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Certain averaging operators on Triebel-Lizorkin spaces

ZHAO Jun-yan1 PAN Ya-li1,2,∗

Abstract. In this article, we study the boundedness properties of the averaging operator Sγ
t

on Triebel-Lizorkin spaces Ḟα
p,q(Rn) for various p, q. As an application, we obtain the norm

convergence rate for Sγ
t (f) on Triebel-Lizorkin spaces and the relation between the smoothness

imposed on functions and the rate of norm convergence of Sγ
t is given.

§1 Introduction

For f ∈ S (Rn) and γ > 0, we consider the spherical mean

Sγ
t (f)(x) =

Γ(γ + n/2)

πn/2Γ(γ)

∫
|y|<1

(
1− |y|2

)γ−1

f(x− ty)dy,

where x ∈ Rn, t > 0. For brevity, we denote Sγ
t (f)(x) = Sγ(f)(x) for t = 1. In view of the

formula in [13, Theorem 3.3, p. 155] and the identity in [9, p. 576], we see that the Fourier

transform of Sγ
t (f) is

Ŝγ
t (f)(ξ) = mγ(tξ)f̂(ξ)

with the multiplier

mγ(ξ) = Γ(γ +
n

2
)2

n−2
2 +γVn−2

2 +γ(2π |ξ|), (1.1)

where Vν(u) = Jν(u)u
−ν , and Jν(x) denotes the Bessel function of order ν (see [13, Appendix

B, p. 573]). Since Jν(u) is an analytic function on the domain {ν ∈ C : Re (ν) > −1/2} for any

fixed u ≥ 0, one may extend {Sγ
t } to be a family of Fourier multiplier operators with symbols

mγ (tξ) on the region {
γ ∈ C : Re (γ) > −n− 1

2

}
.

In this paper, we consider the means Sγ
t for all real γ satisfying γ > −n−1

2 . Thus, {Sγ
t } is a

family of convolution operators with γ > −n−1
2 . It is well-known that S1

t (f) is the ball average
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of f and S0
t (f) is the spherical average of f (see Chap XI in [12]). Consider the following

Cauchy problem of the wave equation{
(∂2t −∆)u(x, t) = 0, (x, t) ∈ Rn × R ,
u(x, 0) = 0 , ∂tu(x, 0) = f(x).

Its solution u(x, t) is formally given by

u(x, t) = cntS
3−n
2

t (f) (x) ,

where cn is a constant depending only on n.

This family of operators {Sγ
t } was extensively studied by many authors in the literature

(see e.g. [1, 4, 11]). One can also see [12, Chapter XI] for more information. Particularly, the

following theorem can be found in Proposition 4.1 and Remark 4.1 in [7].

Theorem A. ( [7, p. 86-88]) Let n ≥ 2, γ ≥ 0 and t > 0. Then Sγ
t (f) is bounded on the real

Hardy space Hp(Rn) and

lim
t→0+

∥Sγ
t (f)− f∥Hp(Rn) = 0

for f ∈ Hp(Rn), provided p ≥ n−1
γ+n−1 .

We notice that the Triebel-Lizorkin space Ḟα
p,q(Rn) is a more general frame of function

spaces which takes the space Hp(Rn) as a special case

Ḟ 0
p,2(Rn) = Hp(Rn).

The first aim of this paper is to extend the known result onHp(Rn) by studying the boundedness

of Sγ
t on the Triebel-Lizorkin space Ḟα

p,q(Rn) for different indices p, q.We establish the following

result.

Theorem 1.1. Let γ, α ∈ R, γ > −n−1
2 and 0 < p, q < ∞. One then has the following

boundedness properties of the averaging operator Sγ
t on Ḟα

p,q(Rn):

(1) Assume γ > 0.

(a) Sγ
t is bounded on Ḟα

p,q(Rn) if 1 ≤ p, q <∞;

(b) Sγ
t is bounded on Ḟα

p,q(Rn) if γ ≥ (n− 1)(1/p− 1) for 0 < p < 1 < q <∞;

(c) For 0 < q ≤ p < 1, Sγ
t is bounded on Ḟα

p,q(Rn) if γ > (n− 1)(1/p− 1).

(2) Let γ = 0. S0
t is bounded on Ḟα

p,q(Rn) if 1 ≤ p <∞ and 1 < q <∞.

(3) Let −n−1
2 < γ < 0. For 1 < p, q <∞, Sγ

t is bounded on Ḟα
p,q(Rn) if

γ > (n− 1)

[∣∣∣∣1p − 1

2

∣∣∣∣− 1

2

]
.

Moreover,

(a) for 1 < p ≤ q ≤ 2, Sγ
t is bounded on Ḟα

p,q(Rn) if

γ ≥ (n− 1)

(
1

p
− 1

)
;
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(b) for 2 ≤ q ≤ p <∞, Sγ
t is bounded on Ḟα

p,q(Rn) if

γ ≥ − (n− 1)

p
.

Remark 1.2. Since Ḟ 0
p,2(Rn) = Hp(Rn), Theorem 1.1 tells that when n ≥ 2, γ > −n−1

2 and

t > 0, Sγ
t (f) is bounded on the space Hp(Rn) if

γ ≥ (n− 1)

[∣∣∣∣1p − 1

2

∣∣∣∣− 1

2

]
for all 0 < p < ∞, which recovers Theorem A. Thus, Theorem 1.1 is a natural extension of

Theorem A. Precisely, for q = 2, α = 0, (1a) in Theorem 1.1 means that if γ > 0 then mγ (ξ)

is an Lp (Rn) multiplier for any p ≥ 1; (1b) in Theorem 1.1 means that if γ > 0 and 0 < p < 1

then mγ (ξ) is an Hp (Rn) multiplier if γ ≥ (n− 1)(1/p− 1); (2) in Theorem 1.1 means that if

γ = 0 and 1 ≤ p < ∞, then mγ (ξ) is an Lp (Rn) multiplier; (3) in Theorem 1.1 means that if

−n−1
2 < γ < 0 and 1 < p <∞, then mγ (ξ) is an Lp (Rn) multiplier if

γ ≥ (n− 1)

[∣∣∣∣1p − 1

2

∣∣∣∣− 1

2

]
.

Collecting all above results, we conclude that Theorem 1.1 recovers Theorem A.

On the other hand, Fan and Zhao [7] studied the convergence rate of Sγ
t (f) in the Hp norm

and established its relation to the K-functional K
(
f,∆, t2

)
Hp . They obtained the following

result.

Theorem B. ( [7, Proposition 4.2, p. 89]) Let n ≥ 2, γ ≥ 0 and t > 0. If β ≤ 2, then

∥t−β (Sγ
t (f)− f) ∥Hp(Rn) ≼ ∥I−β(f)∥Hp(Rn),

for any f ∈ Iβ(H
p)(Rn) provided n−1

n−1+β+γ ≤ p <∞, where Iβ(L
p)(Rn) is the Lp-Sobolev space

defined below.

The Sobolev type spaces mentioned above were introduced by Strichartz [14, 15] in a more

general setting. Let Iβ denote the Riesz potential of order β. For any function space or a space

of tempered distributions X, one defines the Sobolev space based on X using Iβ(X), to be the

image of X under Iβ [15]. By this definition, it is easy to check that Iβ(Ḟ
α
p,q)(Rn) = Ḟα+β

p,q (Rn)

for all 0 < p, q <∞.

In order to obtain the convergence rate of Sγ
t (f)− f in the space Ḟα

p,q, our second aim is to

study the boundedness of the operator t−β (Sγ
t (f)− f) on the Triebel-Lizorkin space Ḟα

p,q for

different p, q. Precisely, we will study the inequality

∥t−β (Sγ
t (f)− f) ∥Ḟα

p,q
≼ ∥I−β(f)∥Ḟα

p,q
(1.2)

for f ∈ Iβ(Ḟ
α
p,q).

Note that the Fourier transform of t−β (Sγ
t (f)− f) is

mγ(tξ)− 1

|tξ|β
|ξ|β f̂ (ξ)

and write |ξ|β f̂ (ξ) = ĝ (ξ) . Then (1.2) is equivalent to the statement that the function

µγ,β (ξ) =
mγ(ξ)− 1

|ξ|β
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is an Ḟα
p,q (Rn) multiplier.

First, we observe that µγ,β (ξ) is not an Lp (Rn) multiplier for any p if β > 2. In fact, a

similar calculation of (1.1) and Lemma 3.2 in [6] enable us to get

1−mγ (ξ)

|ξ|β
≈
∫ 1

0

(1− s2)
n−3
2 +γsin2(πs|ξ|)
|ξ|β

ds,

where and in the following, A ≈ B means that there exist positive constants c and C independent

of all essential variables such that c |B| ≤ |A| ≤ C |B|. Thus, the Taylor expansion the sine

function yields, for small |ξ|,
1−mγ (ξ)

|ξ|β
≈ |ξ|2−β

.

It says that µγ,β (ξ) is not a bounded function if β > 2, which implies that it is not an Lp (Rn)

multiplier for any p. For this reason, we will mainly concern with the case β ∈ (0, 2] in the rest

of this paper.

We establish the following result.

Theorem 1.3. Let n ≥ 2, α, β, γ ∈ R, γ > −n−1
2 , 0 < β ≤ 2 and 0 < p, q <∞.

(1) Assume γ > −β.

(a) µγ,β (ξ) is an Ḟα
p,q (Rn) multiplier if 1 ≤ p, q <∞;

(b) µγ,β (ξ) is an Ḟ
α
p,q (Rn) multiplier if γ ≥ (n−1)(1/p−1)−β, where 0 < p < 1 < q <∞;

(c) µγ,β (ξ) is an Ḟα
p,q (R) multiplier if γ > (n− 1)(1/p− 1)− β and 0 < q ≤ p < 1.

(2) For γ = −β, if 1 ≤ p <∞ and 1 < q <∞ then µγ,β (ξ) is an Ḟα
p,q (Rn) multiplier.

(3) Assume −n−1
2 < γ < −β. For 1 < p, q <∞, µγ,β (ξ) is an Ḟα

p,q (Rn) multiplier if

γ > (n− 1)

[∣∣∣∣1p − 1

2

∣∣∣∣− 1

2

]
− β.

Moreover,

(a) for 1 < p ≤ q ≤ 2, µγ,β (ξ) is an Ḟα
p,q (Rn) multiplier if

γ ≥ (n− 1)

(
1

p
− 1

)
− β;

(b) for 2 ≤ q ≤ p <∞, µγ,β (ξ) is a Ḟα
p,q (Rn) multiplier if

γ ≥ − (n− 1)

p
− β.

Remark 1.4. Since Ḟ 0
p,2(Rn) = Hp(Rn), Theorem 1.3 tells that when n ≥ 2, γ > −n−1

2 and

t > 0 then, for 0 < β ≤ 2, µγ,β (ξ) is an Ḟα
p,q (Rn) multiplier if

γ > (n− 1)

[∣∣∣∣1p − 1

2

∣∣∣∣− 1

2

]
− β,

which recovers Theorem B. Thus, Theorem 1.3 is an extension of Theorem B.
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As an application of Theorem 1.3, we have the following theorem about the convergence

rate, that is

∥Sγ
t (f)− f∥Ḟα

p,q(Rn) = o(tβ), as t→ 0 (1.3)

for f ∈ Iβ(Ḟ
α
p,q)(Rn).

Theorem 1.5. Let n ≥ 2, α ∈ R, γ > −n−1
2 , 0 < β < 2, 0 < p, q <∞ and f ∈ Iβ(Ḟ

α
p,q)(Rn).

(1) Assume γ > −β.

(a) (1.3) holds for any 1 ≤ p, q <∞;

(b) For 0 < p < 1 < q <∞, (1.3) holds if γ ≥ (n− 1)(1/p− 1)− β;

(c) For 0 < q ≤ p < 1, (1.3) holds if γ > (n− 1)(1/p− 1)− β.

(2) For γ = −β, (1.3) holds for any 1 ≤ p <∞ and 1 < q <∞.

(3) Assume −n−1
2 < γ < −β and 1 < p, q <∞. (1.3) holds if

γ > (n− 1)

[∣∣∣∣1p − 1

2

∣∣∣∣− 1

2

]
− β.

Moreover,

(a) for 1 < p ≤ q ≤ 2, (1.3) holds if

γ ≥ (n− 1)

(
1

p
− 1

)
− β;

(b) for 2 ≤ q ≤ p <∞, (1.3) holds if

γ ≥ − (n− 1)

p
− β.

Before ending up this section, we give an application of Theorem 1.5 to the wave equations.

Recall that u(x, t) = tS
−n−3

2
t (f) (x) solves the Cauchy problem for the wave equation{

(∂2t −∆)u(x, t) = 0, (x, t) ∈ Rn × R ,
u(x, 0) = 0 , ∂tu(x, 0) = f(x).

We have the following corollary.

Corollary 1.6. Let n ≥ 2, γ > −n−1
2 , 0 < β < 2 and 0 < p < ∞. If f ∈ Iβ(Ḟ

α
p,q)(Rn) with p

satisfying ∣∣∣∣1p − 1

2

∣∣∣∣ ≤ β + 1

n− 1
,

then we have ∥∥∥∥u(·, t)t
− f

∥∥∥∥
Ḟα

p,q(Rn)

= o(tβ), as t→ 0+.

This paper is organized as follows. In the second section we will introduce some preliminaries

and necessary lemmas that will be used throughout this paper. Then we will prove Theorem 1.1

in Section 3 and Theorem 1.3 in Section 4 respectively. Finally, Theorem 1.5 will be proved

in Section 5. Throughout this article, we use the symbol A ≼ B to mean that there exists
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a constant C > 0 independent of all essential variables such that A ≤ CB. We use the

notation A ≈ B if |A| ≼ |B| and |B| ≼ |A| and use the symbol A ≃ B to mean that there

exists a constant C independent of all essential variables such that A = CB. Also, ak, bk, ck,

k = 1, 2, . . . , represent some constants that may be different at each of their appearances. For

quasi-normed spaces A1 and A2, A1 ⊂ A2 means that A1 is continuously embedded in A2. i.e.

there exists a constant c such that ∥a∥A2 ≤ c∥a∥A1 holds for all a ∈ A1.

§2 Preliminaries

Let Φ : Rn → [0, 1] be a smooth radial cut-off function, say,

Φ(ξ) =


1 |ξ| ≤ 1,

smooth 1 < |ξ| < 2,

0 |ξ| ≥ 2.

Denote φ(ξ) = Φ(ξ)− Φ(2ξ), and we introduce the function sequence {φk}∞k=0:{
φk(ξ) = φ(2−kξ), k ∈ N,
φ0(ξ) = 1−

∑∞
k=1 φk(ξ) = Φ(ξ).

Since supp(φ) ⊂ {ξ : 2−1 ≤ |ξ| ≤ 2}, we easily see that supp(φk) ⊂ {ξ : 2k−1 ≤ |ξ| ≤ 2k+1},
k ∈ N, and supp(φ0) ⊂ {ξ : |ξ| ≤ 2}. Let

Ψ(ξ) = 1− Φ(ξ) =
∞∑
k=1

φk(ξ).

Ψ is a nonnegative and radial Schwartz function supported in the set {ξ ∈ Rn : |ξ| > 1}, and
equals to 1 on the smaller set {ξ ∈ Rn : |ξ| ≥ 2}. Define

∆k = F−1φkF , k ∈ Z,
where {∆k}∞k=−∞ is the Littlewood-Paley (or dyadic) decomposition operator. Let

Ṡ (Rn) = {ψ|ψ ∈ S (Rn) : ∂α(ψ̂)(0) = 0 for every multi-index α},
which is equivalent to ∫

Rn

xαψ(x)dx = 0

for every multi-index α. Ṡ (Rn) is the subspace of S (Rn) that inherits the same topology as

S (Rn) and the dual space of Ṡ (Rn) under the topology inherited from S (Rn) is

Ṡ ′(Rn) = S ′(Rn)/P(Rn),

where S ′(Rn)/P(Rn) denote the space of tempered distributions modulo polynomials.

For α ∈ R, 0 < p, q < ∞, the Triebel-Lizorkin space Ḟα
p,q(Rn) is the set of all f in Ṡ ′(Rn)

satisfying

∥f∥Ḟα
p,q(Rn) =

∥∥∥∥∥∥∥
∑

j∈Z

(2jα|∆jf |)q
 1

q

∥∥∥∥∥∥∥
Lp(Rn)

<∞. (2.1)

It is well-known that Ḟα
p,q(Rn) is a quasi-Banach space if −∞ < α <∞, 0 < p <∞, 0 < q ≤ ∞

and that the function φ in the above definition is flexible in the sense that any two different
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functions φ give the equivalent norms (2.1). By this definition, Ḟα
p,q(Rn) ≃ Iα(Ḟ

0
p,q)(Rn),

Ḟ 0
p,2(Rn) ≃ Hp(Rn) and Ḟα

p,2(Rn) ≃ Iα(H
p)(Rn) for 0 < p, q <∞. Furthermore,

Ṡ (Rn) ⊂ Ḟα
p,q(Rn) ⊂ Ṡ ′(Rn)

for −∞ < α < ∞, 0 < p < ∞ and 0 < q ≤ ∞. If α ∈ R, 0 < p, q < ∞, then Ḟα
p,q(Rn) is

complete, Ṡ (Rn) is dense in Ḟα
p,q(Rn), and

∥f∥Ḟα
p,q(Rn) ≈

∥∥∥∥∥
[∫ ∞

0

(
s−α |(f ∗ φs)(·)|

)q ds
s

]1/q∥∥∥∥∥
p

. (2.2)

For brevity, we denote by Ḟα
p,q(Rn) = Ḟα

p,q.

The Triebel-Lizorkin space Ḟα
p,q(Rn) has the following imbedding and lifting properties.

Lemma 2.1 (Imbedding). ( [16]). The space Ḟα
p,q has the imbedding relationship:

(1) For α ∈ R, 0 < p <∞. if q1 ≤ q2, then Ḟ
α
p,q1 ⊂ Ḟα

p,q2 .

(2) Given reals −∞ < α2 < α1 < ∞ and 0 < p1 < ∞, 0 < q1, q2 ≤ ∞, let 0 < p2 ≤ ∞ be

determined by α1 − n
p1

= α2 − n
p2
. Then

Ḟα1
p1,q1 ⊂ Ḟα2

p2,q2 .

Lemma 2.2 (Lifting). (see [2, p. 2073]). The space Ḟα
p,q has the lifting property:

∥f∥Ḟα
p,q(Rn) ≃ ∥I−α(f)∥Ḟ 0

p,q(Rn),

where (I−αf)
∧(ξ) = |ξ|αf̂(ξ).

By the lifting property, as is pointed out in [2], to prove that a convolution operator T is

bounded on the space Ḟα
p,q, it suffices to show its boundedness on Ḟ 0

p,q.

Let Tµ be a convolution operator and T̂µ(f)(ξ) = µ(ξ)f̂(ξ), where µ is called the multiplier

of Tµ. If Tµ is a bounded operator on the Triebel-Lizorkin Space Ḟα
p,q(Rn), then we say that µ

is an Ḟα
p,q(Rn) multiplier and denote by

∥µ (·)∥Ḟα
p,q(Rn)→Ḟα

p,q(Rn)

the operator norm of Tµ on the space Ḟα
p,q(Rn). By a scaling argument, it is not difficult to

show the following lemma.

Lemma 2.3. Let 0 < p <∞ and let µ be an Ḟα
p,q(Rn) multiplier. Then for any t > 0,

∥µ (·)∥Ḟα
p,q(Rn)→Ḟα

p,q(Rn) = ∥µ (t·)∥Ḟα
p,q(Rn)→Ḟα

p,q(Rn) .

The following Ḟα
p,q(Rn) multiplier theorem will be frequently used in this article.

Lemma 2.4 (Hörmander multiplier theorem). ( [5, Theorem 5.1, pp. 851]) Let α, β ∈ R,
0 < p < ∞ and 0 < q ≤ ∞. Suppose that ℓ is a nonnegative integer and µ ∈ Cℓ(Rn \ {0})
satisfies the condition

sup
R>0

(
R−n+2α+2|σ|

∫
R<|ξ|<2R

∣∣∂σξ µ(ξ)∣∣2 dξ
)

≤ Aσ, |σ| ≤ ℓ (2.3)

with ℓ > max{n/p, n/q}+ n/2. Then

∥Tµ(f)∥Ḟα+β
p,q (Rn) ≤ C∥f∥Ḟβ

p,q(Rn).
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When α = 0, (2.3) is known as the Hörmander condition (see [9, Theorem 6.2.7, p. 446]).

The Bessel function Jν (r) has the following asymptotic expansion as r → ∞.

Lemma 2.5. (see [7, Proposition 5.1, p. 93]). Let r > 0 and ν > −1/2. For any positive

integer L, on the interval [1,∞) we have

Jν(r) =

√
2

πr
cos
(
r − νπ

2
− π

4

)
+

L∑
j=1

aje
irr−

1
2−j +

L∑
j=1

bje
−irr−

1
2−j + EL (r) ,

where aj and bj are constants for all natural numbers j, and EL(r) is a C
∞ function satisfying

E
(k)
L (r) = O

(
r−

1
2−L−1

)
, as r → ∞,

for all nonnegative integer k.

Let Ψ be the function defined as in the definition of Ḟα
p,q. Wν is a wave operator if it is

a Fourier multiplier operator with symbol Ψ(ξ)eic|ξ| |ξ|−ν
for a fixed nonzero constant c. One

has the following estimate on Wν .

Lemma 2.6. (see [3, p. 760]) Let α ∈ R and 0 < p, q < ∞. One has the following estimates

for wave operators.

(1) For 1 < p ≤ q ≤ 2 or 2 ≤ q ≤ p <∞, Wν(f) is bounded on the Triebel-Lizorkin space Ḟα
p,q

if

α ≥ (n− 1)

∣∣∣∣12 − 1

p

∣∣∣∣ .
(2) For 1 < p, q <∞ or 0 < q ≤ p ≤ 1, Wν(f) is bounded on the Triebel-Lizorkin Space Ḟα

p,q if

α > (n− 1)

∣∣∣∣12 − 1

p

∣∣∣∣ .
(3) For 0 < p ≤ 1 < q <∞, Wν(f) is bounded on the Triebel-Lizorkin Space Ḟα

p,q if

α ≥ (n− 1)

(
1

p
− 1

2

)
.

§3 Proof of Theorem 1.1

By Lemma 2.2, to prove Sγ
t is bounded on Ḟα

p,q, we only need to show its boundedness on

Ḟ 0
p,q. Without loss of generality, we may assume t = 1 by the scaling argument in Lemma 2.3.

First, when Ḟ 0
p,q is a normed space (i.e. 1 ≤ p, q < ∞), we observe that Theorem 1.1 is

trivially true for the case γ > 0. In fact, by the Minkowski integral inequality, it is easy to

obtain that

∥Sγ
1 (f)(x)∥Ḟ 0

p,q
≤ Γ(γ + n/2)

πn/2Γ(γ)

∫
|y|<1

(
1− |y|2

)γ−1

∥f(· − y)∥Ḟ 0
p,q
dy

=

(
Γ(γ + n/2)

πn/2Γ(γ)

∫
|y|<1

(
1− |y|2

)γ−1

dy

)
∥f∥Ḟ 0

p,q

≼ ∥f∥Ḟ 0
p,q
,
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since
∫
|y|<1

(
1− |y|2

)γ−1

dy < ∞ if γ > 0. By this observation, in the following we mainly

concern with the case either γ ≤ 0 or the case that Ḟ 0
p,q is not a normed space. More precisely,

our purpose is to find the optimal relation between γ and p, q to ensure that mγ(ξ) is an Ḟ
0
p,q

multiplier in the case when γ ≤ 0 or in the case that Ḟ 0
p,q is not a normed space.

If either γ ≤ 0 or Ḟ 0
p,q is not a normed space, then we let Ψ and Φ be the same as above,

that is to say Ψ and Ψ are C∞(Rn) radial functions with Φ (ξ) = 1 − Ψ(ξ) and Ψ satisfying

Ψ(ξ) ≡ 0 if |ξ| ≤ 1, Ψ(ξ) ≡ 1 if |ξ| ≥ 2. We write

mγ(|ξ|) = Γ(γ +
n

2
)2

n−2
2 +γVn−2

2 +γ(2π |ξ|)

= Γ(γ +
n

2
)2

n−2
2 +γ

(
Vn−2

2 +γ(|ξ|)Φ(ξ) + Vn−2
2 +γ(|ξ|)Ψ(ξ)

)
.

Using the derivative formula for the Bessel function

dVν(t)

dt
= −tVν+1(t), (3.1)

and the well-known formula

|Vν(|ξ|)| ≼ 1 if |ξ| ≤ 1,

by the condition of Lemma 2.4, we can easily see that Vn−2
2 +γ(|ξ|)Φ(ξ) is an Ḟ 0

p,q multiplier for

any p, q > 0. By Lemma 2.5, the second multiplier can be written as

Vn−2
2 +γ(|ξ|)Ψ(ξ)

=
L∑

j=0

ajΨ(ξ)ei|ξ| |ξ|−
n−1
2 −γ−j

+
L∑

j=0

bjΨ(ξ)e−i|ξ| |ξ|−
n−1
2 −γ−j

+ ẼL (ξ)Ψ(ξ),
(3.2)

where ẼL(ξ) is a C
∞ function satisfying∣∣∣∂σξ ẼL(ξ)

∣∣∣ ≼ |ξ|−(n+1
2 +L+γ)

, whenever |ξ| > 1

for any multi-index σ. Noting Ψ(ξ) = 0 if |ξ| ≤ 1, we choose a suitably large L such that∣∣∣∂σξ (ẼLΨ
)
(ξ)
∣∣∣ ≤ Cσ |ξ|−|σ|

for any multi-index σ, which satisfying (2.3) with α = 0. Invoking Lemma 2.4, it follows that

ẼL(ξ)Ψ(ξ) is an Ḟ 0
p,q multiplier for any p, q > 0. Furthermore, we know that, for each j,

m+
j (ξ) = Ψ(ξ)ei|ξ| |ξ|−

n−1
2 −γ−j

or m−
j (ξ) = Ψ(ξ)e−i|ξ| |ξ|−

n−1
2 −γ−j

is a multiplier of the wave operator Wν with ν = n−1
2 + γ + j. By Lemma 2.6, we know that

in the expression

Vn−2
2 +γ(|ξ|)Ψ(ξ) =

L∑
j=0

ajm
+
j (ξ) +

L∑
j=0

bjm
−
j (ξ) + EL (ξ)Ψ(ξ),

m+
0 (ξ) and m

−
0 (ξ) are Ḟ

0
p,q multipliers for any p, q > 0 satisfying the condition in Theorem 1.1.

Also, it is easy to see that if Ψ(ξ)e±i|ξ| |ξ|−ν
is an Ḟ 0

p,q multiplier, then Ψ(ξ)e±i|ξ| |ξ|−ν−ε
, for

any positive ε, is also an Ḟ 0
p,q multiplier for the same p and q. Thus, all m+

j (ξ) and m−
j (ξ),

j = 1, 2, . . . , L, are Ḟ 0
p,q multipliers for p, q > 0 satisfying the condition in Theorem 1.1. As a

consequence, we obtain that, for γ ≤ 0 or Ḟ 0
p,q is not a normed space, Vn−2

2 +γ(|ξ|)Ψ(ξ) is an Ḟ 0
p,q

multiplier for 0 < p, q <∞ satisfying the condition in Theorem 1.1. The proof of Theorem 1.1

is completed.
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§4 Proof of Theorem 1.3

In this section, we devote to prove Theorem 1.3. Also, in this section and the rest of the

paper, we always assume β ∈ (0, 2].

By Lemma 2.2, to prove Theorem 1.3, it suffices to show that µγ,β(ξ) is an Ḟ
0
p,q multiplier

under the assumption in the theorem.

Recall that Φ is a radial C∞(Rn) function satisfying Φ(ξ) ≡ 1 if |ξ| ≤ 1 and supp Φ ⊂ {ξ :
|ξ| ≤ 2} and Ψ (ξ) = 1− Φ(ξ), we decompose

µγ,β (ξ) = µγ,β,1 (ξ) + µγ,β,2 (ξ) ,

where

µγ,β,1 (ξ) = Φ(ξ)µγ,β (ξ) , µγ,β,2 (ξ) = Ψ(ξ)µγ,β (ξ) .

Let

mγ,β(ξ) = mγ (ξ) |ξ|−β
Ψ(ξ), (4.1)

where mγ is the multiplier of Sγ
1 . We may write

µγ,β,2 (ξ) = mγ,β(ξ)−Ψ(ξ)|ξ|−β .

The following lemma will play a crucial role in the proof of Theorem 1.3.

Lemma 4.1. For β ∈ (0, 2] and 0 < p, q <∞, µγ,β is an Ḟ 0
p,q multiplier if and only if mγ,β is

an Ḟ 0
p,q multiplier.

Proof of Lemma 4.1. Using Lemma 2.4, it is easy to see that Ψ(ξ)|ξ|−β is an Ḟ 0
p,q multiplier for

any p, q > 0. A direct calculation shows that

µγ,β,1 (ξ) = Φ(ξ)|ξ|−β

(∫ 1

0

(1− s2)
n−3
2 +γsin2(πs|ξ|)ds

)
. (4.2)

By Taylor’s expansion

sin (π|ξ|s) =
N∑

k=0

ck (|ξ|s)2k+1
+Θ(|ξ|s) ,

where, in the support of Φ, Θ(t) is a C∞ function satisfying that, for k ≤ 2N + 3,

Θ(k)(t) = O(t
2N+3−k

) as t→ 0.

Thus, invoking (4.2), we obtain

µγ,β,1 (ξ) = Φ(ξ)|ξ|−β

(∫ 1

0

(1− s2)
n−3
2 +γ

{
N∑

k=0

ck (|ξ|s)2k+1
+Θ(|ξ|s)

}
2ds

)
. (4.3)

To obtain the estimate on ∂σξ (µγ,β,1) (ξ) , by choosing a large N in (4.3), it suffices to work with

each term

µk(ξ) := Φ(ξ)|ξ|2(2k+1)−β

(∫ 1

0

(1− s2)
n−3
2 +γs2(2k+1)ds

)
.

We may write

µk(ξ) ≃ Φ(ξ)|ξ|2(2k+1)−β ,

since ∫ 1

0

(1− s2)
n−3
2 +γs2(2k+1)ds = B

(
2k +

3

2
,
n− 1

2
+ γ

)
<∞

for any γ > −n−1
2 . Noting that β ∈ (0, 2], k ∈ N

∪
{0}, we have 2(2k + 1) − β ≥ 4k ≥ 0. It is
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easy to check that ∣∣∂σξ (µk(ξ)
)∣∣ ≃ ∣∣∣∂σξ (Φ(ξ)|ξ|2(2k+1)−β

)∣∣∣ ≤ Cσ |ξ|−|σ|

for any multi-index σ satisfying (2.3) with α = 0. Invoking Lemma 2.4, it follows that µk is

an Ḟ 0
p,q multiplier for any p, q > 0. Combining (4.2) with (4.3), we obtain that µγ,β,1 is an Ḟ 0

p,q

multiplier for any p, q > 0. On the other hand, we have

µγ,β (ξ) = µγ,β,1 (ξ) +mγ,β(ξ)−Ψ(ξ)|ξ|−β .

Hence, µγ,β is an Ḟ 0
p,q multiplier if and only if mγ,β is an Ḟ 0

p,q multiplier, as desired.

By Lemma 4.1, to prove Theorem 1.3, it suffices to consider the multiplier mγ,β . We need

the following proposition to complete the proof.

Proposition 4.2. Let n ≥ 2, γ > −n−1
2 and 0 ≤ β ≤ 2. If γ + β > 0 and Ḟ 0

p,q is a normed

space, then mγ,β is an Ḟ 0
p,q multiplier.

We postpone the proof for Proposition 4.2 to the end of this section. First, let us describe

how to conclude the proof of Theorem 1.3 by virtue of the proposition.

From Proposition 4.2, to prove Theorem 1.3, we only need to concern with the case either

γ + β ≤ 0 or the case that Ḟ 0
p,q is not a normed space. More precisely, we aim to find some

relation between γ and p, q to ensure that mγ,β(ξ) is an Ḟ
0
p,q multiplier for γ + β ≤ 0 or in the

case that Ḟ 0
p,q is not a normed space.

Assume that γ + β ≤ 0 or Ḟ 0
p,q is not a normed space. Using Lemma 2.5, we write

mγ,β (ξ) = mγ (ξ) |ξ|−β
Ψ(ξ) ≃ |ξ|−

n−2
2 −γ−βJn−2

2 +γ(2π|ξ|)Ψ (|ξ|)

≃
cos
(
2π|ξ| − γπ

2 − (n−1)π
4

)
Ψ(|ξ|)

|ξ|n−1
2 +γ+β

+

L∑
j=1

aje
i2π|ξ|Ψ(|ξ|)

|ξ|n−1
2 +γ+β+j

+
L∑

j=1

bje
−i2π|ξ|Ψ(|ξ|)

|ξ|n−1
2 +γ+β+j

+
EL (2π|ξ|)Ψ (|ξ|)

|ξ|n−1
2 +γ+β

.

(4.4)

Here we choose a positive L such that the error term EL (2π|ξ|)Ψ (|ξ|) |ξ|−n−1
2 −γ−β satisfying∣∣∣∣∣∂σξ

(
EL (2π|ξ|)Ψ (|ξ|)

|ξ|n−1
2 +γ+β

)∣∣∣∣∣ ≤ Cσ |ξ|−|σ|

for any multi-index σ, which satisfies (2.3) with α = 0. Invoking Lemma 2.4, it follows that

EL (2π|ξ|)Ψ (|ξ|) |ξ|−n−1
2 −γ−β is an Ḟ 0

p,q multiplier for any p, q > 0. So, we need to study the

rest terms in (4.4). This procedure can be done by employing the same proof as that for

Theorem 1.1 in Section 3. Thus, Theorem 1.3 is proved.

Finally, it remains to prove Proposition 4.2.

Proof of Proposition 4.2.

Let Tmγ,β
be the convolution operator Kγ,β ∗ f, where Kγ,β is the function defined as

Kγ,β (x) ≃
∫
Rn

mγ,β (ξ) e
i2πξ·xdξ. (4.5)

To prove Proposition 4.2, it is equivalent to prove Tmγ,β
is bounded on Ḟ 0

p,q for γ + β > 0 and
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p, q ≥ 1. By (4.4), we know that Tmγ,β
is bounded on Ḟ 0

p,q if and only if

υ (ξ) =
cos
(
2π|ξ| − γπ

2 − (n−1)π
4

)
Ψ(|ξ|)

|ξ|n−1
2 +γ+β

is an Ḟ 0
p,q multiplier.

• Case 1. γ+ β > 1. Using Theorem 3.3 of Chapter 4 in [13], the inverse Fourier transform

of υ is given by

υ∨ (x) =

∫
Rn

Ψ(|ξ|) cos
(
2π |ξ| − γπ

2 − n−1
4 π

)
|ξ|n−1

2 +γ+β
e2πix·ξdξ

=

∫ ∞

0

Ψ(t) cos
(
2πt− γπ

2 − n−1
4 π

)
t
n−1
2 +γ+β

Vn−2
2

(t|x|)dt.

We want to show that υ∨ (x) is an integrable function. To this end, from Lemma 2.5, it suffices

to estimate its leading term

Lυ (x) =
1

|x|n−1
2

∫ ∞

0

Ψ(t)

tγ+β
cos

(
2πt− γπ

2
− n− 1

4
π

)
cos

(
2πt |x| − n− 1

4
π

)
dt.

If |x| < 1 then we have

|Lυ (x) | ≼
1

|x|n−1
2

∣∣∣∣∫ ∞

1

Ψ(t)

tγ+β
dt

∣∣∣∣ ≼ 1

|x|n−1
2

. (4.6)

If |x| ≥ 1 we keep using integration by parts N times ( N sufficiently large, say N >
[
n+1
2

]
+1,).

It is easy to get

|Lυ (x) | ≃

=
1

|x|n−1
2 +1

∣∣∣∣∣
∫ ∞

0

sin

(
2πt |x| − n− 1

4
π

)
d

dt

(
Ψ(t) cos

(
2πt− γπ

2 − n−1
4 π

)
tγ+β

)
dt

∣∣∣∣∣
≼ 1

|x|n−1
2 +N

.

(4.7)

(4.6) and (4.7) conclude that, if γ+β > 1, υ∨ (x) ∈ L1. Thus, if Ḟ 0
p,q is a normed space, by the

Minkowski integral inequality, it is easy to obtain that υ (ξ) is an Ḟ 0
p,q multiplier.

• Case 2. 0 < γ + β ≤ 1. In this case, we need an auxiliary lemma, and its proof can be

found in [8, p. 171].

Lemma 4.3. (see page 171 in [8]). Let ε > 0 and γ ̸= −1. Then∫ ∞

0

e−εrrγeisrdr = iei
γπ
2 Γ (γ + 1) (s+ iε)

−γ−1
,

where Γ (γ + 1) is the Gamma function.

For ε > 0, the Abel mean Gε (f) of f is

Ĝε (f) (ξ) = e−ε|ξ|f̂ (ξ) .

The kernel of Gε is an L
1 (Rn) function and its L1 (Rn) norm is independent of ε > 0 (see [13, p.

10]). Thus, the Minkowski integral inequality yields that for 1 ≤ p, q ≤ ∞
∥Gε (f)∥Ḟ 0

p,q
≼ ∥f∥Ḟ 0

p,q
, (4.8)
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and

lim
ε→0+

∥Gε (f)− f∥Ḟ 0
p,q

= 0.

for all f ∈ Ḟ 0
p,q. To show that υ (ξ) is an Ḟ 0

p,q multiplier for 0 < γ + β ≤ 1 and p, q ≥ 1, it

suffices to show that e−ε|ξ|υ (ξ) is an Ḟ 0
p,q multiplier uniformly on ε > 0. To this end, we need

to prove that the kernel

ℜε (x) =

∫
Rn

cos
(
2π|ξ| − γπ

2 − (n−1)π
4

)
Ψ(|ξ|) e−ε|ξ|

|ξ|n−1
2 +γ+β

e2πix·ξdξ

is an integrable function for 0 < γ + β ≤ 1 and its L1 (Rn) norm is independent of ε > 0. In

fact, suppose this is true, since Ḟ 0
p,q is a normed space, by the Minkowski integral inequality we

have that

∥ℜε ∗ f∥Ḟ 0
p,q

≤
∫
Rn

|ℜε(y)| ∥f(· − y)∥Ḟ 0
p,q
dy

=

(∫
Rn

|ℜε(y)| dy
)
∥f∥Ḟ 0

p,q

≼ ∥f∥Ḟ 0
p,q
.

Combining this with the fact that for p, q ≥ 1

∥Tυ (f)∥Ḟ 0
p,q

≤ lim
ε→0+

∥ℜε ∗ f∥Ḟ 0
p,q
,

we conclude that Tυ is bounded on Ḟ 0
p,q, that is, υ (ξ) is an Ḟ 0

p,q multiplier for 0 < γ + β ≤ 1

and p, q ≥ 1.

Hence, to complete the proof of Proposition 4.2, it only remains to prove that ℜε (x) is

an integrable function for 0 < γ + β ≤ 1. The method is analogous to that in the proof of

integrability of ℜε (x) for the case γ + β = 0 and β = 2 in [17]. For the sake of completeness,

we present its proof below.

By using the formula in [13, Theorem 3.3, p. 155], a computation of the Fourier transform

yields

ℜε (x) =

∫
Rn

Ψ(|ξ|) cos
(
2π |ξ| − γπ

2 − n−1
4 π

)
|ξ|n−1

2 +γ+β
e−ε|ξ|e2πix·ξdξ

=

∫ ∞

0

Ψ(t) e−εt cos
(
2πt− γπ

2 − n−1
4 π

)
t
n−1
2 +γ+β

Vn−2
2

(t|x|)dt.
(4.9)

From Lemma 2.5, since the estimates of all terms in the above expansion of ℜε are the same,

it suffices to estimate the leading term

Lε (x)

=
1

|x|n−1
2

∫ ∞

0

Ψ(t) e−εt

tγ+β
cos

(
2πt− γπ

2
− n− 1

4
π

)
cos

(
2πt |x| − n− 1

4
π

)
dt

≃ 1

|x|
n−1
2

∫ ∞

0

Ψ(t) e−εt

tγ+β
(a1e

2πit(1+|x|) + a2e
−2πit(1+|x|)

+ a3e
2πit(1−|x|) + a4e

−2πit(1−|x|))dt.

(4.10)



ZHAO Jun-yan, PAN Ya-li. Certain averaging operators on Triebel-Lizorkin spaces 559

For |x| < 1/2, we have

|Lε (x) | ≼
1

|x|n−1
2

∣∣∣∣∫ ∞

1

Ψ(t)

tγ+β
dt

∣∣∣∣ ≼ 1

|x|n−1
2

∈ L1. (4.11)

For |x| > 2, integration by parts for n times yields

|Lε (x) | ≼
(|x| − 1)

−n

|x|
n−1
2

≼ |x|−n−1 ∈ L1. (4.12)

For 1/2 ≤ |x| ≤ 2, if γ + β = 1, invoking (4.10), to estimate Lε (x), we only need to deal with

the term
a3

|x|
n−1
2

∫ ∞

0

Ψ(t) e−εt

t
e2πit(1−|x|)dt,

since the estimate of other terms are similar. Using integration by parts we now have∫ ∞

0

eit[(1−|x|)+iε]

t
Ψ(t) dt =

i

[(1− |x|) + iε]

∫ ∞

0

eit[(1−|x|)+iε] d

dt

(
Ψ(t)

t

)
dt.

By the definition of Ψ (t) , it is easy to see∣∣∣∣∫ ∞

0

eit[(1−|x|)+iε]

t
Ψ(t) dt

∣∣∣∣ ≼ 1

|(1− |x|) + iε|
≼ 1

|1− |x||
.

Hence, if γ + β = 1, then |Lε (x) | ≼ 1

|x|
n−1
2

1
|1−|x|| , which is integrable on Rn for 1/2 ≤ |x| ≤ 2.

On the other hand, if 0 < γ + β < 1, for 1/2 ≤ |x| ≤ 2, we write

1

|x|
n−1
2

∫ ∞

0

Ψ(t) e−εt

tγ+β
(a3e

2πit(1−|x|) + a4e
−2πit(1−|x|))dt

≃
∫ ∞

0

e−εt

tγ+β
(a3e

2πit(1−|x|) + a4e
−2πit(1−|x|))dt

−
∫ ∞

0

Φ(t) e−εt

tγ+β
(a3e

2πit(1−|x|) + a4e
−2πit(1−|x|))dt.

Here, by the definition of Φ, we know that∫ ∞

0

Φ(t) e−εt

tγ+β
(a3e

2πit(1−|x|) + a4e
−2πit(1−|x|))dt = O(1)

uniformly for 1/2 ≤ |x| ≤ 2 and ε > 0. Invoking Lemma 4.3, by the fact that Γ(1− γ − β) > 0

when 0 < γ + β < 1, we obtain that∫ ∞

0

e−εt

tγ+β
(a3e

2πit(1−|x|) + a4e
−2πit(1−|x|))dt

≃
∫ ∞

0

t−(γ+β)eit(1−|x|+iε) + t−(γ+β)e−it(1−|x|−iε)dt

= iΓ(1− γ − β)

[
1

(1− |x|+ iε)1−γ−β
− 1

(1− |x| − iε)1−γ−β

]
= iΓ(1− γ − β)

(1− |x| − iε)1−γ−β − (1− |x|+ iε)1−γ−β

((1− |x|)2 + ε2)
1−γ−β

≃
sin
(
(1− γ − β) arctan ε

1−|x|

)
((1− |x|)2 + ε2)

1−γ−β
2

≼ ε

1− |x|
· 1

((1− |x|)2 + ε2)
1−γ−β

2
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for sufficiently small ε. Thus, we have

|Lε (x)| ≼
ε

1− |x|
· 1

((1− |x|)2 + ε2)
1−γ−β

2

+O(1), (4.13)

uniformly for 1/2 ≤ |x| ≤ 2 and ε > 0. This together with (4.9) and (4.11) yields

|ℜε (x)| ≼
ε

1− |x|
· 1

((1− |x|)2 + ε2)
1−γ−β

2

+O(1),

uniformly for ε > 0, where 1/2 ≤ |x| ≤ 2 and 0 < γ + β < 1.

With (4.11), (4.12), (4.13) and (4.9) in hand, we can derive the following estimate on ℜε (x) .

Lemma 4.4. Assume 0 < γ + β ≤ 1. If |x| < 1/2 then

|ℜε (x)| ≼ |x|−
n−1
2 .

If |x| > 2, then

|ℜε (x)| ≼ |x|−n−1
.

For 1/2 ≤ |x| ≤ 2, we have if γ + β = 1, then |ℜε (x)| ≼ 1

|x|
n−1
2

1
|1−|x|| ; if 0 < γ + β < 1,

|ℜε (x)| ≼
ε

1− |x|
· 1

((1− |x|)2 + ε2)
1−γ−β

2

+O(1),

uniformly for ε > 0.

Now we are able to prove that ℜε (x) is an integrable function for 0 < γ + β ≤ 1. By

Lemma 4.4, if γ + β = 1, then

∥ℜε∥L1(Rn) ≼
∫
|x|≤1/2

dx

|x|
n−1
2

+

∫
|x|>2

dx

|x|n+1 +

∫
{1/2≤|x|≤2}

1

|x|
n−1
2

1

|1− |x||
dx

≼ 1,

if 0 < γ + β < 1,

∥ℜε∥L1(Rn) ≼
∫
|x|≤1/2

dx

|x|
n−1
2

+

∫
|x|>2

dx

|x|n+1

+

∫
{1/2≤|x|≤2}∩{|(1−|x|)|>10ε}

ε

(1− |x|)2−γ−β
dx

+εγ+β

∫
{1/2≤|x|≤2}∩{|(1−|x|)|<10ε}

1

|1− |x||
dx+

∫
{1/2≤|x|≤2}

dx

≼ 1,

as required.

§5 Proof of Theorem 1.5

The proof of Theorem 1.5 is based on Theorem 1.3 and a standard dense argument. We

only prove the case 0 < β < 2. Once Theorem 1.3 is established, Theorem 1.5 will be a direct

consequence of it and the fact that the means t−β (Sγ
t (h)− h) converge to 0 in Ḟα

p,q norm for

h in a dense subclass of Iβ(Ḟ
α
p,q)(Rn). Such a dense class is Ṡ (Rn), where Ṡ (Rn) is the space

of all Schwartz functions h whose Fourier transform satisfying

Ṡ (Rn) = {h|h ∈ S (Rn) : ∂α(ĥ)(0) = 0 for every multi-index α}.
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For a function h in this class, we easily see that t−β (Sγ
t (h)− h) → 0 pointwise as t → 0+.

Indeed, noting the fact that

t−β (Sγ
t (h)− h) (x) = t−β

∫
Rn

(1−mγ)(tξ))ĥ(ξ)e
2πiξ·xdξ

≈ t−β

∫
Rn

∫ 1

0

sin2(πst|ξ|)(1− s2)
n−3
2 +γdsĥ(ξ)e2πiξ·xdξ,

since h ∈ Ṡ and | sin s| ≤ |s| for s ∈ R, we have

t−β (Sγ
t (h)− h) (x) ≼ t−β

∫
Rn

∫ 1

0

(t|ξ|s)2 (1− s2)
n−3
2 +γdsĥ(ξ)e2πiξ·xdξ

≼ t2−βB

(
3

2
,
n− 1

2
+ γ

)∫
Rn

|ξ|2ĥ(ξ)e2πiξ·xdξ

=: t2−βB

(
3

2
,
n− 1

2
+ γ

)
g(x),

(5.1)

where B(·, ·) is the beta function, and g ∈ Ṡ since we know the fact that if h ∈ Ṡ then so does

(|ξ|zĥ(ξ))∨ for all z ∈ C (see [10, p. 4]). Also,∣∣t−β (Sγ
t (h)− h) (x)

∣∣ ≼ t2−βB

(
3

2
,
n− 1

2
+ γ

)
,

Then t−β (Sγ
t (h)− h) → 0 pointwise as t → 0+ for 0 < β < 2 and γ > −n−1

2 . On the

other hand, from (5.1) we know that if t < 1, the functions t−β (Sγ
t (h)− h) (x) are pointwise

controlled by the function g ∈ Ṡ . Invoking (2.2), the Lebesgue dominated convergence theorem

implies that t−β (Sγ
t (h)− h) converges to 0 in Ḟα

p,q. Finally, using (1.2) and the results in

Theorem 1.3, a standard ε/3 argument yields t−β (Sγ
t (f)− f) → 0 in Ḟα

p,q for general Iβ(Ḟ
α
p,q)

functions f. This completes the proof.
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