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Some new fixed point results under constraint inequalities

in comparable complete partially ordered Menger

PM-spaces

WU Zhao-qi1,∗ ZHANG Lin2 ZHU Chuan-xi1 YUAN Cheng-gui3

Abstract. In this paper, we introduce the concept of comparable T -completeness of a partially

ordered Menger PM-space and discuss the existence of fixed points for mappings satisfying

certain conditions in the framework of a comparable T -complete partially ordered Menger

PM-space. We obtain some new results which generalize many known ones in the literature.

Moreover, we derive some consequent results and give an example to illustrate our main result.

§1 Introduction and Preliminaries

The concept of a probabilistic metric space (PM-space) was first raised by Menger and

revisited by Schweizer and Sklar [15,19]. The fundamental theory of PM-spaces has been

established and developed during the second half of the 20th century [20,21]. Specifically, fixed

point theory and nonlinear operator theory in PM-spaces have attracted much attention and a

large number of papers are focused on such field [9,4,26,27,28,29,6,22,3].

It was Turinici who first suggested imposing a partial order on the structure of a metric

space and discussed fixed point problems in this framework [24], which inspired many consequent

works in this regard [16,10,14,17]. It is a natural idea to consider fixed point problems in a

partially ordered Menger PM-space, and many results were also obtained in such spaces in recent

years [5,25,31,23]. On the other hand, the notion of α admissible mapping has been defined

in [18], and the fixed point results for α-ψ contractive mappings, generalized α-ψ contractive

mappings and α-ψ-Meir-Keeler contractive mappings have been obtained in [18,12,13]. In

particular, it has been shown in [12] that the fixed point results in standard metric spaces,

metric spaces endowed with a partial order and metric spaces where mappings are cyclic can

be obtained by proper choice of α from the main results of [12].
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Let (X,F ,∆) be a Menger PM-space and X be endowed with two partial orders ≼1 and

≼2, and T,A,B,C,D : X → X be five self-mappings. Consider the following problem: Find

x ∈ X, such that 
x = Tx,

Ax ≼1 Bx,

Cx ≼2 Dx.

(1)

Jleli and Samet discussed in [11] the existence of solutions to (1) in metric spaces by in-

troducing the concepts of d-regularity and (A,B,C,D,≼1,≼2)-stability. In [2], Ansari et al.

revisited the results in [11] and proved the uniqueness of the solution to (1) by assuming that

only A and B are continuous (or only C and D are continuous). The main results of [11] and [2]

were generalized to the setting of Menger PM-spaces in [30]. In [1], the authors investigated the

existence of the solution to problem (1) by replacing the completeness of the metric space by

introducing the so-called comparable completeness and considering a more general contractive

condition.

In this paper, we will revisit problem (1) in partially ordered Menger PM-spaces and discuss

its solution by introducing T -completeness of partially ordered Menger PM-spaces and a more

general contractive condition. Our results are the generalizations of the results in [1] and many

other literatures.

We now recall some basic definitions in the theory of Menger PM-spaces.

A mapping F : R → R+ is called a distribution function if it is nondecreasing left-continuous

with sup
t∈R

F (t) = 1 and inf
t∈R

F (t) = 0.

We will denote by D the set of all distribution functions while H will always denote the

specific distribution function defined by

H(t) =

{
0, t ≤ 0,

1, t > 0.

Let F1, F2 ∈ D . The algebraic sum F1 ⊕ F2 is defined by [7]

(F1 ⊕ F2)(t) = sup
t1+t2=t

min{F1(t1), F2(t2)} for all t ∈ R.

Definition 1.1.([4]) A mapping ∆ : [0, 1]× [0, 1] → [0, 1] is called a triangular norm (for short,

a t-norm) if the following conditions are satisfied: ∆(a, 1) = a; ∆(a, b) = ∆(b, a); ∆(a, c) ≥
∆(b, d) for a ≥ b, c ≥ d;∆(a,∆(b, c)) = ∆(∆(a, b), c).

A typical example of a t-norm is ∆min which is defined by ∆min(a, b) = min{a, b} for all

a, b ∈ [0, 1].

Definition 1.2.([4]) A triplet (X,F ,∆) is called a Menger probabilistic metric space (for short,

a Menger PM-space) if X is a nonempty set, ∆ is a t-norm and F is a mapping from X ×X

into D satisfying the following conditions (we denote F (x, y) by Fx,y):

(MPM-1) Fx,y(t) = H(t) for all t ∈ R if and only if x = y;

(MPM-2) Fx,y(t) = Fy,x(t) for all t ∈ R;
(MPM-3) Fx,y(t+ s) ≥ ∆(Fx,z(t), Fz,y(s)) for all x, y, z ∈ X and t, s ≥ 0.

Remark 1.1.([4]) If sup
0<t<1

∆(t, t) = 1, then (X,F ,∆) is a Hausdorff topological space in the
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(ϵ, λ)-topology T , i.e., the family of sets {Ux(ϵ, λ) : ϵ > 0, λ ∈ (0, 1]}(x ∈ X) is a basis of

neighborhoods of a point x for T , where Ux(ϵ, λ) = {y ∈ X : Fx,y(ϵ) > 1− λ)}.
By virtue of the topology T , a sequence {xn} is said to be T -convergent to x ∈ X(we write

xn
T→ x(n→ ∞)) if for any given ϵ > 0 and λ ∈ (0, 1], there exists a positive integer N = N(ϵ, λ)

such that Fxn,x(ϵ) > 1 − λ whenever n ≥ N , which is equivalent to lim
n→∞

Fxn,x(t) = 1 for all

t > 0; {xn} is called a T -Cauchy sequence in (X,F ,∆) if for any given ϵ > 0 and λ ∈ (0, 1],

there exists a positive integer N = N(ϵ, λ) such that Fxn,xm(ϵ) > 1 − λ whenever n,m ≥ N ;

(X,F ,∆) is said to be T -complete if each T -Cauchy sequence in X is T -convergent in X. It

is worth noting that in a Menger PM-space, lim
n→∞

xn = x implies that xn
T→ x(n→ ∞).

Remark 1.2.([4]) Let (X, d) be a metric space and F : X ×X → D be defined by

F (x, y)(t) = Fx,y(t) = H(t− d(x, y)),∀x, y ∈ X and t > 0. (2)

Then (X,F ,∆min) is a T -complete Menger PM-space induced by (X, d).

We next recall the definition of F -regularity and (A,B,C,D,≼1,≼2)-stability.

Definition 1.3.([30]) Let (X,F ,∆) be a Menger PM-space and ≼ be partial order on X. ≼
is called F-regular, if for any sequences {an}, {bn} ⊂ X, we have

lim
n→∞

Fan,a(t) = lim
n→∞

Fbn,b(t) = 1 and an ≼ bn for all n ∈ N and t > 0 =⇒ a ≼ b,

where (a, b) ∈ X ×X.

Definition 1.4.([11]) Let X be a nonempty set endowed with two partial orders ≼1 and ≼2.

Let T,A,B,C,D : X → X be five self-mappings. The mapping T is called (A,B,C,D,≼1,≼2)-

stable, if the following condition is satisfied:

x ∈ X,Ax ≼1 Bx =⇒ CTx ≼2 DTx.

The concept of an α-admissible mapping with respect to η on a Menger PM-space has been

proposed in [27] as follows.

Definition 1.5.([27]) Let T be a self-mapping on a Menger PM-space (X,F ,∆) and α, η :

X × X × (0,+∞) → (0,+∞) be two functions. T is called an α-admissible mapping with

respect to η, if for all t > 0, we have

α(x, y, t) ≤ η(x, y, t) =⇒ α(Tx, Ty, t) ≤ η(Tx, Ty, t), x, y ∈ X.

Remark 1.3.([27]) T is called an α-admissible mapping, if η(x, y, t) ≡ 1. In this case, it

coincides with Definition 3.2 in [8]. T is called an η-subadmissible mapping, if α(x, y, t) ≡ 1.

In this case, it coincides with Definition 2.2 in [8].

We can further give the notion of a triangular α-admissible mapping with respect to η on a

Menger PM-space in the following way.

Definition 1.6. Let T be a self-mapping on a Menger PM-space (X,F ,∆) and α, η : X ×
X × (0,+∞) → (0,+∞) be two functions. T is called a triangular α-admissible mapping with

respect to η, if it is an α-admissible mapping with respect to η, and

α(x, y, t) ≤ η(x, y, t) and α(y, z, t) ≤ η(y, z, t) =⇒ α(x, z, t) ≤ η(x, z, t), x, y, z ∈ X.

Now, we introduce some new definitions that will be used in the next section. These concepts

are generalized from a metric space to the setting of a Menger PM-space.

Definition 1.7. Let (X,F ,∆) be a Menger PM-space and α, η : X ×X × (0,+∞) → (0,+∞)
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be two functions. A sequence {xn} is called α-regular with respect to η if the following conditions

is satisfied: if {xn} satisfies that α(xn, xn+1, t) ≤ η(xn, xn+1, t) for all n ∈ N and t > 0 with

xn
T→ x ∈ X(n → ∞), there exists a subsequence {xnk

} of {xn} such that α(xnk
, x, t) ≤

η(xnk
, x, t) for all k ∈ N and t > 0.

Definition 1.8. A partially ordered Menger PM-space (X,F ,∆,≼) is called regular if for every

nondecreasing sequence {xn} ⊂ X such that xn
T→ x ∈ X(n → ∞), there exists a subsequence

{xnk
} of {xn} such that xnk

≼ x for all k.

Definition 1.9.([1]) Let (X,≼) be an ordered space. A sequence {xn} is called a comparable

sequence, if

(xn ≼ xn+k for all n, k) or (xn+k ≼ xn for all n, k).

Definition 1.10. A partially ordered Menger PM-space (X,F ,∆,≼) is said to be comparable

T -complete if every T -Cauchy comparable sequence is T -convergent in X.

It is claimed in [1]that every complete metric space is comparable complete and that the

converse is not true by giving an example. It is also easy to see that every T -complete Menger

PM-space is comparable T -complete but the converse is not true.

Definition 1.11. Let (X,F ,∆,≼) be a partially ordered Menger PM-space. A mapping

f : X → X is said to be comparable T -continuous in a ∈ X, if for each comparable sequence

{an} in X with an
T→ a(n → ∞), we have f(an)

T→ f(a)(n → ∞). f is comparable T -

continuous on X if f is comparable T -continuous in each a ∈ X.

Definition 1.12.([1]) Let (X,≼) be a partially ordered space and T : X → X be a mapping.

x0 ∈ X is said to be T-comparable if for all n ∈ N, x0 and Tnx0 are comparable. We denote

TT = {x0 ∈ X : (x0 ≼ Tnx0 for all n ∈ N) or (Tnx0 ≼ x0 for all n ∈ N)}.

Definition 1.13.([1]) Let (X,≼) be a partially ordered space. A mapping T : X → X is said

to be ≼-preserving, if x ≼ y implies Tx ≼ Ty.

Proposition 1.1.([1]) Let (X,≼) be a partially ordered space and T : X → X be ≼-preserving.

Let {xn} be a Picard iterative sequence with initial point x0 ∈ TT , i.e., xn = Tn(x0). Then

{xn} is a comparable sequence.

Denote by Φ the set of functions φ : (0, 1] → [0,+∞) satisfying the following conditions:

(Φ1) φ is continuous and nonincreasing;

(Φ2) φ(x) = 0 if and only if x = 1.

Denote by H(X) the class of mappings h : X×X× (0,+∞) → [0, 1) satisfying the following

condition:

lim
n→∞

h(xn, yn, t) = 1 for all t > 0 =⇒ lim
n→∞

Fxn,yn(t) = 1 for all t > 0,

for all sequences {xn}, {yn} inX such that the sequence {Fxn,yn(t)} is increasing and convergent

for each t > 0.

§2 Main Results

We are now ready to prove our main results.
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Theorem 2.1. Let (X,F ,∆min,≼) be a comparable T -complete Menger PM-space and ≼1

and ≼2 be two partial orders on X. Also, let T,A,B,C,D : X → X be self-mappings and

α, η : X ×X × (0,+∞) → (0,+∞) be two functions. Suppose that the following conditions are

satisfied:

(i) ≼i is F -regular (i = 1, 2), and T is ≼-preserving and α-admissible with respect to η;

(ii) A, B and T are comparable T -continuous or C, D and T are comparable T -continuous;

(iii) there exists x0 ∈ TT , such that Ax0 ≼1 Bx0, Cx0 ≼2 Dx0 and α(x0, Tx0, t) ≤
η(x0, Tx0, t) for all t > 0;

(iv) T is (A,B,C,D,≼1,≼2)-stable and (C,D,A,B,≼2,≼1)-stable;

(v) there exists h ∈ H(X) and φ ∈ Φ such that for x, y ∈ X,

Ax ≼1 Bx,Cy ≼2 Dy =⇒ η(x, y, t)φ(FTx,Ty(t)) ≤ α(x, y, t)h(x, y, t)φ(Mx,y(t)) for all t > 0,

where Mx,y(t) = min{Fx,y(t), [Fx,Tx ⊕ Fy,Ty](2t), [Fx,Ty ⊕ Fy,Tx](2t)}.
Then the sequence {Tnx0} converges to some x∗ ∈ X, which is a solution to (1).

Proof. Without loss of generality, we can assume that A, B and T are comparable T -continuous

for assumption (ii).

Step 1. By assumption (iii), there exists x0 ∈ TT such that

Ax0 ≼1 Bx0 and α(x0, Tx0, t) ≤ η(x0, Tx0, t) for all t > 0.

Define the sequence {xn} by xn = Txn−1 for all n ∈ N. It follows from Proposition 1.1 that

{xn} is a comparable sequence. If xn0 = xn0+1 for some n0 ∈ N, then xn0 is a fixed point of T .

Now, suppose that xn ̸= xn+1 for n ∈ N ∪ {0}. By assumption (iv), we have CTx0 ≼2 DTx0,

that is, Cx1 ≼2 Dx1. By assumption (iv), we have ATx1 ≼1 BTx1, that is, Ax2 ≼1 Bx2.

Again, by assumption (iv), we obtain CTx2 ≼2 DTx2, that is, Cx3 ≼2 Dx3. Continuing this

process, we obtain

Ax2n ≼1 Bx2n and Cx2n+1 ≼2 Dx2n+1, n = 0, 1, 2, · · · .
From Cx0 ≼1 Dx0 and condition (iv), we can similarly obtain

Cx2n ≼1 Dx2n and Ax2n+1 ≼2 Bx2n+1, n = 0, 1, 2, · · · .
Thus we have

Axn ≼1 Bxn and Cxn ≼2 Dxn, n = 0, 1, 2, · · · . (3)

Since T is α-admissible with respect to η, by (iii), we have

α(x0, x1, t) ≤ η(x0, x1, t), ∀t > 0 =⇒ α(Tx0, Tx1, t) ≤ η(Tx0, Tx1, t) for all t > 0.

Inductively, we obtain

α(xn−1, xn, t) ≤ η(xn−1, xn, t) for all n ∈ N and t > 0. (4)

By (3), (4) and (v), it holds for all n ∈ N and t > 0 that

φ(Fxn,xn+1(t)) ≤ h(xn−1, xn, t)φ(Mxn−1,xn(t)) < φ(Mxn−1,xn(t)), (5)

where

Mxn−1,xn
(t) = min{Fxn−1,xn

(t), [Fxn−1,Txn−1
⊕ Fxn,Txn

](2t), [Fxn−1,Txn
⊕ Fxn,Txn−1

](2t)}

= min{Fxn−1,xn(t), [Fxn−1,xn ⊕ Fxn,xn+1 ](2t), [Fxn−1,xn+1 ⊕ Fxn,xn ](2t)}.
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Note that for all n ∈ N and t > 0, for any δ ∈ (0, 2t), we have

[Fxn−1,xn+1 ⊕ Fxn,xn ](2t) ≥ min{Fxn−1,xn+1(2t− δ), Fxn,xn(δ)}

= min{Fxn−1,xn+1(2t− δ), 1}.
Letting δ → 0, by the left-continuity of the distribution function, we obtain

[Fxn−1,xn+1 ⊕ Fxn,xn ](2t) ≥ Fxn−1,xn+1(2t) for all n ∈ N and t > 0.

For all n ∈ N and t > 0, for each t1, t2 ∈ (0, 2t) with t1 + t2 = 2t, we have

Fxn−1,xn+1(2t) ≥ ∆min(Fxn−1,xn(t1), Fxn,xn+1(t2)) = min{Fxn−1,xn(t1), Fxn,xn+1(t2)},
and thus we obtain

Fxn−1,xn+1(2t) ≥ [Fxn−1,xn ⊕ Fxn,xn+1 ](2t) for all n ∈ N and t > 0.

Therefore, it holds for all n ∈ N and t > 0 that

Mxn−1,xn(t) = min{Fxn−1,xn(t), [Fxn−1,Txn−1 ⊕ Fxn,Txn ](2t)}

≥ min{Fxn−1,xn
(t), Fxn,xn+1(t)}.

If min{Fxn−1,xn(t), Fxn,xn+1(t)} = Fxn,xn+1(t), then

φ(Fxn,xn+1(t)) < φ(Mxn−1,xn(t)) ≤ φ(Fxn,xn+1(t)) for all n ∈ N and t > 0

which is a contradiction. Thus, we conclude that min{Fxn−1,xn(t), Fxn,xn+1(t)} = Fxn−1,xn(t),

and thus by (5), we obtain

φ(Fxn,xn+1(t)) < φ(Fxn−1,xn(t)) for all n ∈ N and t > 0.

By the monotonicity of φ, we have

Fxn,xn+1(t) ≥ Fxn−1,xn(t) for all n ∈ N and t > 0.

Thus, {Fxn+1,xn(t)} is an increasing sequence of positive numbers for each t > 0. Therefore,

there exists some r(t) ∈ [0, 1], such that

lim
n→∞

Fxn+1,xn(t) = r(t) for all t > 0.

Suppose that there exists t0 > 0 such that r(t0) < 1. Then by (5), we have

φ(Fxn,xn+1(t0))

φ(Fxn−1,xn(t0))
≥ h(xn−1, xn, t0),

which implies that

lim
n→∞

h(xn−1, xn, t0) = 1.

Noting that h ∈ H(X), we thus obtain

lim
n→∞

Fxn+1,xn(t0) = r(t0) = 1,

which is a contradiction. Therefore, we have r(t) = 1 for all t > 0, that is,

lim
n→∞

Fxn+1,xn(t) = 1 for all t > 0. (6)

Step 2. We now show that {xn} is a T -Cauchy comparable sequence in (X,F ,∆,≼).

Suppose that this is not true. Then there exists ϵ0 > 0 and λ0 ∈ (0, 1], for which we can find

two sequences of positive integers {mk} and {nk}, such that for all positive integers k, we have

nk > mk > k, Fxmk
,xnk

(ϵ0) ≤ 1− λ0, Fxmk
,xnk−1(ϵ0) > 1− λ0. (7)
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For any δ ∈ (0, ϵ0), we have

Fxmk
,xnk

(ϵ0) ≥ ∆(Fxmk
,xnk−1(ϵ0 − δ), Fxnk−1,xnk

(δ)).

Letting k → ∞, by (6), we have

lim inf
k→∞

Fxmk
,xnk

(ϵ0) ≥ ∆(lim inf
k→∞

Fxmk
,xnk−1(ϵ0 − δ), 1) = lim inf

k→∞
Fxmk

,xnk−1(ϵ0 − δ).

Letting δ → 0, by the left-continuity of the distribution function and (7), we obtain

lim inf
k→∞

Fxmk
,xnk

(ϵ0) ≥ lim inf
k→∞

Fxmk
,xnk−1(ϵ0) ≥ 1− λ0.

On the other hand, it can be seen easily from (7) that

lim sup
k→∞

Fxmk
,xnk

(ϵ0) ≤ 1− λ0.

So we obtain

lim
k→∞

Fxmk
,xnk

(ϵ0) = 1− λ0. (8)

Similar arguments show that

lim
k→∞

Fxnk+1,xmk
(ϵ0) = lim

k→∞
Fxnk

,xmk−1(ϵ0) = lim
k→∞

Fxnk+1,xmk+1(ϵ0) = 1− λ0. (9)

Note that for all k ∈ N, there exists a positive integer ik ∈ {0, 1} such that

nk −mk + ik ≡ 1(2).

By (3), for all k > 1, we have

Axnk
≼1 Bxnk

and Cxmk−ik ≼2 Dxmk−ik

or

Axmk−ik ≼1 Bxmk−ik and Cxnk
≼2 Dxnk

.

By (vi), for k ∈ N, we have

φ(Fxnk+1,xmk−ik+1(ϵ0)) ≤ h(xnk
, xmk−ik , ϵ0)φ(Mxnk

,xmk−ik
(ϵ0)), (10)

where

Mxnk
,xmk−ik

(ϵ0) = min{Fxnk
,xmk−ik

(ϵ0), Fxnk
,Txnk

(ϵ0), Fxmk−ik
,Txmk−ik

(ϵ0),

[Fxnk
,Txmk−ik

⊕ Fxmk−ik
,Txnk

](2ϵ0)}

= min{Fxnk
,xmk−ik

(ϵ0), Fxnk
,xnk+1(ϵ0), Fxmk−ik

,xmk−ik+1(ϵ0),

[Fxnk
,xmk−ik+1 ⊕ Fxmk−ik

,xnk+1 ](2ϵ0)}.
Note that

[Fxnk
,xmk−ik+1

⊕ Fxmk−ik
,xnk+1

](2ϵ0) ≥ min{Fxnk
,xmk−ik+1

(ϵ0), Fxmk−ik
,xnk+1

(ϵ0)}. (11)

For any δ ∈ (0, ϵ0), we have

Fxnk
,xmk−ik+1(ϵ0) ≥ ∆(Fxnk

,xmk−ik
(ϵ0 − δ), Fxmk−ik

,xmk−ik+1(δ)).

It follows from (6) that

lim inf
k→∞

Fxnk
,xmk−ik+1(ϵ0) ≥ lim inf

k→∞
Fxnk

,xmk−ik
(ϵ0 − δ).

Letting δ → 0, by the left-continuity of the distribution function, we obtain

lim inf
k→∞

Fxnk
,xmk−ik+1(ϵ0) ≥ lim inf

k→∞
Fxnk

,xmk−ik
(ϵ0). (12)
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Similarly, we can prove that

lim inf
k→∞

Fxmk−ik
,xnk+1(ϵ0) ≥ lim inf

k→∞
Fxnk

,xmk−ik
(ϵ0). (13)

Combining (11), (12) and (13), we obtain

lim inf
k→∞

[Fxnk
,xmk−ik+1 ⊕ Fxmk−ik

,xnk+1 ](2ϵ0) ≥ lim inf
k→∞

Fxnk
,xmk−ik

(ϵ0). (14)

And thus

lim inf
k→∞

Mxnk
,xmk−ik

(ϵ0) ≥ lim inf
k→∞

Fxnk
,xmk−ik

(ϵ0). (15)

It follows from (10) and (15) that

φ(lim inf
k→∞

Fxnk+1,xmk−ik+1(ϵ0)) ≤ lim inf
k→∞

h(xnk
, xmk−ik , ϵ0)φ(lim inf

k→∞
Fxnk

,xmk−ik
(ϵ0)),

which by (9) and the continuity of φ implies that

lim inf
k→∞

h(xnk
, xmk−ik , ϵ0) ≥ 1.

Noting that lim sup
k→∞

h(xnk
, xmk−ik , ϵ0) ≤ 1 holds, we obtain

lim
k→∞

h(xnk
, xmk−ik , ϵ0) = 1,

which yields that

lim
k→∞

Fxnk
,xmk−ik

(ϵ0) = 1.

This is in contradiction to (8) or (9). Therefore, {xn} is a T -Cauchy comparable sequence in

(X,F ,∆,≼).

Step 3. Since (X,F ,∆,≼) is comparable T -complete, from Step 2, we know that there

exists x∗ ∈ X such that xn
T→ x∗(n → ∞). Since T is comparable T -continuous, we get

xn+1 = Txn
T→ Tx∗(n→ ∞). So we obtain

Tx∗ = x∗. (16)

Since A and B are comparable T -continuous and {x2n} is a comparable sequence, we have

lim
n→∞

FAx2n,Ax∗(t) = lim
n→∞

FBx2n,Bx∗(t) = 1 for all t > 0. (17)

Noting that ≼1 is F -regular, it follows from (3) and (17) that

Ax∗ ≼1 Bx
∗. (18)

By assumption (iv) and (18), we obtain

CTx∗ ≼2 DTx
∗,

which implies that

Cx∗ ≼2 Dx
∗. (19)

Combining (16), (18) and (19), we conclude that x∗ is a solution to problem (1). We can

similarly prove the theorem by alternatively assuming that C, D and T are comparable T -

continuous. This completes the proof.

The next result removes the T -continuity assumption of the mapping T in Theorem 2.1 by

utilizing α-regularity with respect to η assumption of a sequence.

Theorem 2.2. Let (X,F ,∆min,≼) be a comparable T -complete Menger PM-space and ≼1

and ≼2 be two partial orders on X. Also, let T,A,B,C,D : X → X be self-mappings and

α, η : X ×X × (0,+∞) → (0,+∞) be two functions. Suppose that the following conditions are
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satisfied:

(i) ≼i is F -regular (i = 1, 2), and T is ≼-preserving and α-admissible with respect to η;

(ii) A and B are comparable T -continuous or C and D are comparable T -continuous;

(iii) there exists x0 ∈ TT , such that Ax0 ≼1 Bx0, Cx0 ≼2 Dx0 and α(x0, Tx0, t)

≤ η(x0, Tx0, t) for all t > 0;

(iv) the sequence {T 2nx0} is α-regular with respect to η;

(v) T is (A,B,C,D,≼1,≼2)-stable and (C,D,A,B,≼2,≼1)-stable;

(vi) there exists h ∈ H(X) and φ ∈ Φ such that for x, y ∈ X,

Ax ≼1 Bx,Cy ≼2 Dy =⇒ η(x, y, t)φ(FTx,Ty(t)) ≤ α(x, y, t)h(x, y, t)φ(Mx,y(t)), ∀t > 0,

where Mx,y(t) = min{Fx,y(t), [Fx,Tx ⊕ Fy,Ty](2t), [Fx,Ty ⊕ Fy,Tx](2t)}.
Then the sequence {Tnx0} converges to some x∗ ∈ X, which is a solution to (1).

Proof. Without loss of generality, we assume that A, B are comparable T -continuous. The

proof for the case that C, D are comparable T -continuous is similar.

By assumption (iii), there exists x0 ∈ TT such that

Ax0 ≼1 Bx0 and α(x0, Tx0, t) ≤ η(x0, Tx0, t) for all t > 0.

Define the sequence {xn} by xn = Txn−1 for all n ∈ N. Following the same arguments in

Theorem 2.1, we can prove that

Ax2n ≼1 Bx2n and Cx2n+1 ≼2 Dx2n+1, n = 0, 1, 2, · · · . (20)

and

α(xn−1, xn, t) ≤ η(xn−1, xn, t) for all n ∈ N and t > 0. (21)

Also, we can prove that there exists x∗ ∈ X such that xn
T→ x∗(n→ ∞) and

Ax∗ ≼1 Bx
∗. (22)

Now, we prove that Tx∗ = x∗. Suppose this is not true, that is, Tx∗ ̸= x∗. Then we claim

that there exists t0 > 0, such that

Fx∗,Tx∗(2t0) > Fx∗,Tx∗(t0). (23)

In fact, if (23) is not true, then for all t > 0, we have

Fx∗,Tx∗(t) = Fx∗,Tx∗(2t) = · · · = Fx∗,Tx∗(2nt) → 1(n→ ∞).

This implies that Fx∗,Tx∗(t) = 1,∀t > 0, which is in contradiction to Tx∗ ̸= x∗, and thus (23)

holds.

Without loss of generality, we can assume that t0 is a continuous point of Fx∗,Tx∗(·). In

fact, since the distribution function is left-continuous, by (23), there exists θ > 0, such that

Fx∗,Tx∗(2t) > Fx∗,Tx∗(t) ∀t ∈ (t0 − θ, t0].

Since the distribution function is nondecreasing, the discontinuous points are at most a count-

able set. Thus, when t0 is not a continuous point of Fx∗,Tx∗(·), we can always choose a point

t1 in (t0 − δ, t0] to replace t0.

Since {x2n} is α-regular with respect to η, by (21), there exists a subsequence {x2nk
} such

that

α(x2nk
, x∗, t) ≤ η(x2nk

, x∗, t) for all k ∈ N and t > 0. (24)
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By (20), (22), (23) and (vi), it holds for all k ∈ N that

φ(Fx2nk+1,Tx∗(t0)) = φ(FTx2nk
,Tx∗(t0)) ≤ h(x2nk

, x∗, t)φ(Mx2nk
,x∗(t0)), (25)

where

Mx2nk
,x∗(t0) = min{Fx2nk

,x∗(t0), [Fx2nk
,Tx2nk

⊕ Fx∗,Tx∗ ](2t0), [Fx2nk
,Tx∗ ⊕ Fx∗,Tx2nk

](2t0)}

= min{Fx2nk
,x∗(t0), [Fx2nk

,x2nk+1 ⊕ Fx∗,Tx∗ ](2t0), [Fx2nk
,Tx∗ ⊕ Fx∗,x2nk+1 ](2t0)}.

Note that for any δ ∈ (0, 2t0), we have

[Fx2nk
,Tx∗ ⊕ Fx∗,x2nk+1 ](2t0) ≥ min{Fx2nk

,Tx∗(2t0 − δ), Fx∗,x2nk+1(δ)} for all k ∈ N.

Since xn
T→ x∗(n→ ∞), we get

lim inf
k→∞

[Fx2nk
,Tx∗ ⊕ Fx∗,x2nk+1

](2t0) ≥ Fx∗,Tx∗(2t0).

Similarly, we have

lim inf
k→∞

[Fx2nk
,x2nk+1 ⊕ Fx∗,Tx∗ ](2t0) ≥ Fx∗,Tx∗(2t0).

Therefore, we obtain

lim inf
k→∞

Mx2nk
,x∗(t0) ≥ Fx∗,Tx∗(2t0). (26)

It follows from (25) that

φ(Fx2nk+1,Tx∗(t0)) < φ(Mx2nk
,x∗(t0)) for all k ∈ N,

which by the monotonicity of φ implies that

Fx2nk+1,Tx∗(t0)) ≥Mx2nk
,x∗(t0) for all k ∈ N. (27)

Since xn
T→ x∗(n → ∞), and t0 is a continuous point of Fx∗,Tx∗(·), combining (26) and (27)

yields that Fx∗,Tx∗(t0) ≥ Fx∗,Tx∗(2t0), which is in contradiction with (23). Therefore, we proved

that

Tx∗ = x∗. (28)

Since T is (A,B,C,D,≼1,≼2)-stable, by (22), we obtain

CTx∗ ≼2 DTx
∗,

which implies that

Cx∗ ≼2 Dx
∗. (29)

Combining (22), (28) and (29), we thus conclude that x∗ is a solution to (1).

Next, we discuss the uniqueness of the solution to problem (1). Denote by Fix(T ) the set

of all fixed points of the mapping T . Consider the following assumptions.

(H1) For all x, y ∈ Fix(T ), there exists z ∈ X, such that Az ≼1 Bz, Cz ≼2 Dz, α(x, z, t) ≤
η(x, z, t) and α(y, z, t) ≤ η(y, z, t) for all t > 0.

(H2) For all x, y ∈ Fix(T ), there exists z ∈ X, such that α(x, z, t) ≤ η(x, z, t) and α(z, y, t) ≤
η(z, y, t) for all t > 0.

Theorem 2.3. Suppose that the hypotheses of Theorem 2.1 (resp. Theorem 2.2) remain true.

Suppose further that one of the following conditions is satisfied:

(i) assumption (H1) holds;

(ii) assumption (H2) holds, and T is triangular α-admissible with respect to η.

Then problem (1) has a unique solution x∗.
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Proof. Suppose that y∗ is another solution to (1), that is,

Ty∗ = y∗, Ay∗ ≼1 By
∗, Cy∗ ≼2 Dy

∗. (30)

We next show that x∗ = y∗. First, we assume that condition (i) holds. By assumption (H1),

there exists z ∈ X such that

Az ≼1 Bz,Cz ≼2 Dz, α(x
∗, z, t) ≤ η(x∗, z, t) and α(y∗, z, t) ≤ η(y∗, z, t) for all t > 0. (31)

Since T is α-admissible with respect to η, from (30), we have

α(x∗, Tnz, t) ≤ η(x∗, Tnz, t) and α(y∗, Tnz, t) ≤ η(y∗, Tnz, t) for all n ∈ N and t > 0. (32)

Define the sequence {zn} by zn+1 = Tzn for n ∈ N∪{0} with z0 = z. It follows from Az ≼1 Bz,

Cz ≼2 Dz and condition (iv) of Theorem 2.1 (or (v) of Theorem 2.2) that Czn ≼2 Dzn for all

n ∈ N ∪ {0}. Noting that Ax∗ ≼1 Bx
∗, from (32), it holds for all n ∈ N and t > 0 that

φ(Fx∗,zn+1(t)) ≤ h(x∗, zn, t)φ(Mx∗,zn(t)) < φ(Mx∗,zn(t)), (33)

where

Mx∗,zn(t) = min{Fx∗,zn(t), [Fx∗,Tx∗ ⊕ Fzn,Tzn ](2t), [Fx∗,Tzn ⊕ Fzn,Tx∗ ](2t)}

= min{Fx∗,zn(t), [Fx∗,x∗ ⊕ Fzn,zn+1 ](2t), [Fx∗,zn+1 ⊕ Fzn,x∗ ](2t)}.
Note that for any δ ∈ (0, 2t), we have

[Fx∗,x∗ ⊕ Fzn,zn+1 ](2t) ≥ min{Fx∗,x∗(δ), Fzn,zn+1(2t− δ)}

= min{1, Fzn,zn+1(2t− δ), }, for all n ∈ N and t > 0.

Letting δ → 0, by the left-continuity of the distribution function, we obtain

[Fx∗,x∗ ⊕ Fzn,zn+1
](2t) ≥ Fzn,zn+1

(2t), }, for all n ∈ N and t > 0.

For all n ∈ N and t > 0, for each t1, t2 ∈ (0, 2t) with t1 + t2 = 2t, we have

Fzn,zn+1(2t) ≥ ∆min(Fzn,x∗(t1), Fx∗,zn+1(t2)) = min{Fzn,x∗(t1), Fx∗,zn+1(t2)},
and thus we obtain

Fzn,zn+1(2t) ≥ [Fzn,x∗ ⊕ Fx∗,zn+1 ](2t), for all n ∈ N and t > 0.

Therefore, it holds for all n ∈ N and t > 0 that

Mx∗,zn(t) = min{Fx∗,zn(t), [Fx∗,zn+1 ⊕ Fzn,x∗ ](2t)}

≥ min{Fx∗,zn(t), Fx∗,zn+1(t)}.
If min{Fx∗,zn(t), Fx∗,zn+1(t)} = Fx∗,zn+1(t), then

φ(Fx∗,zn+1(t)) < φ(Mx∗,zn(t)) ≤ φ(Fx∗,zn+1(t)),

which is a contradiction. Thus, we conclude that min{Fx∗,zn(t), Fx∗,zn+1
(t)} = Fx∗,zn(t), for

all n ∈ N and t > 0, and thus by (33), we obtain

φ(Fx∗,zn+1(t)) < φ(Fx∗,zn(t)), for all n ∈ N and t > 0.

By the monotonicity of φ, we have

Fx∗,zn+1(t) ≥ Fx∗,zn(t), for all n ∈ N and t > 0.

Thus, {Fx∗,zn(t)} is an increasing sequence of positive numbers for each t > 0. Imitating the



WU Zhao-qi, et al. Some new fixed point results under constraint inequalities... 505

proof of Theorem 2.1, we can prove that

lim
n→∞

Fx∗,zn(t) = 1, ∀t > 0.

Similarly, it can be deduced that

lim
n→∞

Fy∗,zn(t) = 1, ∀t > 0.

Therefore, we get x∗ = y∗, which implies the solution to (1) is unique.

Now assume that condition (ii) holds. Suppose x∗ ̸= y∗. By assumption (H2), there exists

z ∈ X such that

α(x∗, z, t) ≤ η(x∗, z, t) and α(z, y∗, t) ≤ η(z, y∗, t), for all t > 0.

Since T is triangular α-admissible with respect to η, we have α(x∗, y∗, t) ≤ η(x∗, y∗, t) for all

t > 0. Noting that Ax∗ ≼1 Bx
∗ and Cy∗ ≼2 Dy

∗, by (v) of Theorem 2.1 (resp. (vi) of Theorem

2.2), we obtain

φ(Fx∗,y∗(t)) = φ(FTx∗,Ty∗(t)) ≤ h(x∗, y∗, t)φ(Mx∗,y∗(t)), (34)

where Mx∗,y∗(t) = min{Fx∗,y∗(t), [Fx∗,Tx∗ ⊕ Fy∗,Ty∗ ](2t), [Fx∗,Ty∗ ⊕ Fy∗,Tx∗ ](2t)} = Fx∗,y∗(t).

This implies that h(x∗, y∗, t) ≥ 1, which is a contradiction. Therefore, we have x∗ = y∗. This

completes the proof.

Example 2.1. Let X = [−4, 6) and define the partial order “ ≼ ” on X as follows:

x ≼ y ⇐⇒ [x] = [y] and x ≥ y.

Define F : X ×X → D by

F (x, y)(t) = Fx,y(t) =

{
0, t ≤ 0,

e−
d(x,y)

t , t > 0.

Then (X,F ,∆min) is not a T -complete Menger PM-space, but it is a comparable T -complete

Menger PM-space. Take ≼1=≼2=≤. Then “ ≼i ” is F -regular for i = 1, 2. Define the mapping

T : X → X by

Tx =
1

3
(x− [x]) for all x ∈ X

and A,B,C,D : X → X by

Ax =

{
1
2x+ 1, 0 ≤ x < 6,

−1
2x+ 2, −4 ≤ x < 0,

Bx =

{
7
4 , 1 ≤ x < 6,
5
4 , −4 ≤ x < 1,

Cx =

{
1
3x+ 2, 1 ≤ x < 6,
1
2 , −4 ≤ x < 1,

Dx =

{
−1

2x+ 3
4 , 0 ≤ x < 6,

x− 1
2 , −4 ≤ x < 0.

It is easy to verify that T is ≼-preserving, and A,B and T are comparable T -continuous.

Moreover, routine calculations show that T is (A,B,C,D,≼1,≼2)-stable and (C,D,A,B,≼1
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,≼2)-stable. Define α, η : X ×X × (0,+∞) → [0,+∞) by

α(x, y, t) =

 5
8 , if [x] = [y],

2, otherwise.
t > 0,

η(x, y, t) =

 3
4 , if [x] = [y],

3
2 , otherwise.

t > 0,

and h : X×X×(0,+∞) → [0, 1) by h(x, y, t) = 2
5 for all x, y ∈ X and t > 0. We can easily check

that T is triangular α-admissible with respect to η. Also, note that there exists x0 = 0.4 ∈ TT ,

such that Ax0 ≤ Bx0 and α(x0, Tx0, t) ≤ η(x0, Tx0, t) for all t > 0. If Ax ≤ Bx,Cy ≤ Dy, we

have x, y ∈ [0, 12 ]. Take φ(x) = −lnx. Thus

η(x, y, t)φ(FTx,Ty(t)) =
3

4
(−lne−

|x−y|
3t ) =

3

4
· |x− y|

3t
=

5

8
· 2
5
· |x− y|

3t

= α(x, y, t)h(x, y, t)(−lne−
|x−y|

t )

= α(x, y, t)h(x, y, t)φ(Fx,y(t))

≤ α(x, y, t)h(x, y, t)φ(Mx,y(t)).

The conditions of Theorem 2.1 are all satisfied. Therefore there exists at least one solution to

(1). Also, we can verify that (H1) or (H2) holds, and so the solution is unique. In fact, x∗ = 0

is the unique solution to (1).

§3 Some Consequences

In this section, we will derive some corollaries of our main results in Section 2.

3.1 Standard fixed point results under constraint inequalities

Taking α(x, y, t) = η(x, y, t) = 1 for all x, y ∈ X and t > 0 in Theorem 2.3, we have the

following result.

Corollary 3.1. Let (X,F ,∆min,≼) be a comparable T -complete Menger PM-space and ≼1

and ≼2 be two partial orders on X. Also, let T,A,B,C,D : X → X be self-mappings. Suppose

that the following conditions are satisfied:

(i) ≼i is F -regular, i = 1, 2, and T is ≼-preserving;

(ii) A and B are comparable T -continuous or C and D are comparable T -continuous;

(iii) there exists x0 ∈ TT , such that Ax0 ≼1 Bx0 and Cx0 ≼2 Dx0;

(iv) T is (A,B,C,D,≼1,≼2)-stable and (C,D,A,B,≼2,≼1)-stable;

(v) there exists h ∈ H(X) and φ ∈ Φ such that for x, y ∈ X,

Ax ≼1 Bx,Cy ≼2 Dy =⇒ φ(FTx,Ty(t)) ≤ h(x, y, t)φ(Mx,y(t)) for all t > 0,

where Mx,y(t) = min{Fx,y(t), [Fx,Tx ⊕ Fy,Ty](2t), [Fx,Ty ⊕ Fy,Tx](2t)}.
Then the sequence {Tnx0} converges to some x∗ ∈ X, which is a unique solution to (1).
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3.2 Fixed point results under constraint inequalities in comparable

T -complete Menger PM-spaces endowed with a partial order

We can obtain the following two results.

Corollary 3.2. Let (X,F ,∆min,≼) be a comparable T -complete Menger PM-space and ≼1

and ≼2 be two partial orders on X. Also, let T,A,B,C,D : X → X be self-mappings. Suppose

that the following conditions are satisfied:

(i) ≼i is F -regular, i = 1, 2, and T is ≼-preserving;

(ii) A, B and T are comparable T -continuous or C, D and T are comparable T -continuous;

(iii) there exists x0 ∈ X, such that x0 ≼ Tx0, Ax0 ≼1 Bx0 and Cx0 ≼2 Dx0;

(iv) T is (A,B,C,D,≼1,≼2)-stable and (C,D,A,B,≼2,≼1)-stable;

(v) there exists h ∈ H(X) and φ ∈ Φ such that for x, y ∈ X,

Ax ≼1 Bx,Cy ≼2 Dy, x ≼ y =⇒ φ(FTx,Ty(t)) ≤ h(x, y, t)φ(Mx,y(t)) for all t > 0,

where Mx,y(t) = min{Fx,y(t), [Fx,Tx ⊕ Fy,Ty](2t), [Fx,Ty ⊕ Fy,Tx](2t)}.
Then the sequence {Tnx0} converges to some x∗ ∈ X, which is a solution to (1). Moreover, if

one of the following conditions holds:

(a) for all x, y ∈ Fix(T ), there exists z ∈ X such that Az ≼1 Bz, Cz ≼2 Dz and x ≼ y ≼ z;

(b) for all x, y ∈ Fix(T ), there exists z ∈ X such that x ≼ z and z ≼ y.

Then the solution to (1) is unique.

Proof. Define the mappings α, η : X ×X × (0,+∞) → [0,+∞) by

α(x, y, t) =

1, if x ≼ y,

3, otherwise,
t > 0

and

η(x, y, t) =

1, if x ≼ y,

2, otherwise.
t > 0

It follows from condition (v) of Corollary 3.2 that (v) of Theorem 2.1 holds. Since x0 ≼ Tx0,

we have α(x0, Tx0, t) ≤ η(x0, Tx0, t) for all t > 0, and it is easy to check that {xn} which is

defined by xn = Tnx0 is a comparable sequence. Moreover, for all x, y ∈ X and t > 0, since T

is ≼-preserving, we have

α(x, y, t) ≤ η(x, y, t) =⇒ x ≼ y =⇒ Tx ≼ Ty =⇒ α(Tx, Ty, t) ≤ η(Tx, Ty, t).

So T is α-admissible with respect to η. The existence of a solution to (1) follows from Theorem

2.1.

Now, we prove the uniqueness of the solution to (1). First, assume that (a) holds. Let

x, y ∈ Fix(T ). Then there exists z ∈ X such that Az ≼1 Bz, Cz ≼1 Dz, and x ≼ y ≼ z. From

the definition of α and η, it is easy to see that α(x, z, t) ≤ η(x, z, t) and α(y, z, t) ≤ η(y, z, t) for

all t > 0. This implies that assumption (H1) holds.

Next assume that (b) holds. Let x, y ∈ Fix(T). Then there exists z ∈ X such that x ≼ z

and z ≼ y. From the definition of α and η, it is easy to see that α(x, z, t) ≤ η(x, z, t) and

α(z, y, t) ≤ η(z, y, t) for all t > 0. This implies that assumption (H2) holds. Also, for all
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x, y, z ∈ X and t > 0, it holds thatα(x, y, t) ≤ η(x, y, t) =⇒ x ≼ y

α(y, z, t) ≤ η(y, z, t) =⇒ y ≼ z
=⇒ x ≼ z =⇒ α(x, z, t) ≤ η(x, z, t),

which implies that T is triangular α-admissible with respect to η.

In either case, the uniqueness of the solution can thus be derived from Theorem 2.3.

Corollary 3.3. Let (X,F ,∆min,≼) be a comparable T -complete Menger PM-space and ≼1

and ≼2 be two partial orders on X. Also, let T,A,B,C,D : X → X be self-mappings. Suppose

that the following conditions are satisfied:

(i) ≼i is F -regular, i = 1, 2, and T is ≼-preserving;

(ii) A and B are comparable T -continuous or C and D are comparable T -continuous;

(iii) there exists x0 ∈ X, such that x0 ≼ Tx0, Ax0 ≼1 Bx0 and Cx0 ≼2 Dx0;

(iv) (X,F ,∆,≼) is regular;

(v) T is (A,B,C,D,≼1,≼2)-stable and (C,D,A,B,≼2,≼1)-stable;

(vi) there exists h ∈ H(X) and φ ∈ Φ such that for x, y ∈ X,

Ax ≼1 Bx,Cy ≼2 Dy =⇒ φ(FTx,Ty(t)) ≤ h(x, y, t)φ(Mx,y(t)) for all t > 0,

where Mx,y(t) = min{Fx,y(t), [Fx,Tx ⊕ Fy,Ty](2t), [Fx,Ty ⊕ Fy,Tx](2t)}.
Then the sequence {Tnx0} converges to some x∗ ∈ X, which is a solution to (1). Moreover, if

one of the following conditions holds:

(a) for all x, y ∈ Fix(T ), there exists z ∈ X such that Az ≼1 Bz, Cz ≼2 Dz and x ≼ y ≼ z;

(b) for all x, y ∈ Fix(T ), there exists z ∈ X such that x ≼ z and z ≼ y.

Then the solution to (1) is unique.

Proof. Define the mappings α, η : X × X × (0,+∞) → [0,+∞) as the ones in Corollary 3.2.

It follows from condition (vi) of Corollary 3.4 that (vi) of Theorem 2.2 holds. By the proof

of Corollary 3.3, it is shown that α(x0, Tx0, t) ≤ η(x0, Tx0, t) for all t > 0, {xn = Tnx0} is a

comparable sequence, and T is triangular α-admissible with respect to η.

From condition (iv), (X,F ,∆,≼) is regular. Suppose that {x2n} satisfies that α(x2n, x2n+1,

t) ≤ η(x2n, x2n+1, t) for all n ∈ N and t > 0 with x2n
T→ x ∈ X(n → ∞). Then it follows

from the regularity of (X,F ,∆,≼) that there exists a subsequence {x2nk
} of {x2n} such that

x2nk
≼ x for all k. Thus, from the definition of α and η, we have α(x2nk

, x, t) ≤ η(x2nk
, x, t)

for all k ∈ N and t > 0. Therefore, the sequence {T 2nx0} is α-regular with respect to η. So the

conclusion follows from Theorem 2.2. The proof of the uniqueness is the same as the deductions

in Corollary 3.2.

3.3 Fixed point results under constraint inequalities in comparable

T -complete Menger PM-spaces for cyclic contractive mappings

Corollary 3.4. Let A1 and A2 be two nonempty T -closed subsets of a comparable T -complete

Menger PM-space (X,F ,∆min,≼) and ≼1 and ≼2 be two partial orders on X. Also, let

A,B,C,D : X → X and T : Y → Y be self-mappings, where Y = A1 ∪ A2. Suppose that the

following conditions are satisfied:
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(i) ≼i is F -regular, i = 1, 2, T is ≼-preserving, and T (A1) ⊂ A2, T (A2) ⊂ A1;

(ii) A, B and T are comparable T -continuous or C, D and T are comparable T -continuous;

(iii) there exists x0 ∈ TT , such that Ax0 ≼1 Bx0 and Cx0 ≼2 Dx0;

(iv) T is (A,B,C,D,≼1,≼2)-stable and T is (C,D,A,B,≼2,≼1)-stable;

(v) there exists h ∈ H(X) and φ ∈ Φ such that for (x, y) ∈ A1 ×A2,

Ax ≼1 Bx,Cy ≼2 Dy =⇒ φ(FTx,Ty(t)) ≤ h(x, y, t)φ(Mx,y(t)) for all t > 0,

where Mx,y(t) = min{Fx,y(t), [Fx,Tx ⊕ Fy,Ty](2t), [Fx,Ty ⊕ Fy,Tx](2t)}.
Suppose further that there exists z ∈ X, such that Az ≼1 Bz and Cz ≼2 Dz. Then the

sequence {Tnx0} converges to some x∗ ∈ A1 ∩A2, which is a unique solution to (1).

Proof. Since A1 and A2 be two nonempty T -closed subsets of a comparable T -complete Menger

PM-space (X,F ,∆min,≼), we have (Y,F ,∆min,≼) is comparable T -complete. Define the

mappings α, η : X ×X × (0,+∞) → [0,+∞) by

α(x, y, t) =

1, if (x, y) ∈ (A1 ×A2) ∪ (A2 ×A1),

3, otherwise,
t > 0

and

η(x, y, t) =

1, if (x, y) ∈ (A1 ×A2) ∪ (A2 ×A1),

2, otherwise.
t > 0

From (v) of Corollary 3.4 and the definition of α and η, we obtain that (v) of Theorem 2.1

holds.

Let (x, y) ∈ Y × Y such that α(x, y, t) ≤ η(x, y, t) for all t > 0. Then (x, y) ∈ (A1 × A2) ∪
(A2×A1). If (x, y) ∈ A1×A2, from (i) of Corollary 3.4, (Tx, Ty) ∈ A2×A1. If (x, y) ∈ A2×A1,

from (i) of Corollary 3.4, (Tx, Ty) ∈ A1 ×A2. Thus, (Tx, Ty) ∈ (A1 ×A2) ∪ (A2 ×A1), which

implies that α(Tx, Ty, t) ≤ η(Tx, Ty, t) for all t > 0, and so T is α-admissible with respect to

η.

Also, from (i) of Corollary 3.4, for any a ∈ A1, we have (a, Ta) ∈ A1 × A2, and thus

α(a, Ta, t) ≤ η(a, Ta, t) for all t > 0.

Finally, let x, y ∈ Fix(T ). It follows from condition (i) that x, y ∈ A1 ∩ A2, and thus for

any z ∈ Y , we have α(x, z, t) ≤ η(x, z, t) and α(y, z, t) ≤ η(y, z, t) for all t > 0. Also, note that

there exists z ∈ X, such that Az ≼1 Bz, Cz ≼2 Dz. This implies that assumption (H1) holds.

The conclusion follows from Theorem 2.3.

Corollary 3.5. Let A1 and A2 be two nonempty T -closed subsets of a comparable T -complete

Menger PM-space (X,F ,∆min,≼) and ≼1 and ≼2 be two partial orders on X. Also, let

A,B,C,D : X → X and T : Y → Y be self-mappings, where Y = A1 ∪ A2. Suppose that the

following conditions are satisfied:

(i) ≼i is F -regular, i = 1, 2, T is ≼-preserving, and T (A1) ⊂ A2, T (A2) ⊂ A1;

(ii) A and B or C and D are comparable T -continuous;

(iii) there exists x0 ∈ TT , such that Ax0 ≼1 Bx0 and Cx0 ≼2 Dx0;

(iv) T is (A,B,C,D,≼1,≼2)-stable and T is (C,D,A,B,≼2,≼1)-stable;
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(v) there exists h ∈ H(X) and φ ∈ Φ such that for x, y ∈ X,

Ax ≼1 Bx,Cy ≼2 Dy =⇒ φ(FTx,Ty(t)) ≤ h(x, y, t)φ(Mx,y(t)) for all t > 0,

where Mx,y(t) = min{Fx,y(t), [Fx,Tx ⊕ Fy,Ty](2t), [Fx,Ty ⊕ Fy,Tx](2t)}.
Suppose further that there exists z ∈ X, such that Az ≼1 Bz and Cz ≼2 Dz. Then the

sequence {Tnx0} converges to some x∗ ∈ A1 ∩A2, which is a unique solution to (1).

Proof. Define the mappings α, η : X × X × (0,+∞) → [0,+∞) as the ones in Corollary 3.4.

It follows from condition (v) of Corollary 3.5 that (vi) of Theorem 2.2 holds. By the proof

of Corollary 3.4, it is shown that α(a, Ta, t) ≤ η(a, Ta, t) for all a ∈ A1 and t > 0, and T is

α-admissible with respect to η.

Suppose that {x2n} satisfies that α(x2n, x2n+1, t) ≤ η(x2n, x2n+1, t) for all n ∈ N and t > 0

with x2n
T→ x ∈ X(n→ ∞). By the definition of α, we have

(x2n, x2n+1) ∈ (A1 ×A2) ∪ (A2 ×A1) for all n ∈ N.

Since (A1 ×A2) ∪ (A2 ×A1) is T -closed, we obtain

(x, x) ∈ (A1 ×A2) ∪ (A2 ×A1),

which implies that x ∈ A1 ∩ A2. From the definition of α, we get α(x2n, x, t) ≤ η(x2n, x, t) for

all n ∈ N and t > 0. Therefore, the sequence {T 2nx0} is α-regular with respect to η. It can be

similarly shown that assumption (H1) holds. So the conclusion follows from Theorem 2.3.

Remark 3.1. Setting ≼1=≼2, C = B and D = A in Theorem 2.1 (resp. Theorem 2.2,

Theorem 2.3), we can obtain some other corollaries. Furthermore, by setting ≼1=≼2, C = B

and D = A = IX , where IX denotes the identity mapping on X, we get the existence and

uniqueness results for common fixed points of the mappings B and T . For the sake of brevity,

we omit them here.

§4 Conclusions

Inspired by [1], we have introduced the concept of comparable T -completeness of an ordered

Menger PM-space, and utilized some functions to give a more generalized contractive condition

under constraints for the mapping T . Based on these, we have revisited problem (1) proposed

in [11], and have obtained some new results which guarantee the existence of the solution to

problem (1) under certain conditions.

Recently, many authors devoted themselves to studying problem (1) and other related ones,

such as best proximity point problems under constraint inequalities and so on. It would be

interesting to further consider relaxing assumptions to obtain more general results concerning

these problems in different types of spaces.
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