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Inverse resonance problems with the discontinuous

conditions

ZHANG Ran1,2 Murat Sat3 YANG Chuan-fu1,∗

Abstract. In this paper, we consider the inverse resonance problems for the discontinuous

and non-selfadjoint Sturm-Liouville problem. We prove the uniqueness theorem and provide a

reconstructive algorithm for the potential by using the Cauchy data and Weyl function.

§1 Introduction

Let us consider the following problem:

ly := −y′′(x) + q(x)y(x) = λ2y(x), x ∈ (0, d) ∪ (d, π), (1)

with the boundary conditions

y(0) = 0, y′(π) = iλy(π), (2)

and the jump conditions {
y(d+ 0) = ay(d− 0),

y′(d+ 0) = a−1y′(d− 0)
(3)

at the point d ∈ (0, π). Here λ is the spectral parameter, q(x) ̸= 0 is a real-valued function in

L∞(0, π), a > 0 and 0 < d ≤ π
2 . Denoted by L = L(q, d, a) the problem (1)-(3).

The inverse Sturm-Liouville problem has been studied by many authors (see, e.g., [4, 6, 8–

11,18]). After the separation of variables, the problem (1)-(2) arises in the hyperbolic problem

with the absorbing boundary condition at x = π. Coming from the motivation of the scattering

theory for the Schrödinger equation, we can extend q(x) on (0,+∞) to be zero for x > π and

regard it as a central potential on R3.

For the continuous problem, the result that the potential q(x) can be constructed by reso-

nance parameters, i.e. the complex eigenvalues, was proposed by Regge [14, 15]. For example,
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in [14], it was shown that many of the characters of Jost function can be derived from general

theorems and indicated a theorem on the existence of infinitely many zeros of the Jost function;

in [15], the author simplified the Gelfand and Levitan’s procedure for constructing the potential

by the spectral measure function.

Brown ( [5]) presented a new technique that the potential is uniquely determined from

the location of eigenvalues and resonances in the context of a Schrödinger operator on a half

line. Aktosun constructed the potential on the half line from the Jost function in [2]. He

gave various uniqueness and non-uniqueness conclusions and illustrated the recovery with some

explicit examples. In [12], Pivovarchik et al. studied the inverse eigenvalue problem for Sturm-

Liouville problem with nonselfadjoint boundary conditions depending on the spectral parameter

and recovered the real coefficients from the eigenvalues using entire function theory and the

solution of a Marchenko integral equation.

In [17], Rundell and Sacks, motivated by the work of Regge, reconstructed a radial potential

in R3 from its resonance parameters for the non-selfadjoint Sturm-Liouville problem. By recov-

ering a function which is related to the boundary values of the corresponding Gelfand-Levitan

kernel and using a particular computational technique, they gave the method of reconstruction

for the potential.

For the discontinuous problem, Akcay ( [1]) gave some information of the kernel function

and the asymptotic formulas of the eigenvalues and eigenfunctions. In [19], Yang and Bon-

darenko studied the local solvability and stability of the discontinuous problem. They proved

the uniqueness theorem and gave the constructive algorithm for the potential.

In this paper, we generalize the work of Rundell and Sacks [17] to the case with a discontinu-

ity point d on a finite interval (0, π). Section 2 gives the known information for the discontinuous

case. In Section 3, we prove that one spectrum can uniquely determine the Cauchy data and

then we can also show that the Cauchy data can determine the potential q(x) on (d, π). For

convenience, in Section 4, we shall convert the discontinuous problem to a new problem and get

some results in later sections. In Sections 5 and 6, we prove the uniqueness theorem for q(x) on

(0, d) and provide the algorithms to reconstruct the potential q(x) on (0, π) when d = π
2 and

0 < d < π
2 , respectively.

§2 Preliminaries

Denote by ϕ(x, λ) the solution of (1) satisfying the discontinuity condition (3) and the initial

conditions

ϕ(0, λ) = 1, ϕ′(0, λ) = iλ. (4)

We know that when q(x) = 0 in (1), the solution ϕ0(x, λ) of (1) satisfying (3) and (4), has the

following form [1]:

ϕ0(x, λ) =

{
eiλx, x < d,

a+eiλx + a−eiλ(2d−x), x > d,
(5)

where a+ = a+a−1

2 and a− = a−a−1

2 .
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Lemma 1. [1] The solution ϕ(x, λ) of (1) satisfying the initial conditions (4) and the discon-

tinuity conditions (3) can be expressed by the following formula:

ϕ(x, λ) = ϕ0(x, λ) +

∫ x

−x

K(x, t)eiλtdt (6)

and the kernel function K(x, t) has the following properties:

K(x, x) =


1

2

∫ x

0

q(t)dt, 0 < x < d,

a+

2

∫ x

0

q(t)dt, d < x < π,

(7)

K(x, t)|t=2d−x+0
t=2d−x−0 = −a−

2

(∫ d

0

q(t)dt−
∫ x

d

q(t)dt
)
, x > d (8)

and

K(x,−x) = 0, x ∈ [0, d) ∪ (d, π]. (9)

Moreover, if q(x) is differentiable, then the kernel function K(x, t) also satisfies the following

relations:

Kxx(x, t)−Ktt(x, t) = q(x)K(x, t), x ∈ (0, d) ∪ (d, π) and |t| < x, (10)

d

dx
K(x, x) =


1

2
q(x), x < d,

a+

2
q(x), x > d,

(11)

d

dx

{
K(x, t)|t=2d−x+0

t=2d−x−0

}
=

a−

2
q(x), x > d. (12)

Let φ(x, λ) be the solution of (1) satisfying the initial condition φ(0, λ) = 0, φ′(0, λ) = 1

and jump condition (3). We can rewrite φ(x, λ) as

φ(x, λ) =
ϕ(x, λ)− ϕ(x,−λ)

2iλ
. (13)

Then, substituting the representations of ϕ(x, λ) and ϕ(x,−λ) into (13) and using the Euler’s

formula, we can obtain that φ(x, λ) satisfies the following integral equation: for 0 < x < d,

φ(x, λ) =
1

2iλ

(
eiλx +

∫ x

−x

K(x, t)eiλtdt− e−iλx −
∫ x

−x

K(x, t)e−iλtdt
)

=
1

2iλ

(
cosλx+isinλx−cosλx+i sinλx+

∫ x

−x

K(x, t)(eiλt−e−iλt)dt
)

=
sinλx

λ
+

∫ x

−x

K(x, t)
sinλt

λ
dt

=
sinλx

λ
+

∫ x

0

(
K(x, t)−K(x,−t)

) sinλt
λ

dt (14)

and for d < x < π,

φ(x, λ) =
1

2iλ

(
a+eiλx + a−eiλ(2d−x) +

∫ x

−x

K(x, t)eiλtdt

− a+e−iλx − a−e−iλ(2d−x) −
∫ x

−x

K(x, t)e−iλtdt
)

=a+
sinλx

λ
+ a−

sinλ(2d− x)

λ
+

∫ x

−x

K(x, t)
sinλt

λ
dt
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=a+
sinλx

λ
+a−

sinλ(2d−x)

λ
+

∫ x

0

(
K(x, t)−K(x,−t)

)sinλt
λ

dt. (15)

We can also obtain by (9) and (15) that for d < x < π,

φ′(x, λ) =a+ cosλx− a− cosλ(2d−x)+

∫ x

0

(
Kx(x, t)−Kx(x,−t)

)sinλt
λ

dt

+
a+

2

∫ x

0

q(t)dt
sinλx

λ
, (16)

where K(x, t) is above-mentioned and has the following forms [1]:

K(x, t)=
1

2

∫ x+t
2

0

q(ξ)dξ+
1

2

∫ x

0

q(ξ)

∫ t+(x−ξ)

t−(x−ξ)

K(ξ, s)dsdξ, 0< x< d, (17)

K(x, t) =K0(x, t) +
a+

2

∫ d

0

q(ξ)

∫ t+(x−ξ)

t−(x−ξ)

K(ξ, s)dsdξ

+
a−

2

∫ 2d−x

0

q(ξ)

∫ t−x−ξ+2a

t+x+ξ−2a

K(ξ, s)dsdξ

− a−

2

∫ d

2d−x

q(ξ)

∫ t+x+ξ−2a

t−x−ξ+2a

K(ξ, s)dsdξ

+
1

2

∫ x

d

q(ξ)

∫ t+(x−ξ)

t−(x−ξ)

K(ξ, s)dsdξ, d < x < π, (18)

and

K0(x, t) =



a+

2

∫ x+t
2

0

q(ξ)dξ, −x < t < x− 2d,

a+

2

∫ x+t
2

0

q(ξ)dξ+
a−

2

∫ t−x+2d
2

0

q(ξ)dξ, x−2d≤ t<2d−x,

a+

2

∫ d

0

q(ξ)dξ − a−

2

∫ d

t−x+2d
2

q(ξ)dξ +
a+

2

∫ x+t
2

d

q(ξ)dξ

+
a−

2

∫ x−t+2d
2

d

q(ξ)dξ, 2d− x < t < x.

Denote

∆(λ) = φ′(π, λ)− iλφ(π, λ). (19)

The function ∆(λ) is called the characteristic function of L, which is entire in λ. The zeros

{λ2
n}∞n=−∞ of ∆(λ) coincide with the eigenvalues of the boundary value problem L.

From the representations of (15) and (16), we have that

∆(λ) =a+e−iλπ − a−eiλ(2d−π) +K(π, π)
sinλπ

λ
+

∫ π

0

Kx(π, t)
sinλt

λ
dt

−
∫ π

0

Kx(π,−t)
sinλt

λ
dt−i

∫ π

0

K(π, t)sinλtdt+i

∫ π

0

K(π,−t)sinλtdt. (20)
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Integration by parts gives

∆(λ) =a+e−iλπ − a−eiλ(2d−π) +K(π, π)
sinλπ

λ
+

∫ π

0

Kx(π, t)
sinλt

λ
dt

−
∫ π

0

Kx(π,−t)
sinλt

λ
dt+

i

λ
K(π, π) cosλπ

− i

λ

∫ π

0

Kt(π, t) cosλtdt−
i

λ

∫ π

0

Kt(π,−t) cosλtdt. (21)

Theorem 1. The asymptotic formula of the eigenvalues {λ2
n}∞n=−∞ is as follows:

λn = λ0
n +

a+(ie−iλ0
nπ) + ia− cosλ0

n(2d− π)

2∆̇(λ0
n)λ

0
n

∫ π

0

q(t)dt+O
( 1

λ0
n

)
, (22)

where {λ0
n}∞n=−∞ are zeros of the function ∆0(λ) := a+e−iλπ−a−eiλ(2d−π) and has the following

representation:

λ0
n =

nπ

d
−

ln a−

a+

2di
, n ∈ Z (23)

and ∆̇(λ) = d
dλ∆(λ).

To prove the theorem, we firstly give the following lemma.

Lemma 2. There holds inf |λ0
n − λ0

m| = γ > 0 for n ̸= m, i.e., the roots of ∆0(λ)=0 are

separate.

Proof. The proof is similar to that in [3]. So we omit it.

Proof of Theorem 1. Denote Gn :=
{
λ : |λ| = |λ0

n|+
γ
2 , n ∈ N

}
and Gδ :=

{
λ : |λ−λ0

n| ≥ δ, n ∈

N
}
, where δ ∈ (0, γ

2 ). It follows from the representation of ∆0(λ) that |∆0(λ)| ≥ Cδe
|ℑλ|π for

λ ∈ Ḡδ.

In view of

∆(λ)−∆0(λ)=K(π, π)
sinλπ

λ
+

∫ π

0

Kx(π, t)
sinλt

λ
dt−

∫ π

0

Kx(π,−t)
sinλt

λ
dt

+
i

λ
K(π, π) cosλπ − i

λ

∫ π

0

Kt(π, t) cosλtdt

− i

λ

∫ π

0

Kt(π,−t) cosλtdt,

thus we can obtain that for λ ∈ Ḡδ,

|∆(λ)−∆0(λ)| ≤
Ce|ℑλ|π

|λ|
.

That is,

lim
|λ|→∞

∆(λ)−∆0(λ)

e|ℑλ|π = 0.

For sufficiently large n and λ ∈ Gn, we have

|∆(λ)−∆0(λ)| <
Cδ

2
e|ℑλ|π.

According to Rouche’s theorem, it follows that for sufficiently large n, ∆0(λ) and ∆0(λ) +

(∆(λ) − ∆0(λ)) have the same number of zeros inside contour Gn. Similarly, it is shown by
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Rouche’s theorem again that for sufficiently large n, ∆(λ) has a unique of zero inside Gδ. Since

δ > 0 is arbitrary, there exists small εn such that

λn = λ0
n + εn.

Using the similar method in [3], we get

εn =
a+(ie−iλ0

nπ) + ia− cosλ0
n(2d− π)

2∆̇(λ0
n)λ

0
n

∫ π

0

q(t)dt+O
( 1

λ0
n

)
.

Next, we shall show the representation of λ0
n. Since ∆0(λ

0
n) = 0,

namely, a+e−iλ0
nπ = a−eiλ

0
n(2d−π). That is,

a−e2idλ
0
n

a+
= 1 = e2iπn ⇒ ln

a−

a+
= 2iπn− 2idλ0

n.

Thus (23) holds. This completes the proof.

�

§3 Uniqueness theorem for q(x) on (d, π)

For the continuous Sturm-Liouville problem, we know that the Cauchy data
{
Kx(π, t),Kt(π,

t)
}
can uniquely determine the potential q(x) on the whole line [16]. Using the same method we

know that
{
Kx(d, t),Kt(d, t)

}
can uniquely determine the potential q(x) on (0, d). So we only

show that for the discontinuous problem, the uniqueness of q(x) on (d, π) can be determined

by the Cauchy data
{
Kx(π, t),Kt(π, t)

}
.

Theorem 2. For the discontinuous problem L, the Cauchy data
{
Kx(π, t),Kt(π, t)

}
can u-

niquely determine q(x) on (d, π).

Proof. In view of (18), here we only prove the case when t ∈ (−x, x−2d). For −x < t < x−2d,

deriving (18) with respect to x and t, respectively, we get

Kx(x, t) =
a+

4
q(
x+ t

2
)+

a+

2

∫ d

0

q(ξ)
(
K(ξ, t+x−ξ)+K(ξ,t−x+ ξ)

)
dξ

+
a−

2

∫ −x+2d

0

q(ξ)
(
−K(ξ, t−x+2d−ξ)−K(ξ, t+x−2d+ξ)

)
dξ

− a−

2

∫ d

−x+2d

q(ξ)
(
K(ξ, t+x−2d+ξ) +K(ξ, t−x+2d−ξ)

)
dξ

+
1

2

∫ x

d

q(ξ)
(
K(ξ, t+ x− ξ) +K(ξ, t− x+ ξ)

)
dξ (24)

and

Kt(x, t) =
a+

4
q(
x+ t

2
)+

a+

2

∫ d

0

q(ξ)
(
K(ξ, t+x−ξ)−K(ξ, t−x+ξ)

)
dξ

+
a−

2

∫ −x+d

0

q(ξ)
(
K(ξ, t−x+2d−ξ)−K(ξ, t+x−2d+ξ)

)
dξ
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− a−

2

∫ d

−x+2d

q(ξ)
(
K(ξ, t+x−2d+ξ)−K(ξ, t−x+2d−ξ)

)
dξ

+
1

2

∫ x

d

q(ξ)
(
K(ξ, t+ x− ξ)−K(ξ, t− x+ ξ)

)
dξ. (25)

Putting x = π, t = 2x− π and adding (24) and (25), it yields

q(x)=
2

a+

(
Kx(π, 2x−π)+Kt(π, 2x−π)

)
−2

∫ d

0

q(ξ)K(ξ, 2x− ξ)dξ

− 2

a+

∫ π

d

q(ξ)K(ξ, 2x−ξ)dξ+
2a−

a+

∫ d

0

q(ξ)K(ξ, 2x− 2d+ ξ)dξ. (26)

Then, we will use (26) to prove the uniqueness on the interval (d, π). Denote by M a

mapping which has the following form [16]:

M : q → Mq,

where

Mq :=P (x)−2
∫ d

0

q(ξ)K(ξ, 2x− ξ, q)dξ− 2

a+

∫ π

d

q(ξ)K(ξ, 2x−ξ, q)dξ

+
2a−

a+

∫ d

0

q(ξ)K(ξ, 2x− 2d+ ξ, q)dξ

with

P (x) =
2

a+

(
Kx(π, 2x− π) +Kt(π, 2x− π)

)
.

Once we show that the mappingM has at most one fixed point in L∞(d, π), then, the uniqueness

on (d, π) can be obtained. This method is the same as which introduced in [13] and [16].

For a fixed C > 0, put LC =
{
q ∈ L2(d, π)

∣∣∣∥q(x)∥∞ ≤ C a.e. on (d, π)
}

and denote by PC

the operator of projection onto LC , i.e.,

PCq(x) =

{
q(x), when |q(x)| ≤ C,

± C, when ± |q(x)| ≥ C.

Assume that q and q̃ (q ̸= q̃) are all fixed points of M and select C such that ∥q∥∞, ∥q̃∥∞ < C.

It follows that q and q̃ are also fixed points of PCM . It suffices to show that PCM is contracting

on LC with the following norm for some sufficiently large λ [13],

∥q∥2λ =

∫ π

0

q2(x)e2λ(x−π)dx. (27)

We know that

∥PCM(q)− PCM(q̃)∥λ ≤ ∥M(q)−M(q̃)∥λ (28)

and also obtain that by (26),

M(q)(x)−M(q̃)(x)

=2

∫ d

0

(q̃(ξ)− q(ξ))K(ξ, 2x− ξ, q)dξ

+ 2

∫ d

0

q̃(ξ)
[
K(ξ, 2x− ξ, q̃)−K(ξ, 2x− ξ, q)

]
dξ
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+
2

a+

∫ π

d

(q̃(ξ)− q(ξ))K(ξ, 2x− ξ, q)dξ

+
2

a+

∫ π

d

q̃(ξ)
[
K(ξ, 2x− ξ, q̃)−K(ξ, 2x− ξ, q)

]
dξ

− 2a−

a+

∫ d

0

(q̃(ξ)− q(ξ))K(ξ, 2x− 2d+ ξ, q)dξ

− 2a−

a+

∫ d

0

q̃(ξ)
[
K(ξ, 2x−2d+ξ, q̃)−K(ξ, 2x−2d+ξ, q)

]
dξ. (29)

Using the Riemann function, we can write the second, sixth and fourth terms on the right-hand

side of the equality as the following formulas, respectively:∫ d

0

N1(x, y)(q̃(ξ)− q(ξ))dξ or

∫ π

d

N2(x, y)(q̃(ξ)− q(ξ))dξ, (30)

where N1(x, y) and N2(x, y) are bounded kernel functions depending on q and q̃. Then

|M(q)(x)−M(q̃)(x)| ≤ C1

∫ π

0

|q(ξ)− q̃(ξ)|dξ. (31)

Thus, by a accurate calculation, we have

∥M(q)(x)−M(q̃)(x)∥λ ≤ C1√
λ
∥q − q̃∥λ. (32)

So, when λ is sufficiently large, we can get the necessary contracting property of PCM . This

completes the proof.

Theorem 3. Let f(t) = Kt(π, t) + Kx(π, t) and F (t) = −
∫ π

t
f(s)ds. Then, the following

formula holds:

∆(λ) = e−iλπ

∫ 2π

0

(
a+δ(s)− F (s− π)

)
eiλsds− a−eiλ(2d−π), (33)

where δ(s) is the Dirac-delta function.

Proof. By integration by parts, we can get

∆(λ) =a+e−iλπ − a−eiλ(2d−π) +K(π, π)
sinλπ

λ
+

∫ π

0

Kx(π, t)
sinλt

λ
dt

−
∫ π

0

Kx(π,−t)
sinλt

λ
dt+

iK(π, π)

λ
cosλπ

− i

λ

∫ π

0

Kt(π, t) cosλtdt−
i

λ

∫ π

0

Kt(π,−t) cosλtdt. (34)

In characteristic triangle {(x, t) : 0 < |t| < x < 1}, we obtain that Kx and Kt may be extended

as odd and even functions, respectively. Then,

λ∆(λ) =λa+e−iλπ − λa−eiλ(2d−π) +K(π, π) sinλπ + iK(π, π) cosλπ

+
1

2

∫ π

−π

(
Kx(π, t) +Kt(π, t)

)
(sinλt− i cosλt)dt

+
1

2

∫ π

−π

(
−Kx(π,−t) +Kt(π,−t)

)
(sinλt− i cosλt)dt



538 Appl. Math. J. Chinese Univ. Vol. 37, No. 4

=λa+e−iλπ − λa−eiλ(2d−π) +K(π, π) sinλπ + iK(π, π) cosλπ

+
1

2

∫ π

−π

(
Kx(π, t) +Kt(π, t)

)
(sinλt− i cosλt)dt

+
1

2

∫ π

−π

(
Kx(π, t) +Kt(π, t)

)
(sinλt− i cosλt)dt. (35)

Multiplying both sides of (35) by 2i and considering the expression of f(t), it follows that

2iλ∆(λ) =2iλa+e−iλπ − 2iλa−eiλ(2d−π) − a+e−iλπ

∫ π

0

q(ξ)dξ

+ 2

∫ π

−π

(
Kx(π, t)+Kt(π, t)

)
eiλtdt

=2iλa+e−iλπ − 2iλa−eiλ(2d−π) − a+e−iλπ

∫ π

0

q(ξ)dξ

+ 2

∫ π

−π

f(t)eiλtdt. (36)

Note that ∫ π

−π

f(t)dt=

∫ π

−π

(
Kx(π, t)+Kt(π, t)

)
dt=

∫ π

−π

Kt(π, t)dt=
a+

2

∫ π

0

q(t)dt. (37)

It follows that

2iλ∆(λ)=2

∫ π

−π

f(t)eiλtdt−2iλa−eiλ(2d−π)+a+e−iλπ
(
2iλ−

∫ π

0

q(ξ)dξ
)
. (38)

Integrating by parts once again and using

F (−π) = −
∫ π

−π

f(s)ds = −a+

2

∫ π

0

q(t)dt,

we can get (33). This completes the proof.

Theorem 4. The eigenvalues {λ2
n}∞n=−∞ can uniquely determine q(x) on (d, π).

Proof. From Theorem 3, we know that

∆(λ) + a−eiλ(2d−π) = e−iλπ

∫ 2π

0

(
a+δ(s)− F (s− π)

)
eiλsds. (39)

That is
1

e−iλπ

(
∆(λ) + a−eiλ(2d−π)

)
=

∫ 2π

0

(
a+δ(s)− F (s− π)

)
eiλsds (40)

Taking the limit of both sides of (40), we can get in the upper-half of the complex plane by the

Riemann–Lebesgue Lemma,

lim
|λ|→∞

1

e−iλπ

(
∆(λ) + a−eiλ(2d−π)

)
= a+− lim

|λ|→∞

∫ 2π

0

F (s− π)eiλsds = a+. (41)

So ∆(λ) and f(t) = F ′(t) can be uniquely determined by the eigenvalues and then q(x) can be

determined by {λ2
n}∞n=−∞.

Remark 1. It follows from the above discussions that {λ2
n}∞n=−∞ can uniquely determine

f(t) which can be split into its odd part Kx(π, t) and even part Kt(π, t). That is, the pair

of
{
Kt(π, t),Kx(π, t)

}
can also be determined by {λ2

n}∞n=−∞. It follows from Theorem 2 that

q(x) can be uniquely determined on (d, π) by {λ2
n}∞n=−∞.
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§4 Conversion of the inverse problem on (0, d)

In this section, we convert the problem L to a new form of problem L1 which be given below.

Then, we can prove the uniqueness of q(x) on (0, d) and give the procedure of reconstructing

the potential in the Sections 5 and 6.

For convenience, we can rewrite the problem (1)-(3) in the following form:

−y′′i (x) + qi(x)yi(x) =λ2yi(x), x ∈ (0, di), i = 1, 2, (42)

y1(0) =0, −y′2(0) = iλy2(0), (43)

y2(d2) =ay1(d1), y′2(d2) = −a−1y′1(d1), (44)

where d1 = d, d2 = π − d, qi ∈ L∞(0, di) for i = 1, 2 and q1(x) = q(x)|[0,d1], q2(x) =

q(π − x)|[0,d2]. The problem (42)-(44) can be denoted by L1 = L1(q1, q2, d1, d2, a).

Denote by φ1(x, λ) and φ2(x, λ) the solution of (42) satisfying the initial conditions φ1(0, λ) =

0, φ′
1(0, λ) = 1 and φ2(0, λ) = 1, φ′

2(0, λ) = −iλ, respectively. For any α > 0, let Lα be the

class of entire functions of exponential type not greater than α which belongs to L2(R) for real
λ. From the above conditions, we can get that

φ1(d1, λ) =
sinλd1

λ
+Dd1

cosλd1
λ2

+
A1(λ)

λ2
; (45)

φ′
1(d1, λ) = cosλd1 −Dd1

sinλd1
λ

− A2(λ)

λ
; (46)

φ2(d2, λ) =e−iλd2 +

∫ d2

0

K1(t)e
−iλtdt, (47)

where Dd1 =−1
2

∫ d1

0
q1(t)dt and the functions A1(λ) :=

∫ d1

0
N1(t) cosλtdt, A2(λ) :=

∫ d1

0
N2(t)

× sinλtdt belong to the class of Ld1 . Here N1, N2 ∈ L2(0, d1). Note that the eigenvalues

{λ2
n}∞n=−∞ is also the squared zeros of the characteristic function ∆1(λ):

∆1(λ) = aφ1(d1, λ)φ
′
2(d2, λ) + a−1φ′

1(d1, λ)φ2(d2, λ). (48)

Substituting (45) and (46) into (48) and taking λ = λn, it follows that

0 =
( a

λn
φ′
2(d2, λn)

)(
λn sinλnd1 +Dd1 cosλnd1 +

∫ d1

0

N1(t) cosλntdt
)

+
(
a−1φ2(d2, λn)

)(
λn cosλnd1−Dd1

sinλnd1−
∫ d1

0

N2(t) sinλntdt
)
. (49)

Introduce the Hilbert space H = L2(0, d1) ⊕ L2(0, d1) with real-valued vector-functions ν =(
ν1

ν2

)
, νi ∈ L2(0, d1) (i = 1, 2) and define the scalar product and the norm in H as follows:

(f, ν)H =

∫ d1

0

(
f1(x)ν1(x)+f2(x)ν2(x)

)
dx, ∥ν∥2H =

∫ d1

0

(
ν21(x)+ν22(x)

)
dx,

ν =

(
ν1

ν2

)
, f =

(
f1

f2

)
, f, ν ∈ H.
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It is obvious that the vector-functions

N(t) =

(
N1(t)

N2(t)

)
,

ωn(t) :=

(
a
λn

φ′
2(d2, λn) cosλnt

a−1φ2(d2, λn) sinλnt

)
=

(
a
λn

φ′
2(π − d1, λn) cosλnt

a−1φ2(π − d1, λn) sinλnt

)
(50)

all belong to H. So, we can rewrite (49) as the following form:

(N,ωn)H = gn, (51)

here

gn = − a

λn
φ′
2(d2, λn)

(
λn sinλnd1 +Dd1 cosλnd1

)
+ a−1φ2(d2, λn)

×
(
λn cosλnd1 +Dd1 sinλnd1

)
. (52)

In order to obtain the uniqueness and the method of reconstructing the potential function on

(0, π), we should investigate the main equation (51).

§5 The case d1 =
π
2

We agree that if a certain symbol υ denotes an object related to L, then υ̃ denote the

analogous object related to L̃. Suppose that {λ̃n}∞n=−∞ are the eigenvalues of the problem

L̃1 = L̃1(q̃1, q̃2, d1, d2, a).

Theorem 5. If λ2
n = λ̃2

n for n ∈ Z, then q = q̃ on the whole interval (0, π) for d1 = π
2 .

Before proving this result, we shall mention the following Lemma which will be needed later.

Lemma 3. The system of vector-functions {ωn}n∈Z in (50) is complete in H.

Proof. Suppose that the system {ωn}n∈Z is not complete in H. Then there exists a element

0 ̸= ν ∈ H, such that (ν, ωn)H = 0. Namely, there exist such functions ν1(x), ν2(x) ∈ L2(0, π
2 ),

s.t. ∫ π
2

0

(
ν1(t)

a

λn
φ′
2(
π

2
, λn) cosλnt+ ν2(t)a

−1φ2(
π

2
, λn) sinλnt

)
dt = 0 (53)

Corresponding (3), (48) and ∆1(λn) = 0, the equality (53) can be rewritten as the following

form: ∫ π
2

0

(
ν1(t)

1

λn
φ′
1(
π

2
, λn) cosλnt+ ν2(t)φ1(

π

2
, λn) sinλnt

)
dt = 0 (54)

Thus,

V (λ) :=

∫ π
2

0

(
ν1(t)φ

′
1(
π

2
, λ) cosλt− λν2(t)φ1(

π

2
, λ) sinλt

)
dt (55)

is entire function and has the zeros {λn}∞n=−∞.

Define Gε :=
{
λ : |λ| > |λ⋆|, ε < | arg λ| < π − ε

}
, where λ⋆ is any number in the complex

plane and ε is some positive number and G(λ) := V (λ)
∆1(λ)

which is entire in the complex plane
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C. It follows from (45), (46), (48) and (55) that

|V (λ)|≤Ce|ℑλ|π and ∆1(λ)≥Ce|ℑλ|π, for λ ∈ Gε (56)

Thus, we can arrive at

|G(λ)| =
∣∣∣ V (λ)

∆1(λ)

∣∣∣ ≤ C, for λ∈ Gε, (57)

where C is some positive constant. It yields

V (λ)

∆1(λ)
= O(1) for λ ∈ Gε.

By Phragmen-Lindelöf’s and Liouville’s theorem, we can conclude that V (λ) ≡ C∆1(λ). Using

(55), it is shown that V ∈ Lπ. However, (21) implies ∆1(λ) ̸∈ Lπ. Thus C = 0 and V (λ) = 0

for all λ in C. Taking (55) into account, it implies that ν1 = ν2 = 0. Namely, the element ν = 0

in L2(0, π
2 ), which is a contradiction.

Lemma 4. The following relation holds:

ωn(x) = ω0
n(x) +O

( 1
n

)
, n → ∞,

where ω0
n(x) =

(
−iae−iλ0

n
π
2 cosλ0

nx

a−1e−iλ0
n

π
2 sinλ0

nx

)
, n ∈ Z. And the O− estimate is uniform with respect

to x ∈ [0, π
2 ].

Proof. It follows from (22), (23) and (50) that we can get the result.

It follows from (23) that λ0
nt = (2n− ln a−

a+

πi )t. And the system
{
cos
(
2n− ln a−

a+

πi

)
t
}
n∈Z

and{
sin
(
2n− ln a−

a+

πi

)
t
}
n∈Z

are Riesz bases in L2(0, π
2 ), respectively (see [7]). Next, we will show

that the system {ω0
n}n∈Z is a Riesz basis in H. From the above lemma, we know that

ω0
2n+1(x)=

(
−iae−iλ0

2n+1
π
2 cosλ0

2n+1t

a−1e−iλ0
2n+1

π
2 sinλ0

2n+1t

)
, ω0

2n+2(x)=

(
−iae−iλ0

2n+1
π
2 cosλ0

2n+2t

a−1e−iλ0
2n+2

π
2 sinλ0

2n+2t

)
, n∈Z.

Lemma 5. The system {ω0
n}n∈Z is a Riesz basis in H.

Proof. First, we can construct a linear operator T1 : H → H and T2 : H → H with a bounded

inverse. Let

T1ω = T1

(
ω1

ω2

)
=

(
ω1

ω2 − f1

)
, T−1

1 ω =

(
ω1

ω2 + f1

)
,

T2ω = T2

(
ω1

ω2

)
=

(
ω1 − f2

ω2

)
, T−1

2 ω =

(
ω1 + f2

ω2

)
,

where f1(t) = ia−2
∞∑

n=−∞
c1,n sin(2n − ln a−

a+

πi )t and {c1,n}n∈Z are the coordinates of ω1 with

respect to the Riesz basis {cos(2n− ln a−
a+

πi )t}n∈Z:

ω1(t) =

∞∑
n=−∞

c1,n cos(2n−
ln a−

a+

πi
)t,
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and f2(t) = −ia2
∞∑

n=−∞
c2,n cos(2n−

ln a−
a+

πi )t and {c2,n}n∈Z are the coordinates of ω2 with respect

to the Riesz basis {sin(2n− ln a−
a+

πi )t}n∈Z:

ω2(t) =
∞∑

n=−∞
c2,n sin(2n−

ln a−

a+

πi
)t.

Then, we have that

T1ω
0
2n+1(t) = −iae−iπ

2 (4n+2+
ln a+

a−
πi )

 cos(4n+ 2− ln a−
a+

πi )t

0

 ,

and

T2ω
0
2n+2(t) = a−1e−iπ

2 (4n+4+
ln a+

a−
πi )

 0

sin(4n+ 4− ln a−
a+

πi )t

 .

So {ω0
n}n∈Z is the Riesz basis in H.

Proof of Theorem 5. Since λ2
n = λ̃2

n, it follows from (22) that
∫ π

0
q(t)dt =

∫ π

0
q̃(t)dt and from

Theorem 4 that q(x) = q̃(x) on (π2 , π). Next, we should only prove that q(x) = q̃(x) on (0, π
2 ).

In view of ∫ π

0

q(t)dt =

∫ π
2

0

q1(t)dt−
∫ 0

π
2

q(π − t)dt =

∫ π
2

0

q1(t)dt+

∫ π
2

0

q2(t)dt (58)

and q2(x) = q̃2(x), we can get that
∫ π

2

0
q1(t)dt =

∫ π
2

0
q̃1(t)dt. So

ωπ
2
= −1

2

∫ π
2

0

q1(t)dt = −1

2

∫ π
2

0

q̃1(t)dt = ω̃π
2
.

From φ2(
π
2 , λn) = φ̃2(

π
2 , λn) and ωπ

2
= ω̃π

2
, we can also obtain that gn = g̃n by (52). By

virtue of the completeness of ωn and using (51), we have that N(t) = Ñ(t). Then we can find
φ′

1(
π
2 ,λ)

φ1(
π
2 ,λ) =

φ̃′
1(

π
2 ,λ)

φ̃1(
π
2 ,λ) . The function

φ′
1(

π
2 ,λ)

φ1(
π
2 ,λ) is the Weyl function. Thus, the potential q1(x) can

be uniquely determined by the Weyl function [7]. �
According to the proof of uniqueness for Theorem 5, we can give the reconstruction of q(x)

on (0, π) and the algorithm is as follows.

Algorithm 1. Suppose that d1 = π
2 . If {λ2

n}∞n=−∞ and q2, a are known a priori, then we can

find q1.

1. Construct φ′
2(

π
2 , λn) by using q2 and ωπ

2
can be obtained.

2. Construct ωn(t) and gn by using (50) and (52).

3. Use the Riesz basis {ωn}∞n=−∞ and (51) to find N(t):

N(t) =
∞∑

n=−∞
gnω

⋆
n(t),

where {ω⋆
n(t)}n∈Z is the Riesz basis which is biorthonormal to {ωn(t)}n∈Z.

4. Using N1(t), N2(t) of N(t), construct φ1(
π
2 , λ) and φ′

1(
π
2 , λ) by (45) and (46), respectively.

5. Construct q1 from the Weyl function
φ′

1(
π
2 ,λ)

φ1(
π
2 ,λ) , solving the classical inverse problem by the

method of spectral mappings [7].
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§6 The case 0 < d < π
2

Let I be a fixed subset of Z. First, we give the uniqueness for the potential q(x) on (0, π).

Theorem 6. Suppose that the system {exp(±iλnx)}n∈I is complete in L2(−2d, 2d). If λn =

λ̃n(n ∈ I), then q1 = q̃1 in L2(0, d).

Lemma 6. Suppose {exp(±iλnx)}n∈I is complete in L2(−2d, 2d), Then, the system {ωn}n∈I

defined by (50) is complete in H.

Proof. Similarly, suppose that the systems {ωn}n∈I is not complete in H. Then there exists a

element 0 ̸= ν ∈ H, such that (ν, ωn)H = 0. From (55), we know that

V (λ) :=

∫ d

0

(
ν1(t)

1

λ
φ′
1(d, λ) cosλt− ν2(t)φ1(d, λ) sinλt

)
dt (59)

is entire. It follows from (45) and (46) that V ∈ L2d. Since the system {exp(±iλnx)}n∈I is

complete in L2(−2d, 2d) and using Paley-Wiener Theorem, it yields V (λ) ≡ 0. We can also get

that ν1 = ν2 = 0 in L2(0, d). Thus, the system {ωn}n∈I is complete in H.

Proof of Theorem 6. Since λ2
n = λ̃2

n, it follows from (22) that
∫ π

0
q(t)dt =

∫ π

0
q̃(t)dt and from

Theorem 4 that q(x) = q̃(x) on (d, π). In view of∫ π

0

q(t)dt =

∫ d

0

q1(t)dt−
∫ 0

π−d

q(π − t)dt =

∫ d

0

q1(t)dt+

∫ π−d

0

q2(t)dt (60)

and q2(x) = q̃2(x), we can get that
∫ d

0
q1(t)dt =

∫ d

0
q̃1(t)dt. So

Dd = −1

2

∫ d

0

q1(t)dt = −1

2

∫ d

0

q̃1(t)dt = D̃d.

From φ2(π− d, λn) = φ̃2(π− d, λn) and Dd = D̃d, we can also obtain that gn = g̃n by (52). By

virtue of the completeness of ωn and using (51), we have that N(t) = Ñ(t). Then we can find
φ′

1(d,λ)
φ1(d,λ)

=
φ̃′

1(d,λ)
φ̃1(d,λ)

. While the function
φ′

1(d,λ)
φ1(d,λ)

is the Weyl function. Thus, the potential q1(x)

can be uniquely determined by the Weyl function [7]. �
Suppose that {ωn}n∈I is a Riesz basis in H. Then, similar to the case when d = π

2 , we can

construct the potential q(x) by the following algorithm.

Algorithm 2. Suppose that 0 < d < π
2 . Let {λ2

n}n∈I and q2, a are known a priori, then we

can find q1.

1. Construct φ′
2(d2, λn) by using q2 and Dd can be obtained.

2. Construct ωn(t) and gn by using (50) and (52).

3. Use the Riesz basis {ωn}n∈I and (51) to find N(t):

N(t) =
∑
n∈I

gnω
⋆
n(t),

where {ω⋆
n(t)}n∈I is the Riesz basis which is biorthonormal to {ωn(t)}n∈I .

4. Using N1(t), N2(t) of N(t), construct φ1(d, λ) and φ′
1(d, λ) by (45) and (46), respectively.

5. Construct q1 from the Weyl function
φ′

1(d,λ)
φ1(d,λ)

, solving the classical inverse problem by the

method of spectral mappings (see [7]).
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