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Inverse resonance problems with the discontinuous

conditions

ZHANG Ran'? Murat Sat? YANG Chuan-ful*

Abstract. In this paper, we consider the inverse resonance problems for the discontinuous
and non-selfadjoint Sturm-Liouville problem. We prove the uniqueness theorem and provide a

reconstructive algorithm for the potential by using the Cauchy data and Weyl function.

81 Introduction

Let us consider the following problem:
ly .= —y"(x) + q(z)y(z) = Ny(x), =€ (0,d)U(d,x), (1)

with the boundary conditions

y(0)=0,  ¢'(7) =idy(), (2)
and the jump conditions

y(d+0) = ay(d — 0), 3

{y’<d+o> —ay/(d—0) )

at the point d € (0,7). Here X is the spectral parameter, g(x) # 0 is a real-valued function in
L>(0,7), a>0and 0 < d < §. Denoted by L = L(q,d,a) the problem (1)-(3).

The inverse Sturm-Liouville problem has been studied by many authors (see, e.g., [4,6,8-
11,18]). After the separation of variables, the problem (1)-(2) arises in the hyperbolic problem
with the absorbing boundary condition at x = w. Coming from the motivation of the scattering
theory for the Schrodinger equation, we can extend ¢(z) on (0, 4+00) to be zero for > 7 and
regard it as a central potential on R3.

For the continuous problem, the result that the potential ¢(x) can be constructed by reso-

nance parameters, i.e. the complex eigenvalues, was proposed by Regge [14,15]. For example,
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in [14], it was shown that many of the characters of Jost function can be derived from general
theorems and indicated a theorem on the existence of infinitely many zeros of the Jost function;
in [15], the author simplified the Gelfand and Levitan’s procedure for constructing the potential
by the spectral measure function.

Brown ( [5]) presented a new technique that the potential is uniquely determined from
the location of eigenvalues and resonances in the context of a Schrodinger operator on a half
line. Aktosun constructed the potential on the half line from the Jost function in [2]. He
gave various uniqueness and non-uniqueness conclusions and illustrated the recovery with some
explicit examples. In [12], Pivovarchik et al. studied the inverse eigenvalue problem for Sturm-
Liouville problem with nonselfadjoint boundary conditions depending on the spectral parameter
and recovered the real coeflicients from the eigenvalues using entire function theory and the
solution of a Marchenko integral equation.

In [17], Rundell and Sacks, motivated by the work of Regge, reconstructed a radial potential
in R3 from its resonance parameters for the non-selfadjoint Sturm-Liouville problem. By recov-
ering a function which is related to the boundary values of the corresponding Gelfand-Levitan
kernel and using a particular computational technique, they gave the method of reconstruction
for the potential.

For the discontinuous problem, Akcay ( [1]) gave some information of the kernel function
and the asymptotic formulas of the eigenvalues and eigenfunctions. In [19], Yang and Bon-
darenko studied the local solvability and stability of the discontinuous problem. They proved
the uniqueness theorem and gave the constructive algorithm for the potential.

In this paper, we generalize the work of Rundell and Sacks [17] to the case with a discontinu-
ity point d on a finite interval (0, 7). Section 2 gives the known information for the discontinuous
case. In Section 3, we prove that one spectrum can uniquely determine the Cauchy data and
then we can also show that the Cauchy data can determine the potential g(x) on (d, ). For
convenience, in Section 4, we shall convert the discontinuous problem to a new problem and get
some results in later sections. In Sections 5 and 6, we prove the uniqueness theorem for g(x) on

x

(0,d) and provide the algorithms to reconstruct the potential ¢(z) on (0,7) when d = 7 and

0 < d < 3, respectively.

82 Preliminaries

Denote by ¢(x, A) the solution of (1) satisfying the discontinuity condition (3) and the initial
conditions
6(0,\) =1, ¢'(0,)) =i\ (4)
We know that when ¢(z) = 0 in (1), the solution ¢g(z, A) of (1) satisfying (3) and (4), has the
following form [1]:

AT

e x <d,

a+ei)\z + a—ei)\(Qd—z)’ > d,

¢0(.’IJ, )‘) = { (5)

+ _ a+a_1 - a—a~t
= 42— and a” = =

where a
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Lemma 1. [1] The solution ¢(x,\) of (1) satisfying the initial conditions (4) and the discon-

tinuity conditions (8) can be expressed by the following formula:
xr

oz, \) = oz, \) + K(z,t)e™dt (6)

—XT

and the kernel function K(x,t) has the following properties:

1 T
5 [ ata 0<r<d
2 Jo
Ko =4 200, @
— / q( d<z<m
2 Jo
a- d T
K03 = -5 ([ awae- [ awir). o> (8)
2 \Jo d
and
K(z,—z) =0, z € [0,d) U (d,]. (9)
Moreover, if q(x) is differentiable, then the kernel function K(xz,t) also satisfies the following
relations:
Kpp(z,t) — Ky (x,t) = q(x)K(x,t), x€(0,d)U(d,7) and [t| < =z, (10)
1
d 5‘1(‘7:)7 T < d7
Let o(z,A) be the S(ﬁutlon of ( saétdsﬁmﬁg the initial conditdendp(0,\) = 0,¢’(0, )\) =1

and jump condition (3).;We can rewrlte cp

t 2d—x+
— {K id) mfl}x rde: ) o> d Egg
22)\
Then, substituting the representations of ¢(x, \) and ¢(x, — ) into (13) and using the Euler’s

formula, we can obtain that ¢(x, \) satisfies the following integral equation: for 0 < z < d,

oz, \) = % )\ eAe —|—/ K(z,t)e™Mdt — e — K(z,t)eil)‘tdt)

1
2 2N (cos)\x—i—zsm AL —COSAZ +1 sinAx+

sin \x r sin \t
= —&-/_IK(Jc,t) 3 dt

sin \x r sin A\t
== +/O (K(:z:,t)—K(x,—t)) -t (14)

K(z, t)(em—e-i*f)dt)

—x

and for d < z < T,

1 z .
(:E )\) ( + 1A1+a ezA(Qd—w)+ K((E,t)el/\tdt

20\

—x

xr
_gte— T _ g e—iN2d—a) _ K(x’t)e—iktdt)

—X

_ysindx _sin\(2d — ) v sin At
=aT— +a 3 + K(x,t) 3

—x

dt
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sin Az sin A\(2d—x r sin At
=t ta” (A ) +/ (K(x, t)—K(x, —t)) . (15)
0

We can also obtain by (9) and (15) that for d < z < 7,

gp’(x7 )\) =a™t coshz— a” COS)\(Qd_@—i—/ (K:v(xa t)_Ka:(x; —t))SH;\)\tdt
0

+ a’ / sm )\x (16)
where K(z,t) is above- mentloned and has the following forms [1]:
1 et 1 = t+(z—¢€)
K= [ a@dcrs [(a© [ Kewisd 0<a<dan)
2 Jo 2 Jo t(a—¢)
at ¢ t+(z—£)
Ko t) Koo+ 5 [ a©) [ " K(€s)asde
0 t—(—€)
a— 2d—x t—x—&+2a
e Y K(E, s)dsdg
0 t+x+£—2a
a= d t+x+£—2a
[ e K (&, s)dsde
2d—x t—xr—&+2a
1 /® t+(z—§)
sy [ae [ KEwdsde,  d<o<n (18)
2 Ja t—(2—¢)
and
ot
at [
-5 q(&)dg, —x <t<ax-—2d,
0
m+t t—x+42d
at a” z
0©ig+ % [T @, o-2<t<2d-a,
2 Jo 2 Jo
KO (x7 t) = a+ d d a+ ITH
5 | a©de- 5 [ a©der G [T g
0 t—a:2+2d 2 d
r— t+2d
+— q(§)d¢, 2d—zx<t<ua.
2 Ja
Denote
AN) = @' (m, X)) — idp(m, ). (19)

The function A(\) is called the characteristic function of L, which is entire in A. The zeros
{A2}2e_ _ of A()) coincide with the eigenvalues of the boundary value problem L.

From the representations of (15) and (16), we have that

- : in A " in At
A()\) —qTe T _afez)\(QdﬂT) —|—K(7r,7r)81n m +/ K. (n t) sn;

—/ Ky(m, — bln/\talt—z/ K(m,t) bln/\tdt—H/ K(m, —t)sin\tdt. (20)
0

dt
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Integration by parts gives

; ; sin A T sin At
AN) =aTe T — a7 4 K (1 7) SIAT —I—/ K, (m,t) SIRAY g
0

A A
T sin At 1
- K, (m,—t)——dt + —K (7, 7) cos A\t
0 A A
- 1/ K, (m,t) cos Atdt — i/ K (m, —t) cos Atdt. (21)
AJo AJo
Theorem 1. The asymptotic formula of the eigenvalues {\2}°° __ is as follows:
at(ie=™n ) +ia cos A0 (2d — ) [T 1
Ay =AY 4 : n /) tdﬁ+0(—), 22
AOOIN ; q(t) X (22)
where {\0}22___ are zeros of the function Ag(N\) := aTe™ ™ —a~ 29T gnd has the following
representation:
nr In%r
N=— - o €Z 23
nTd T edi (23)

and A(\) = LA(N).
To prove the theorem, we firstly give the following lemma.

Lemma 2. There holds inf|\) — A0 | = v > 0 for n # m, i.e., the roots of Ag(\)=0 are

separate.

Proof. The proof is similar to that in [3]. So we omit it. O
Proof of Theorem 1. Denote G,, := {)\ (A=A +3, ne N} and G5 := {)\ tIA=XN| >4, ne
N}, where 6 € (0,%). It follows from the representation of Ag(A) that |[Ag(A)| > CselSA™ for
A€ Gs.

In view of

sin A\ sin At sin At

A~ AN =K, rPEN /OWK;C(W,L‘) i /OﬁKw(w,—t) it

+ 1K(7T,7T) COS AT — 1/ Ki(m,t) cos Atdt
)\ A

— l/ K (m, —t) cos Atdt,
A Jo

thus we can obtain that for A € Gj,

Ce\gMTr
[AN) = Ag(N)] < T
That is,
lim 2~ 2N _
NS elSAIT

For sufficiently large n and A € G,,, we have
Cs s
IAN) — Ag(N)] < gelﬂlﬂ.
According to Rouche’s theorem, it follows that for sufficiently large n, Ag(\) and Ag(A) +
(A(N) — Ap(A)) have the same number of zeros inside contour G,. Similarly, it is shown by
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Rouche’s theorem again that for sufficiently large n, A(A) has a unique of zero inside G. Since
6 > 0 is arbitrary, there exists small €,, such that
Ap = /\2 + €n.
Using the similar method in [3], we get
L —iAO T ;o — 0 ™
. = at (ie”n )QZE;L%)C)\(; An(2d — ) /0 o(t)dt + O(%).
Next, we shall show the representation of 2. Since Ag(\?) =

-y 0 -y 0 .
namely, ate ™ = g~ (24=7)  That is,
. \0
afehd)\n

n

1 — ,2imn £_ - 9z 0
e =1l=e :>lna+—227m 2idA,,.

Thus (23) holds. This completes the proof.

§3 Uniqueness theorem for ¢(z) on (d, )

For the continuous Sturm-Liouville problem, we know that the Cauchy data {Kw(ﬂ', t), Ki(m,
t)} can uniquely determine the potential ¢(z) on the whole line [16]. Using the same method we

know that {Kx(d, t), K¢(d, t)} can uniquely determine the potential g(x) on (0,d). So we only
show that for the discontinuous problem, the uniqueness of ¢(x) on (d,n) can be determined
by the Cauchy data {Kz(w,t), Kt(w,t)}.

Theorem 2. For the discontinuous problem L, the Cauchy data {KI(T(,t),Kt(ﬂ',t)} can u-
niquely determine q(x) on (d, ).

Proof. In view of (18), here we only prove the case when ¢ € (—z,z —2d). For —z <t < z—2d,
deriving (18) with respect to x and ¢, respectively, we get
at a+t at

d
Ko(ant) =Ll 5O+ [ a@ (K6 tra—0+Kiga—a+6))ae

x+2d
+%f a(6) (K (€, t—a+2d—€) K€, t+o—2d+6) ) d
2/z+2d K (& t+a—2d+€) + K(& t—x+2d— g)) de

by | (K rro -9+ Ket-at)as (24)

and
at T+t at

d
Kiwt) =“paC 5+ [ a(@) (K6 oo —K(et=are)

—z+d
+—/ Q(f)(K({,tfx+2df§)fK(§,t+x72d+£))d§
0
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— d
_%[ +2dQ(§)(K(§’t+x_2d+f)—K(§,t—m+2d—§)>d§

by [ @Ko -9~ Ket-at)a (25)

Putting z = 7,t = 2z — 7 and adding (24) and (25), it yields
2 d
ale) = (Kalm, 20-m) 4 Kilm, 20-m)) =2 | a(@)K (6,20 - )¢
0
2 [T 2a= (¢
—— | a(OK(E, 20—-ds+—— | q(§)K (&, 22 — 2d + §)dE. (26)
at Jd at Jo
Then, we will use (26) to prove the uniqueness on the interval (d,7). Denote by M a
mapping which has the following form [16]:
M: g — Mg,

where
d 9 T
Ma=Pla)2 [ a(©K& 20—yt | a©R(e 20— )
— d
+ 20 [ @R (6 20— 2+ € g)ie
0
with

P(z) = a% (Kx(w, 21 — ) + Ky(m, 2z — 7r)).

Once we show that the mapping M has at most one fixed point in L>°(d, 7), then, the uniqueness

on (d,m) can be obtained. This method is the same as which introduced in [13] and [16].

For a fixed C > 0, put Lo = {q € L?(d, ﬂ')’”q(z)”oo < C a.e. on (d, 7r)} and denote by Pc
the operator of projection onto L¢, i.e.,
q(x), when |g(z)| < C,
Poq(z) =
+C, when +|q(x)| > C.
Assume that ¢ and G (¢ # G) are all fixed points of M and select C' such that ||¢|co, ||G|lcc < C.

It follows that g and ¢ are also fixed points of PoM. It suffices to show that PoM is contracting
on L¢ with the following norm for some sufficiently large A [13],

2 _ " 2 JL‘ 62)\(1771') .
lalf = [ )= 21)
We know that
[PcM(q) — PeM(q)|[x < [|1M(q) — M(q)|x (28)
and also obtain that by (26),
M(q)(z) — M(q)(x)

d
- / (4(€) — a(€) K (€, 20 — €, q)de

d
2 [ [re 2 - 6 - K620 - ) de
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2 us

*or ], @)~ al@)K(E 22 = £ q)dS

w2 [ ao[KEe - 60 - K20 - g0

2 60 - @6 220+ )i

-2 Odq@)[K(g,2x—2d+s,q)—K<§,2x—2d+§,q)}d§. (29)

Using the Riemann function, we can write the second, sixth and fourth terms on the right-hand
side of the equality as the following formulas, respectively:

d ™
| M@ - a@yie o [ Natemtate) - a(e)as (30)
where Ni(z,y) and Na(z,y) are bounded kernel functions depending on ¢ and . Then
M@ @)~ M@ @I <€ [ 1) - (e, (31)

Thus, by a accurate calculation, we have

1M (q)(z) — M(q)(z)|[x < \FHQ—QHA (32)
So, when X is sufficiently large, we can get the necessary contracting property of PoM. This
completes the proof. O
Theorem 3. Let f(t) = Ky(m,t) + Ky(m,t) and F(t) = — [[ f(s)ds. Then, the following

formula holds:

2m
A(N) = e / (a+5(s) —F(s— W))ei)‘sds —a~ N2, (33)
0
where 6(s) is the Dirac-delta function.

Proof. By integration by parts, we can get

A(\) =ate T — a—eM2d-m) | K(r, ) sm )\77 / K. sm )\td
/ Kal Slfi\AL‘ dt + zK(W’ W) COS AT
/ Ki(m,t) cos Atdt — / K (m, —t) cos Atdt. (34)

In characteristic triangle {(z,¢) : 0 < |t| < < 1}, we obtain that K, and K; may be extended
as odd and even functions, respectively. Then,

M) =xate ™™ — Xa"e? 2™ L K (7, 7) sin A + i K (7, 7) cos Aw

+%/ (Km(w,t)+Kt(7r,t)>(sin>\t—icos)\t)dt

1 s
+ 3 / ( — K, (7, —t) + K¢(m, —t))(sin At — i cos \t)dt

—T
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=XatTe M — \a"eP2™) L K (7, 7) sin Amr + i K (7, 7) cos A

+ % / (Kz(m t) + Ky(m, t)) (sin A\t — i cos At)dt
1 (7 . .
"2 / <K3”(7T’ t)+ Kt(”7t)) (sin At — i cos At)dt. (35)

Multiplying both sides of (35) by 2i and considering the expression of f(t), it follows that
2INA(N) =2idat e — 2iha” A2 a"ﬂe‘””/ q(§)d¢
0

+ 2/ (Kz(m)+ Kt(w,t)>ei’\tdt

=2iXaTe M — 2ixg P (2dmT) _ CL+671‘M/ q(§)d¢

0
+2 [ f(t)eMdt. (36)
Note that
™ T ™ at ™
F(t)dt = / (Kz(w,t)Jth(w,t))dt: Ko(m, t)dt =" / q(t)dt. (37)
-7 — -7 0
It follows that
2ANAN) =2 [ f(t)etdt—2ira" N2 T emin (m- / q(g)dg). (38)
-7 0

Integrating by parts once again and using

T at g
Feem == [ sos= - [ e,
—T 0
we can get (33). This completes the proof. O

Theorem 4. The eigenvalues {\2}5°

n=—oo

can uniquely determine q(x) on (d, ).

Proof. From Theorem 3, we know that

2m
AN) + a” ™) — e_i’\”/ (a+5(s) —F(s— W))ei)‘sds. (39)
0
That is
1 — ix2d—m)\ _ S iAs
e (A()\) +a"e ) =, (a d(s) — F(s — 71'))6 ds (40)

Taking the limit of both sides of (40), we can get in the upper-half of the complex plane by the

Riemann-Lebesgue Lemma,
27

(A()\) + a_e”‘(zd_”)) =a"— lim F(s—m)eds = a™. (41)

|)\|—)OO 0

lim ~
[A| =00 €7IAT

So A(X) and f(t) = F'(t) can be uniquely determined by the eigenvalues and then ¢(z) can be
determined by {A\2}%° O

n=—oo"

Remark 1. It follows from the above discussions that {\2}°% __ can uniquely determine
f(t) which can be split into its odd part K,(m,t) and even part Ki(m,t). That is, the pair
of {Kt(ﬂ',t),Kw(ﬂ',t)} can also be determined by {\2}5 It follows from Theorem 2 that
q(x) can be uniquely determined on (d,n) by {\2}°°

—0o0

—0o0 "
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§4 Conversion of the inverse problem on (0, d)
In this section, we convert the problem L to a new form of problem L; which be given below.

Then, we can prove the uniqueness of ¢(z) on (0,d) and give the procedure of reconstructing

the potential in the Sections 5 and 6.

For convenience, we can rewrite the problem (1)-(3) in the following form:

—y! (2) + qi(@)ys(x) =Xyi(2), € (0,dp), i=1,2, (42)

y1(0) =0, —15(0) = iAy2(0), (43)

ya(da) =ayi(dr),  ys(da) = —a™y;(da), (44)

where di = d, do = 7 —d, ¢ € L>*(0,d;) for i = 1,2 and qi1(z) = q(2)|j0,4,], q2(x) =

q(m — x)|[0,a,)- The problem (42)-(44) can be denoted by L1 = Li(q1,q2,d1,d2, a).

Denote by ¢1(z, A) and @2 (z, A) the solution of (42) satisfying the initial conditions ¢; (0, \) =
0,05(0,A) = 1 and ¢2(0,A) = 1,¢5(0,A) = —i), respectively. For any a > 0, let L* be the
class of entire functions of exponential type not greater than o which belongs to L?(R) for real

A. From the above conditions, we can get that

sin Ady cosAd;  Ai1(N\)
= D 5 4
©1 (dla )‘) \ + dy )\2 + )\2 3 ( 5)
@ (dy,\) =cos \dy — Dy, Sm:\dl - AQ)E)\) ; (46)
dso )
pa(da, N) === 4 | Ky (t)e”Mdt, (47)
0

where Dg, =—1 0d1 q1(t)dt and the functions A (\) ::fod1 Ni(t) cos Atdt, As(N) = 0d1 No(t)
x sin Mtdt belong to the class of £%. Here N;, N, € L?(0,d;). Note that the eigenvalues
{A2}2e s also the squared zeros of the characteristic function Aj(\):

A1(A) = ap1(di, N (da, A) + a™ ¢ (dy, w2 (d2, A). (48)
Substituting (45) and (46) into (48) and taking A = A, it follows that

dy

0= (iso/z(dm )\n)><)\n sin A di + Dg, cos A\pdi + N1 (t) cos )\ntdt)
An )
dy
+ (@ o, ) (A €08 Ay — Do sin Anci— | Np(t) sin At ). (49)

0
Introduce the Hilbert space H = L?(0,d;) & L*(0,d;) with real-valued vector-functions v =

<V1> ,vi € L?(0,d1) (i = 1,2) and define the scalar product and the norm in H as follows:
V2

o= [ (R ), W= [ (20 +3w)a,

[ (A 5
) e
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(M
N = ( Na(t) ) 7

W (t) = ( -5 (d2, An) cos Ant ) :< SEh(m = di, Ap) cOS At ) (50)

It is obvious that the vector-functions

I3

a Yo (da, \y) sin A\t a Lpo(m —dy, \p) sin A\t

all belong to H. So, we can rewrite (49) as the following form:

(van)H = Gn, (51)
here

gn = _)\iwé(d% /\n) (An Sin )\ndl + Dd1 COS )\ndl) + a71§02 (d27 An)

X (/\n cos A\pdy + Dy, sin )\ndl). (52)
In order to obtain the uniqueness and the method of reconstructing the potential function on

(0, ), we should investigate the main equation (51).

§5 The case d; = 7

We agree that if a certain symbol v denotes an object related to L, then © denote the

o0
n—=—oo

analogous object related to L. Suppose that {S\n} are the eigenvalues of the problem

Ly = L1(G1, G2, dv, da, ).
Theorem 5. If \2 = S\i forn € Z, then q = ¢ on the whole interval (0,7) for dy = 7.

Before proving this result, we shall mention the following Lemma which will be needed later.
Lemma 3. The system of vector-functions {wn tnez in (50) is complete in H.

Proof. Suppose that the system {wy}nez is not complete in H. Then there exists a element
0 # v € H, such that (v,w,)y = 0. Namely, there exist such functions v (z),v2(z) € L*(0, ),
s.t.

/2 ()b An) cos At + vat)a ™ a(5 M) sin At ) = 0 (53)
; PRI 2

Corresponding (3), (48) and Aj(\,) = 0, the equality (53) can be rewritten as the following
form:

z 1, 7 ™ .
(Vl (t)i()ol(*a An) Cos )\nt + Vz(t)% <*7 )\n) sin )\nt) dt=0 (54)
o PYRERD) 2
Thus,
3 , T s .
VN = (m (D61 (5 ) cos Xt = Ava ()i (5, V) sin At) dt (55)
0

is entire function and has the zeros {\,}52

Define G, := {)\ A > A, e < |arg A < T — 6}, where A* is any number in the complex

plane and ¢ is some positive number and G(\) := Xl(? /\)) which is entire in the complex plane




ZHANG Ran, et al. Inverse resonance problems with the discontinuous conditions 541

C. Tt follows from (45), (46), (48) and (55) that
VN [<CelPN™ and  A{(N)>CelSNT for X e G. (56)

Thus, we can arrive at

vy
= < f [>3)
GOV ‘Al(A)’ <C, forAeG (57)
where C is some positive constant. It yields
V) 0(1) for A e G
Ar(A) -

By Phragmen-Lindel6f’s and Liouville’s theorem, we can conclude that V(A) = CA;(\). Using
(55), it is shown that V € L7. However, (21) implies A;(A) ¢ L™. Thus C =0 and V(A) =0
for all A in C. Taking (55) into account, it implies that v; = vo = 0. Namely, the element v = 0
in L*(0, %), which is a contradiction. O
Lemma 4. The following relation holds:

wn () = Wl (x) + O(%), n — 0o,

—iae~ 0 cos A0

where W0 (z) = ( zclte 0 i C,Ob gw ) , n € Z. And the O— estimate is uniform with respect
a” e Mz sin \jx

to x € [0, 5.

Proof. Tt follows from (22), (23) and (50) that we can get the result. O

T

It follows from (23) that A0t = (2n — %)t And the system { cos (Zn - ﬁ)t} ) and
ne

T ’ 2

{sin (271 s )t} , e Riesz bases in L%(0, Z), respectively (see [7]). Next, we will show
ne

that the system {w0},cz is a Riesz basis in H. From the above lemma, we know that

R S\ s Y s
0 —iae"2n+13 cos )\gn_Ht 0 —iage"P2n+13 cos )\gn+2t
w2n+1(£): 1 —iX0 T o\ ) Want2 (Jf): 1 =A% m . \p ) nez.
a”te "2t gin Ay, 1 a”re 222 8in Ay, (ot

Lemma 5. The system {wQ}ncz is a Riesz basis in H.

Proof. First, we can construct a linear operator 17 : H — H and 15 : H — H with a bounded

Tw=1,| “* | = w1 L T w = w1 ,
w2 wo — fi wo + f1

TQOJ:T2<W1>:<W1_f2>7 Tzlw:<w1+f2>,
w2 w2 w2

In &—
where fi1(t) = ia™® > c¢1psin(2n — %)t and {c1,}nez are the coordinates of w; with

inverse. Let

In & —
respect to the Riesz basis {cos(2n — %)t}nezz

= In 2
wi(t) = Z €1,n cos(2n — T“;)t,

n=—oo
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0 In &—
and fo(t) = —ia® Y 2, €OS( nﬂ“f )t and {c2 », }nez are the coordinates of wy with respect

n=—oo

In &
ﬂ.a;r )t}nGZ:

> . In Z—;
wa(t) = Z o sin(2n — -

to the Riesz basis {sin(

).

n=-—oo
Then, we have that
In at In %
Tywd, 41 (t) = iae—i5@n+2+—s=) [ cos(dn +2— —e=)t ,
0
and
0 1 i (dntdt Z%) 0
Towynyo(t) =a” e'2 i ) In o
sin(4n +4 — —==)t
So {wl},ez is the Riesz basis in H. O

Proof of Theorem 5. Since A2 = A2 it follows from (22) that Jo a®)dt = [ G(t)dt and from
Theorem 4 that ¢(z) = ¢(x) on (5,7

7). Next, we should only prove that ¢(z) = ¢(x) on (0, 7).
In view of

[awar= [ i~ [ o -va= [ awas [Tuon (58)

2

and ¢2(7) = ¢2(x), we can get that fog q(t)dt fo q1(t)dt. So

™

1 [% 1 [2 s
w5 =3 [ mar=—5 [T @ =5,

From ¢3(5,A\n) = $2(5,An) and wz = Wz, we can also obtain that g, = g, by (52). By
virtue of the completeness of w, and using (51), we have that N(t) = N(t). Then we can find

zigig = gigii . The function i}gii is the Weyl function. Thus, the potential ¢;(x) can
2 3 5

be uniquely determined by the Weyl function [7]. O
According to the proof of uniqueness for Theorem 5, we can give the reconstruction of ¢(z)
on (0,7) and the algorithm is as follows.

Algorithm 1. Suppose that dy = 5. If {A2} _and g2, a are known a priori, then we can
find qi.

1. Construct ©5(%, A\n) by using g2 and wx can be obtained.

2. Construct wy,(t) and g, by using (50) and (52).

3. Use the Riesz basis {wn}2L and (51) to find N(t):

Y gawn(t)

where {w? (t) tnez is the Riesz basis which is biorthonormal to {wy,(t)}nez.
4. Using Ni(t), Nao(t) of N(t), construct p1(5,A) and ¢1(5,\) by (45) and (46), respectively.

5. Construct q1 from the Weyl function iigi;, solving the classical inverse problem by the
2

— 00

method of spectral mappings [7].
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86 The case 0 <d < §

Let I be a fixed subset of Z. First, we give the uniqueness for the potential ¢(x) on (0, ).

Theorem 6. Suppose that the system {exp(£i\,z)}ner is complete in L*(—2d,2d). If \, =
An(n € 1), then q1 = ¢ in L2(0,d).

Lemma 6. Suppose {exp(E£i\,x)}nes is complete in L*(—2d,2d), Then, the system {wy ner
defined by (50) is complete in H.

Proof. Similarly, suppose that the systems {wy, }ner is not complete in H. Then there exists a
element 0 # v € H, such that (v,w,)y = 0. From (55), we know that

d
V) = /0 (Vl(t)igo’l(d, ) cos Mt — va(t)gr (d, N) sin)\t)dt (59)

is entire. It follows from (45) and (46) that V € £24. Since the system {exp(i\,z)}ner is
complete in L?(—2d, 2d) and using Paley-Wiener Theorem, it yields V' (\) = 0. We can also get
that v; = vo = 0 in L?(0,d). Thus, the system {w, }ner is complete in H. O

Proof of Theorem 6. Since A2 = X2, it follows from (22) that Jo a(t)dt = [ G(t)dt and from
Theorem 4 that ¢(z) = §(z) on (d, ). In view of

n (d
/OTr (t)dt = /d 1(t)dt /:_dq(w—t)dtz/()dql(t)dt+/(Jﬂ_dq2(t)dt (60)

and ¢2(7) = ¢2(x), we can get that fo q(t)d fo q1(t)dt. So

1 d 1 d ~
Da=—3 [ q1<t>dt=—5/ @ (1)t = Dy
0 0

From @o(m —d, \) = @o(m—d, \,) and Dy = Dy, we can also obtain that g, = g, by (52). By
virtue of the completeness of w, and using (51), we have that N(t) = N(t). Then we can find
iigjzig = giégzig While the function %Ed :\\; is the Weyl function. Thus, the potential ¢ (z)
can be uniquely determined by the Weyl function [7]. O

Suppose that {wy }ner is a Riesz basis in H. Then, similar to the case when d = T, we can
construct the potential g(x) by the following algorithm.

Algorithm 2. Suppose that 0 < d < 5. Let {\2},.er and q2, a are known a priori, then we
can find qi.

1. Construct ph(da, A) by using g2 and Dy can be obtained.

2. Construct wy,(t) and g, by using (50) and (52).

3. Use the Riesz basis {wy }ner and (51) to find N(t):

N = gui(t)

nel
where {w} (t) }ner s the Riesz basis which is biorthonormal to {wy(t)}ner-
4. Using Ny(t), No(t) of N(t), construct p1(d, X) and @\ (d,\) by (45) and (46), respectively.

5. Construct q1 from the Weyl function iig’ig, solving the classical inverse problem by the

method of spectral mappings (see [7]).
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