.8, 1} and µ ̸≤ Φλ(µ, r),

that is, µ is r-fuzzy ideal dense in itself while µ is not r-fuzzy ideal preopen.

§4 Separation axioms in fuzzy ideal approximation spaces

Definition 4.1. Let (X,R, I) be a fuzzy ideal approximation space associated with λ ∈
IX , r ∈ I0, r ∈ I0. Then,

(1) A fuzzy ideal approximation space (X,R, I) (resp. a fuzzy approximation space (X,R))

is called r-fuzzy ideal-(t, s)T0 (resp. r-fuzzy (t, s)T0) if for every x ̸= y ∈ X, there exists

µ ∈ IX , t ∈ I0 with intλΦ(µ, r)(x) ≥ t (resp. intλR(µ, r)(x) ≥ t) such that µ(y) < t or

there exists ν ∈ IX , s ∈ I0 with intλΦ(ν, r)(y) ≥ s (resp. intλR(ν, r)(y) ≥ s) such that

ν(x) < s.

(2) A fuzzy ideal approximation space (X,R, I) (resp. a fuzzy approximation space (X,R))

is called r-fuzzy ideal-(t, s)T1 (resp. r-fuzzy (t, s)T1) if for every x ̸= y ∈ X, there exist

µ, ν ∈ IX ; t, s ∈ I0 with intλΦ(µ, r)(x) ≥ t and intλΦ(ν, r)(y) ≥ s (resp. intλR(µ, r)(x) ≥ t

and intλR(ν, r)(y) ≥ s) such that µ(y) < t and ν(x) < s.

(3) A fuzzy ideal approximation space (X,R, I) (resp. a fuzzy approximation space (X,R))

is called r-fuzzy ideal-(t, s)T2 (resp. r-fuzzy (t, s)T2) if for every x ̸= y ∈ X, there exist

µ, ν ∈ IX ; t, s ∈ I0 with intλΦ(µ, r)(x) ≥ t and intλΦ(ν, r)(y) ≥ s (resp. intλR(µ, r)(x) ≥ t

and intλR(ν, r)(y) ≥ s) such that sup(µ ∧ ν) < (t ∧ s).
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Remark 4.1. From (1) in Proposition 3.2, we have intλΦ(µ, r) ≥ intλR(µ, r) ∀µ ∈ IX . Denote

for r-fuzzy ideal approximation (t, s)Ti separation axioms by r- (t, s)FI − Ti, i = 0, 1, 2, that

is,

r − (t, s)T2

��

// r − (t, s)T1

��

// r − (t, s)T0

��
r − (t, s)FI − T2

// r − (t, s)FI − T1
// r − (t, s)FI − T0

Consider a fuzzy ideal approximation space (X,R, I) associated with λ ∈ IX , r ∈ I0 and

I = I◦. Then, the fuzzy ideal separation axioms r- (t, s)FI − Ti are identical to the fuzzy

separation axioms r- (t, s)Ti of the fuzzy approximation space (X,R), i = 0, 1, 2.

Example 4.1. Let λ = {1, 0.8, 0}, r = 0.8, t = s = 0.5 and R be a fuzzy relation on a set

X = {a, b, c} as shown in the matrix:

R a b c

a 1 0.3 0

b 0.3 1 0

c 0 0 1

Then, we get that: λr
R = {0.7, 0.8, 0}, λR

r = {1, 0.8, 0}, (λr
R)

c = {0.3, 0.2, 1}.
Now, for the case a ̸= b, there exists µ = {0.8, 0, 0.4}, and then µr

R = {0.7, 0, 0.4},
which means intλR(µ, r) = {0.7, 0, 0}, and thus intλR(µ, r)(a) ≥ t, µ(b) < t. Also, we can

find ν = {0, 0.6, 0.1}, and then νrR = {0, 0.6, 0.1}, which means intλR(ν, r) = {0, 0.6, 0}, and
thus intλR(ν, r)(b) ≥ s, ν(a) < s.

For the cases a ̸= c and b ̸= c, we can find η = µ ∈ IX with intλR(η, r)(a) ≥ t such that

η(c) < t and η = ν ∈ IX with intλR(η, r)(b) ≥ s such that η(c) < s, while we can not find

η ∈ IX with intλR(η, r)(c) ≥ 0.5. Hence, (X,R) is 0.8-fuzzy approximation (0.5, 0.5)T0-space

associated with λ. (X,R) could not be 0.8-fuzzy approximation (0.5, 0.5)T1-space or 0.8-fuzzy

approximation (0.5, 0.5)T2-space.

Define a fuzzy ideal I on X so that I(η) ≥ r ∀η ≤ 0.7. Then, we can find three fuzzy

sets η = {0.8, 0, 0}, ξ = {0, 0.8, 0} and ζ = {0, 0, 0.8} by which (X,R, I) is 0.8-fuzzy ideal

approximation (0.5, 0.5)Ti-space, i = 0, 1, 2 while (X,R) is neither 0.8-fuzzy approximation

(0.5, 0.5)T1-space nor 0.8-fuzzy approximation (0.5, 0.5)T2-space.

The following example is given to show that there is a r-fuzzy ideal approximation (t, s)T0-

space but not r-fuzzy approximation (t, s)T0-space.

Example 4.2. Let λ = {0.6, 0, 0}, r = 0.9, t = s = 0.4 and R be a fuzzy relation on a set

X = {a, b, c} as shown in the matrix:



574 Appl. Math. J. Chinese Univ. Vol. 37, No. 4

R a b c

a 1 0 0

b 0 1 0

c 0 0 1

Then, we get that: λr
R = {0.6, 0, 0}, (λr

R)
c = {0.4, 1, 1}.

Now, for the case b ̸= c, it fails to find η ∈ IX with intλR(η, r)(b) ≥ t or intλR(η, r)(c) ≥ s.

Hence, (X,R) is not 0.9-fuzzy approximation (0.4, 0.4)T0-space associated with λ, r = 0.9.

Consequently, (X,R) could not be a 0.9-fuzzy approximation (0.4, 0.4)T1-space or 0.9-fuzzy

approximation (0.4, 0.4)T2-space.

Define a fuzzy ideal I on X so that I(η) ≥ r ∀η ≤ {0.6, 1, 1}. Then, there exist µ =

{0.4, 0.4, 0} and ν = {0.4, 0, 0.4} for which Φλ(µ
c, r) = 0 and Φλ(ν

c, r) = 0, which implies

that intλΦ(µ, r) = µ = {0.4, 0.4, 0} and intλΦ(ν, r) = ν = {0.4, 0, 0.4}, and thus intλΦ(µ, r)(a) ≥
0.4, µ(c) < 0.4, intλΦ(µ, r)(b) ≥ 0.4, µ(c) < 0.4 and intλΦ(ν, r)(a) ≥ 0.4,

ν(b) < 0.4. That is, (X,R, I) is 0.9-fuzzy ideal approximation (0.4, 0.4)T0-space but (X,R)

is not 0.9-fuzzy approximation (0.4, 0.4)T0-space. Moreover, we can find η = {0.4, 0, 0},
ξ = {0, 0.4, 0} and ζ = {0, 0, 0.4} concluding that (X,R, I) is 0.9-fuzzy ideal approximation

(0.4, 0.4)T1-space and 0.9-fuzzy ideal approximation (0.4, 0.4)T2-space.

If (X,R) and (Y,R∗) are r-fuzzy approximation spaces associated with λ ∈ IX , r ∈ I0

and µ ∈ IY , r ∈ I0, respectively, then a mapping f : (X,R) → (Y,R∗) is said to be r-fuzzy

approximation continuous (FAC) if intλR(f
−1(η), r) ≥ f−1(intµR∗(η, r)) ∀η ∈ IY . It is

equivalent to clλR(f
−1(η), r) ≤ f−1(clµR∗(η, r)) ∀η ∈ IY .

Now, with respect to λ ∈ IX and µ ∈ IY , If I, I∗ are fuzzy ideals onX, Y , respectively, then

a mapping f : (X,R, I) → (Y,R∗) is called r-fuzzy ideal approximation continuous (FIAC)

provided that intλΦ(f
−1(η), r) ≥ f−1(intµR∗(η, r)) ∀η ∈ IY .

It is easily shown that it is equivalent to clλΦ(f
−1(η), r) ≤ f−1(clµR∗(η, r)) ∀η ∈ IY .

Also, let us call f : (X,R) → (Y,R∗) an r-fuzzy approximation open (FAO) provided that

intµR∗(f(ξ), r) ≥ f(intλR(ξ, r)) ∀ξ ∈ IX .

f : (X,R) → (Y,R∗, I∗) is r-fuzzy ideal approximation open (FIAO) provided that

intµΦ(f(ξ), r) ≥ f(intλR(ξ, r)) ∀ξ ∈ IX .

Clearly, every (FAC) (resp. (FAO)) mapping will be (FIAC) (resp. (FIAO)) mapping as

well (from (1) in Proposition 3.2).

Theorem 4.1. Let (X,R), (Y,R∗) be r-fuzzy approximation spaces associated with

λ ∈ IX , µ ∈ IY , r ∈ I0, respectively, I a fuzzy ideal on X and f : (X,R) → (Y,R∗) is

an injective (FAC) mapping with f(λ) = µ. Then, (X,R, I) is a r-fuzzy ideal approximation

(t, s)Ti-space if (Y,R∗) is r-fuzzy approximation (t, s)Ti-space, i = 0, 1, 2.

Proof. Since x ̸= y in X implies that f(x) ̸= f(y) in Y , and from Y is r-fuzzy approximation

(t, s)T2-space, then there exist η, ζ ∈ IY with t ≤ intµR∗(η, r)(f(x)),

s ≤ intµR∗(ζ, r)(f(y)) such that sup(η ∧ ζ) < (t ∧ s), that is, t ≤ f−1(intµR∗(η, r))(x), s ≤
f−1(intµR∗(ζ, r))(y), and then t ≤ f−1(intµΦ(η, r))(x), s ≤ f−1(intµΦ(ζ, r))(y). Since f is
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(FAC), then t ≤ intλR(f
−1(η, r))(x), s ≤ intλR(f

−1(ζ, r))(y), and then t ≤ intλΦ(f
−1(η, r))(x),

s ≤ intλΦ(f
−1(ζ, r))(y). That is, there exist ρ = f−1(η), ω = f−1(ζ) with t ≤ intλΦ(ρ, r)(x),

s ≤ intλΦ(ω, r)(y) and sup(ρ ∧ ω) < (t ∧ s). Hence, (X,R, I) is r-fuzzy ideal approximation

(t, s)T2-space. Other cases are similar. �

Theorem 4.2. Let (X,R), (Y,R∗) be r-fuzzy approximation spaces associated with

λ ∈ IX , µ ∈ IY , r ∈ I0, respectively, I∗ a fuzzy ideal on Y and f : (X,R) → (Y,R∗) is a

surjective (FAO) mapping with f−1(µ) = λ. Then, (Y,R∗, I∗) is r-fuzzy ideal (t, s)Ti-space if

(X,R) is an r-fuzzy approximation (t, s)Ti-space, i = 0, 1, 2.

Proof. Since p ̸= q in Y implies that f−1(p) ̸= f−1(q) in X, and from (X,R) is r-fuzzy

approximation (t, s)T2-space, then there exist ρ, ω ∈ IX with t ≤ intλR(ρ, r)(f
−1(p)), s ≤

intλR(ω, r)(f
−1(q)) such that sup(ρ ∧ ω) < (t ∧ s), that is, t ≤ f(intλR(ρ, r))(p), s ≤

f(intλR(ω, r))(q). From f is (FAO), then, t ≤ intµR∗(f(ρ), r)(p), s ≤ intµR∗(f(ω), r)(q), and

thus t ≤ intµΦ(f(ρ), r)(p), s ≤ intµΦ(f(ω), r)(q). That is, there exist η = f(ρ), ζ = f(ω) with

t ≤ intµΦ(η, r)(p), s ≤ intµΦ(ζ, r)(q) and sup(η ∧ ζ) < (t ∧ s). Hence, (Y,R∗, I∗) is a r-fuzzy

ideal approximation (t, s)T2-space. Other cases are similar. �

§5 Connected fuzzy ideal approximation spaces

Definition 5.1. Let (X,R) be a fuzzy approximation space associated with λ ∈ IX , r ∈
I0, r ∈ I0. Then,

(1) the fuzzy sets µ, ν ∈ IX are called r-fuzzy approximation preseparated (resp. separated)

sets if

p clλR(µ, r) ∧ ν = µ ∧ p clλR(ν, r) = 0 (resp. clλR(µ, r) ∧ ν = µ ∧ clλR(ν, r) = 0).

(2) A fuzzy set η ∈ IX is called r-fuzzy approximation predisconnected (resp. disconnected)

set if there exist r-fuzzy approximation preseparated (resp. separated) sets µ, ν ∈ IX ,

such that µ ∨ ν = η. A fuzzy set η is called r-fuzzy approximation preconnected (resp.

connected) if it is not r-fuzzy approximation predisconnected (resp. disconnected).

(3) (X,R) is called r-fuzzy approximation predisconnected (resp. disconnected) space if there

exist r-fuzzy approximation preseparated (resp. separated) sets µ, ν ∈ IX , such that

µ ∨ ν = 1. A fuzzy approximation space(X,R) is called r-fuzzy approximation precon-

nected (resp. connected) space if it is not r-fuzzy approximation predisconnected (resp.

disconnected) space.

Definition 5.2. Let (X,R, I) be a fuzzy ideal approximation space associated with λ ∈
IX , r ∈ I0. Then,

(1) the fuzzy sets µ, ν ∈ IX are called r-fuzzy ideal approximation preseparated (resp.

separated) sets if

p clλΦ(µ, r) ∧ ν = µ ∧ p clλΦ(ν, r) = 0 (resp. clλΦ(µ, r) ∧ ν = µ ∧ clλΦ(ν, r) = 0).
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(2) A fuzzy set η ∈ IX is called r-fuzzy ideal approximation predisconnected (resp. discon-

nected) set if there exist r-fuzzy ideal approximation preseparated (resp. separated) sets

µ, ν ∈ IX , such that µ ∨ ν = η. A fuzzy set η is called r-fuzzy ideal approximation

preconnected (resp. connected) if it is not r-fuzzy ideal approximation predisconnected

(resp. disconnected).

(3) (X,R, I) is called r-fuzzy ideal approximation predisconnected (resp. disconnected) space

if there exist r-fuzzy ideal approximation preseparated (resp. separated) sets µ, ν ∈ IX ,

such that µ∨ν = 1. A fuzzy ideal approximation space(X,R, I) is called r-fuzzy ideal ap-

proximation preconnected (resp. connected) space if it is not r-fuzzy ideal approximation

predisconnected (resp. disconnected) space.

Remark 5.1. We have the following implications.

r − fuzzy separated

��

// r − fuzzy ideal separated

��
r − fuzzy preseparated // r − fuzzy ideal preseparated

and hence,

r − fuzzy ideal preconnected

��

// r − fuzzy preconnected

��
r − fuzzy ideal connected // r − fuzzy connected

Example 5.1. Let X = {a, b, c, d, e}, R a fuzzy relation on X defined by

R a b c d e

a 1 1 0.2 0 0

b 1 1 0.2 0 0

c 0.2 0.2 1 0 0

d 0 0 0 1 0

e 0 0 0 0 1

Suppose that λ = {0, 0, 0.4, 0.8, 0}, r = 0.6. Then, λr
R = {0, 0, 0.4, 0.8, 0}, and (λr

R)
c =

{1, 1, 0.6, 0.2, 1}. Now, for µ = {0.6, 0, 0, 0, 0}, ν = {0, 0.6, 0, 0, 0}. Then, µR
r = {0.6, 0.6, 0.2,

0, 0}, νRr = {0.6, 0.6, 0.2, 0, 0}, and thus clλR(µ, r) = {1, 1, 0.6, 0.2, 1} and clλR(ν, r) = {1, 1, 0.6,
0.2, 1}. Moreover, µr

R = {0.4, 0, 0, 0, 0}, νrR = {0, 0.4, 0, 0, 0}, and thus intλR(µ, r) = 0 and

intλR(ν, r) = 0. Hence,
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(1) µ, ν are 0.6-fuzzy approximation preseparated sets but not 0.6-fuzzy approximation sep-

arated sets.

(2) Consider a fuzzy ideal I defined on X so that I(η) ≥ r ∀η ≤ 0.6. Then,

µ, ν are 0.6-fuzzy ideal approximation separated sets but not 0.6-fuzzy approximation

separated sets.

(3) Consider a fuzzy ideal I defined on X so that I(η) ≥ r ∀η ≤ 0.3. Then,

I(µ) ̸≥ r, I(ν) ̸≥ r, which implies that µ, ν are not 0.6-fuzzy ideal approximation

separated sets.

But, µ, ν are 0.6-fuzzy approximation preclosed sets, and hence µ, ν are 0.6-fuzzy ideal

approximation preseparated sets but not 0.6-fuzzy ideal approximation separated sets.

(4) Here, η = {0.6, 0, 0.6, 0, 0}, ξ = {0, 0.6, 0, 0.6, 0} are not 0.6-fuzzy approximation presep-

arated. While, η, ξ are 0.6-fuzzy ideal approximation preseparated sets whenever I is a

fuzzy ideal defined on X so that I(ζ) ≥ r ∀ζ ≤ 0.6.

Proposition 5.1. Let (X,R) be a fuzzy approximation space associated with λ ∈ IX , r ∈ I0.

Then, the following are equivalent.

(1) (X,R) is r-fuzzy approximation preconnected.

(2) µ ∧ ν = 0, p intλR(µ, r) = µ, p intλR(ν, r) = ν and µ ∨ ν = 1 imply µ = 0 or ν = 0.

(3) µ ∧ ν = 0, p clλR(µ, r) = µ, p clλR(ν, r) = ν and µ ∨ ν = 1 imply µ = 0 or ν = 0.

Proof. (1) ⇒ (2): Let µ, ν ∈ IX with p intλR(µ, r) = µ, p intλR(ν, r) = ν such that

µ ∧ ν = 0 and µ ∨ ν = 1. Then,

p clλR(µ, r) = p clλR(ν
c, r) = (p intλR(ν, r))

c = νc = µ,

p clλR(ν, r) = p clλR(µ
c, r) = (p intλR(µ, r))

c = µc = ν.

Hence, p clλR(µ, r) ∧ ν = µ∧ p clλR(ν, r) = µ∧ ν = 0. That is, µ, ν are r-fuzzy approximation

preseparated sets so that µ ∨ ν = 1. But (X,R) is r-fuzzy approximation connected implies

that µ = 0 or ν = 0.

(2) ⇒ (3): , (3) ⇒ (1): Clear. �

Proposition 5.2. Let (X,R) be a fuzzy approximation space associated with λ ∈ IX , r ∈ I0.

Then, for µ ∈ IX , the following are equivalent.

(1) µ is r-fuzzy preconnected set.

(2) If ν, ρ are r-fuzzy approximation preseparated sets with µ ≤ (ν ∨ ρ), then

µ ∧ ν = 0 or µ ∧ ρ = 0.

(3) If ν, ρ are r-fuzzy approximation preseparated sets with µ ≤ (ν ∨ ρ), then

µ ≤ ν or µ ≤ ρ.
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Proof. Direct �

Theorem 5.1. Let (X,R), (Y,R∗) be fuzzy approximation spaces associated with λ ∈ IX , µ ∈
IY , respectively, r ∈ I0, I a fuzzy ideal on X, and f : (X,R, I) → (Y,R∗) a fuzzy mapping such

that p clλΦ(f
−1(ν)) ≤ f−1(p clµR∗(ν)) ∀ν ∈ IY . Then, f(η) ∈ IY is r-fuzzy approximation

preconnected set if η is r-fuzzy ideal approximation preconnected in X.

Proof. Let ν, ρ ∈ IY be r-fuzzy approximation preseparated sets with f(η) = ν ∨ ρ. That is,

p clµR∗(ν, r) ∧ ρ = p clµR∗(ρ, r) ∧ ν = 0. Then, η ≤ (f−1(ν) ∨ f−1(ρ)), and from the condition

of f , we get that

p clλΦ(f
−1(ν), r) ∧ f−1(ρ) ≤ f−1(p clµR∗(ν, r)) ∧ f−1(ρ)

= f−1(p clµR∗(ν, r) ∧ ρ) = f−1(0) = 0,

and in a similar way, we have

p clλΦ(f
−1(ρ), r) ∧ f−1(ν) ≤ f−1(p clµR∗(ρ, r)) ∧ f−1(ν)

= f−1(clµR∗(ρ, r) ∧ ν) = f−1(0) = 0.

Hence, f−1(ν) and f−1(ρ) are r-fuzzy ideal approximation preseparated sets in X so that

η ≤ (f−1(ν)∨f−1(ρ)). But from (3) in Proposition 5.2, we get that η ≤ f−1(ν) or η ≤ f−1(ρ),

which means that f(η) ≤ ν or f(η) ≤ ρ. Thus, from that η is r-fuzzy ideal approximation

preconnected, and consequently η is an r-fuzzy approximation preconnected set in X, and again

from (3) in Proposition 5.2, we get that f(η) is r-fuzzy approximation preconnected in Y . �

§6 Compactness in fuzzy ideal approximation spaces

This section is devoted to introduce the notion of fuzzy ideal approximation compact spaces.

Definition 6.1. Let (X,R, I) be a fuzzy ideal approximation space associated with λ ∈
IX , r ∈ I0. Then,

(1) µ is said to be r-fuzzy approximation compact (resp. r-fuzzy ideal approximation compact

) if for any family {µj ∈ IX : intλR(µj , r) = µj , j ∈ J} with µ ≤
∨
j∈J

µj , there exists a

finite subset J0 of J so that µ ≤
∨

j∈J0

µj (resp. I(µ Z (
∨

j∈J0

µj)) ≥ r).

(2) µ is said to be r-fuzzy almost approximation compact (resp. r-fuzzy almost ideal approx-

imation compact) if for any family {µj ∈ IX : intλR(µj , r) = µj , j ∈ J} with µ ≤
∨
j∈J

µj ,

there exists a finite subset J0 of J such that

µ ≤
∨

j∈J0

clλR(µj , r) (resp. I(µ Z (
∨

j∈J0

clλΦ(µj , r))) ≥ r).

(3) µ is said to be r-fuzzy nearly approximation compact (resp. r-fuzzy nearly ideal approx-

imation compact) if for any family {µj ∈ IX : intλR(µj , r) = µj , j ∈ J} with µ ≤
∨
j∈J

µj ,

there exists a finite subset J0 of J such that

µ ≤
∨

j∈J0

intλR(cl
λ
R(µj , r), r) (resp. I(µ Z (

∨
j∈J0

intλR(cl
λ
Φ(µj , r), r))) ≥ r).
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The fuzzy approximation space (X,R) (resp. The fuzzy ideal approximation space (X,R,

I) will be called r-fuzzy approximation compact, r-fuzzy almost approximation compact,

r-fuzzy nearly approximation compact (resp. r-fuzzy ideal approximation compact, r-

fuzzy almost ideal approximation compact, r-fuzzy nearly ideal approximation compact)

if we replaced µ with 1.

It is clear that:

r-fuzzy approximation compact =⇒ r-fuzzy almost approximation compact =⇒ r-fuzzy nearly

approximation compact.

(resp. r-fuzzy ideal approximation compact =⇒ r-fuzzy almost ideal approximation compact

=⇒ r-fuzzy nearly ideal approximation compact).

If I = I◦, then

(1) r-fuzzy approximation compact and r-fuzzy ideal approximation compact are equivalent.

(2) r-fuzzy almost approximation compact and r-fuzzy almost ideal approximation compact

are equivalent.

(3) r-fuzzy nearly approximation compact and r-fuzzy nearly ideal approximation compact

are equivalent.

Definition 6.2. Let (X,R, I) be a fuzzy ideal approximation space associated with λ ∈
IX , r ∈ I0. Then, X is said to be r-fuzzy regular (resp. r-fuzzy ideal regular ) space if for each

η ∈ IX with intλR(η, r) = η,

η =
∨
j∈J

{ηj : intλR(ηj , r) = ηj , clλR(ηj , r) ≤ η}.

( resp. η =
∨
j∈J

{ηj : intλR(ηj , r) = ηj , clλΦ(ηj , r) ≤ η}).

It is clear that every r-fuzzy regular space is r-fuzzy ideal regular space. If I = I◦, then the

concepts of r-fuzzy regular and r-fuzzy ideal regular are identical.

Theorem 6.1. Let (X,R, I) be r-fuzzy almost ideal approximation compact and r-fuzzy ideal

regular. Then, X is r-fuzzy ideal approximation compact space.

Proof. Assume a family {µj ∈ IX : intλR(µj , r) = µj , j ∈ J} with 1 =
∨
j∈J

µj .

By r-fuzzy ideal regularity of X, then for each intλR(µj , r) = µj , we have

µj =
∨

jk∈JK

{µjk : intλR(µjk , r) = µjk , clλΦ(µjk , r) ≤ µj}.

Hence,1 =
∨
j∈J

(
∨

jk∈JK

µjk). Since X is r-fuzzy almost ideal approximation compact, then there

exists a finite index subset J0 × JK of J × J such that

I(1 Z (
∨
j∈J0

(
∨

jk∈JK

clλΦ(µjk , r)))) ≥ r.
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Since for each j ∈ J0, we have
∨

jk∈JK

clλΦ(µjk , r) ≤ µj , then we get that

1 Z (
∨
j∈J0

(
∨

jk∈JK

clλΦ(µjk , r))) ≥ 1 Z (
∨
j∈J0

µj). Therefore,

I(1 Z (
∨

j∈J0

µj)) ≥ r, and thus (X,R, I) is r-fuzzy ideal approximation compact. �

Theorem 6.2. Let (X,R, I) be r-fuzzy nearly ideal approximation compact and r-fuzzy ideal

regular. Then, X is r-fuzzy nearly ideal approximation compact.

Proof. Similar to the proof of Theorem 6.1. �

Theorem 6.3. Let f : (X,R, I1) → (Y,R∗, I2) be injective fuzzy approximation continuous

mapping between two fuzzy ideal approximation spaces associated with λ ∈ IX , µ ∈ IY re-

spectively, r ∈ I0 and I1(ν) ≥ r =⇒ I2(f(ν)) ≥ r ∀ν ∈ IX , and η ∈ IX is r-fuzzy ideal

approximation compact set. Then, f(η) is r-fuzzy ideal approximation compact as well.

Proof. Let {ξj ∈ IY : intµR∗(ξj) = ξj , j ∈ J} be a family with f(η) ≤
∨
j∈J

ξj .

By fuzzy approximation continuity of f , intλR(f
−1(ξj), r) = f−1(ξj) and η ≤

∨
j∈J

f−1(ξj). By

r-fuzzy ideal approximation compactness of η, there exists a finite subset J0 of J such that

I1(η Z (
∨
j∈J0

(f−1(ξj)))) ≥ r.

Since I1(ν) ≥ r =⇒ I2(f(ν)) ≥ r ∀ν ∈ IX , then

I2(f(η Z (
∨
j∈J0

(f−1(ξj))))) ≥ r.

From f is injective, then f(η Z (
∨

j∈J0

(f−1(ξj)))) = f(η) Z (
∨

j∈J0

(ξj)). Thus,

I2(f(η) Z (
∨
j∈J0

(ξj))) ≥ r.

Hence, f(η) is r-fuzzy ideal approximation compact. �

§7 Conclusion

Let X be a non empty set and let I,G : IX → I be two mappings satisfying the following

conditions:

IG(λ) =
∨

{r : G(λ) < r ; r ∈ I0} ∀λ ∈ IX , (12)

GI(λ) =
∧

{r : I(λ) ≥ r ; r ∈ I0} ∀λ ∈ IX . (13)

If G is a fuzzy grill on X ( [1]), then IG is a fuzzy ideal on X generated by G. Also, if I
is a fuzzy ideal on X, then GI is a fuzzy grill on X generated by I. This correspondence is

given by (12), (13).

That is, studying topological properties in fuzzy ideal approximation spaces will be the

same if we studied these properties in fuzzy grill approximation spaces in Šostak sense, and

consequently in Chang sense. So, r-fuzzy approximation separation axioms or r-fuzzy approx-
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imation connectedness, or r-fuzzy approximation compactness introduced in this paper could

be redefined and give us the same results if we replaced I with the notion of fuzzy grill G.
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