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Application of Bernstein polynomials for solving

Fredholm integro-differential-difference equations

Esmail Hesameddini Mehdi Shahbazi

Abstract. In this paper, the Bernstein polynomials method is proposed for the numerical

solution of Fredholm integro-differential-difference equation with variable coefficients and mixed

conditions. This method is using a simple computational manner to obtain a quite acceptable

approximate solution. The main characteristic behind this method lies in the fact that, on the

one hand, the problem will be reduced to a system of algebraic equations. On the other hand,

the efficiency and accuracy of the Bernstein polynomials method for solving these equations are

high. The existence and uniqueness of the solution have been proved. Moreover, an estimation

of the error bound for this method will be shown by preparing some theorems. Finally, some

numerical experiments are presented to show the excellent behavior and high accuracy of this

algorithm in comparison with some other well-known methods.

§1 Introduction

Applications of integral equations within applied mathematics and engineering problems

such as scattering in quantum mechanics, water waves and spatial-temporal development of an

epidemic become nowadays wide and flourishing [2, 6, 14, 24]. Many numerical methods have

been used for solving these equations such as Taylor matrix method [26], Legendre colloca-

tion method [10], Taylor polynomial solution [17], Newton-Tau numerical solution [13], He’s

homotopy perturbation method [20], Taylor collocation method [28], Chebyshev polynomial

method [1], Taylor collocation method [25], CAS wavelet operational matrix method [5], Leg-

endre wavelets operational method [22], Sinc-Galerkin Technique [23], the contraction principle

and quadrature formula [19] and so on. In recent years, Bernstein polynomials have been

extensively used for solving problems formulated by mixed Volterra–Fredholm integral equa-

tions [12], Fredholm and Volterra integral equations of the second kind [18], Volterra integral
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equations [3], Volterra–Fredholm integral equations [9] and system of Volterra–Fredholm inte-

gral equations [11]. In this work, we apply the Bernstein polynomials method for the following

form of Fredholm integro-differential-difference equation with variable coefficients
m∑

k=0

βk(x)u
(k)(x) +

n∑
j=0

γj(x)u
(j)(x− τ) = f(x) +

∫ b

a

K(x, t)u(t− τ)dt, (1.1)

for τ ≥ 0, n ≤ m. This equation is subjected to the following mixed conditions
m−1∑
k=0

[
ak,lu

(k)(a) + bk,lu
(k)(b) + ck,lu

(k)(c)
]
= dl, l = 0, 1, ...,m− 1, (1.2)

where f(x), α(x), βk(x), γj(x),K(x, t) are continuous functions and ak,l, bk,l, ck,l are appropri-

ate constants. Several numerical methods such as Legendre spectral collocation method [21],

Fibonacci collocation method [16], Boubaker polynomial bases method [27], Laguerre colloca-

tion method [8] and homotopy analysis method [15] were applied for solving this problem. In

this work, we will extend the Bernstein polynomials method to approximate the solution of this

equation. The properties of Bernstein polynomials are used to reduce the problem into a system

of algebraic equations. Some theorems were performed to show the existence and uniqueness

of the proposed method. Besides, an estimation of error bound for this method will be given.

The obtained upper bound for the error indicates the convergence of this algorithm. Finally, we

apply this method to several examples in order to show the efficiency of the presented method.

In Section 2, we will introduce the Bernstein polynomials and some of their properties. The

existence and uniqueness of the proposed method were performed by some theorems in Section

3. In Section 4, the method for approximating the solution of problem (1.1) with the mixed

conditions (1.2) will be discussed. Section 5 is devoted to the convergence analysis of this

method. Section 6 offers some numerical examples to illustrate the efficiency of this algorithm.

A brief conclusion is given in section 7.

§2 Preliminaries

In this section, we will introduce the Bernstein polynomials and explain some of their re-

quired properties .

Definition 2.1. [18] The well-known Bernstein polynomials of degree N are defined on the

interval [0, 1] as follows:

Br,N (x) =

(
N

r

)
xr(1− x)

N−r
, r = 0, 1, 2, ..., N. (2.1)

If r < 0 or r > N, then we let Br,N = 0. By using the binomial expansion (1 − x)N−r =∑N−r
i=0 (−1)i

(
N−r

i

)
xi, one obtains

Br,N (x) =
N−r∑
i=0

(−1)i
(
N

r

)(
N − r

i

)
xr+i, x ∈ [0, 1].

In order to use these polynomials on the interval [0, l] we define the Bernstein polynomials
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of degree N as follows:

Br,N (x) =

(
N

r

)
xr(l − x)

N−r

lN
, r = 0, 1, 2, ..., N. (2.2)

Using the binomial expansion (l − x)N−r =
∑N−r

i=0 (−1)i
(

N−r
i

)
lN−r−ixi, we get

Br,N (x) =

N−r∑
i=0

(−1)i
(
N

r

)(
N − r

i

)
xr+i

lr+i
, x ∈ [0, l].

Eq. (2.2) can be written as

BN (x) = [B0,N (x) B1,N (x)... Bn,N (x)] = X(x)DT , (2.3)

in which X(x) = [1 x x2... xN ], D =


d11 d12 d13 . . . d1N

d21 d22 d23 . . . d2N
...

...
...

. . .
...

dN1 dN2 dN3 . . . dNN

 and

dij =

{
(−1)j−i

lj

(
N
i

)(
N−i
j−i

)
for i ≥ j,

0 for i < j.
(2.4)

§3 The existence and uniqueness of solution

The main object of this section is to study existence and uniqueness of the solution of

problem (1.1) with the mixed conditions (1.2). Using the shooting method which required con-

verting a boundary value problem to an initial value problem [4], the existence and uniqueness

of solution will be discussed in the following theorems. Let

u(k)(a) = dk, k = 0, 1, ...,m− 1 (3.1)

Consider the Fredholm integro-differential-difference equation (1.1). Assume that f, βk, γj ∈
C[a, b], for k = 0, 1, ...,m, j = 0, 1, ..., n and K ∈ C[a, b]2. We define the following norm on

Cm−1[a, b] as follows:

∥u∥M = max
{
∥u∥∞, ∥u′∥∞, ...,

∥∥um−1
∥∥
∞

}
, (3.2)

where ∥.∥∞ is the uniform norm. To discuss about this concepts, at first we consider the

following theorem.

Theorem 3.1. Let u ∈ Cm[a, b], then u is a solution of problem (1.1) with the mixed conditions

(1.2) if and only if u is a solution of the following integral equation

u(x) =

m−1∑
k=0

dk
k!

(x− a)k −
∫ x

a

h
(
t, u, u′, ..., u(m−1), (Tu)(t)

)
(m− 1)!

dt, (3.3)

where (Tu)(x) =
∫ b

a
K(x, t)u(t− τ)dt, and

h
(
t, u, u′, ..., u(m−1), (Tu)(t)

)
=f(t)−

m−1∑
k=0

βk(t)u
(k)(t)−

n−1∑
j=0

γj(t)u
(j)(t− τ) + (Tu)(t).
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Proof. Since u ∈ Cm[a, b], so, using Taylor’s theorem, we have

u(x) =
m−1∑
k=0

dk
k!

(x− a)k +

∫ x

a

(x− t)m−1

(m− 1)!
dt. (3.4)

Suppose that u be a solution of problem (1.1) with the mixed conditions (1.2), then

u(x) =
m−1∑
k=0

dk
k!

(x− a)k +

∫ x

a

(x− t)m−1u(m)(t)

(m− 1)!
dt =

m−1∑
k=0

dk
k!

(x− a)k

+

∫ x

a

(x− t)m−1h
(
t, u, u′, ..., u(m−1), (Tu)(t)

)
(m− 1)!

dt. (3.5)

Thus, u satisfies the relation (3.3). To prove the other side, let u satisfies the relation (3.3),

then we have

u′(x) =

m−1∑
k=0

dk(x− a)k−1

(k − 1)!
+

∫ x

a

(x− t)m−2h
(
t, u, u′, ..., u(m−1), (Tu)(t)

)
(m− 2)!

dt,

u′′(x) =
m−1∑
k=0

dk(x− a)k−2

(k − 2)!
+

∫ x

a

(x− t)m−3h
(
t, u, u′, ..., u(m−1), (Tu)(t)

)
(m− 3)!

dt,

...

u(m)(x) = h
(
x, u, u′, ..., u(m−1), (Tu)(x)

)
. (3.6)

This implies that u satisfies Eq. (1.1). Direct substitution shows that y(k)(a) = dk for k =

0, 1, ...,m and the proof is completed.

Using theorem 3.1, to prove the existence and uniqueness of solution for problem (1.1) with

the mixed conditions (1.2), it is enough to discuss about the existence and uniqueness of solution

for the integral equation (3.3).

Theorem 3.2. (existence) Let f, βk, γj ∈ C[a, b], for k = 0, 1, ...,m, j = 0, 1, ..., n and K ∈
C[a, b]2, then for any ε > 0, there exists a solution for problem (3.1) and (3.3) as a function

u : [a,Ψ] −→ R, such that

Ψ = min

a+ ln

εm!

m−1∑
k=0

∥βk∥∞ +
n−1∑
j=0

∥γj∥∞ + (b− a) ∥K∥∞

 , b

 . (3.7)

Proof. Let

Ω =

{
u ∈ Cm−1[a, b] :

∥∥∥∥∥u−
m−1∑
k=0

dk
k!

xk −
∫ x

a

(x− t)m−1f(t)dt

∥∥∥∥
M

< ε

}
. (3.8)

Then, Ω is a closed subset of the Banach space of all (m−1) continuous differentiable functions

on [a, b] equipped with the norm (3.2). Since

u(x) =
m−1∑
k=0

dk
k!

xk −
∫ x

a

(x− t)m−1f(t)dt,
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is in Ω for x ∈ [a, b], then Ω ̸= ∅. Define the operator L on Ω as follows:

L[u](x) =
m−1∑
k=0

dk
k!

(x− a)k +

∫ x

a

(x− t)m−1h
(
t, u, u′, ..., u(m−1), (Tu)(t)

)
(m− 1)!

dt, (3.9)

then, Eq. (3.1) can be written as

L[u] = u. (3.10)

We show that Eq. (3.9) has a fixed point in Ω. Since f ∈ C[a, b],K ∈ C[a, b]2, then L is a

continuous function. To prove that L is self-mapping on Ω, one can write∣∣∣∣∣L[u](x)−
m−1∑
k=0

dk
k!

xk −
∫ x

a

(x− t)m−1f(t)dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ x

a

(x− t)m−1h
(
t, u, u′, ..., u(m−1), (Tu)(t)

)
(m− 1)!

dt −
∫ x

a

(x− t)m−1f(t)dt

∣∣∣∣
≤ (x− t)m

m!

m−1∑
k=0

∥βk∥∞ +
n−1∑
j=0

∥γj∥∞ + (b− a) ∥K∥∞

 ∥u∥M ≤ ε
∥∥∥u(k)

∥∥∥
∞

, (3.11)

for k = 0, 1, ...,m−1 and x ∈ [a, b]. we have
∥∥∥L[u](x)−∑m−1

k=0
dk

k! x
k −

∫ x

a
(x− t)m−1f(t)dt

∥∥∥ ≤ ε.

Thus, L[u] ∈ Ω if u ∈ Ω. This means that L maps Ω into itself. Based on the Banach’s fixed-

point theorem, the proof is completed.

Theorem 3.3. (uniqueness) Let f, βk, γj ∈ C[a, b] and K ∈ C[a, b]2. Then, problem (3.1) and

(3.3) has a unique solution if

(b− a)m
(∑m−1

k=0 ∥βk∥∞ +
∑n−1

j=0 ∥γj∥∞ + (b− a) ∥K∥∞
)

m!
< 1. (3.12)

Proof. Suppose that u1 and u2 are two solutions of problem (3.1) and (3.3), then we have

u1(x) =

m−1∑
k=0

dk
k!

(x− a)k +

∫ x

a

(x− t)m−1h
(
t, u1, u

′
1, ..., u

(m−1)
1 , (Tu1)(t)

)
(m− 1)!

dt,

and

u2(x) =

m−1∑
k=0

dk
k!

(x− a)k +

∫ x

a

(x− t)m−1h
(
t, u2, u

′
2, ..., u

(m−1)
2 , (Tu2)(t)

)
(m− 1)!

dt.

So, one can write∣∣∣h(t, u1, u
′
1, ..., u

(m−1)
1 , (Tu1)(t)

)
− h

(
t, u2, u

′
2, ..., u

(m−1)
2 , (Tu2)(t)

)∣∣∣
≤

∣∣∣∣∣
m−1∑
k=0

βk(x)
(
u
(k)
1 (x)− u

(k)
2 (x)

)∣∣∣∣∣+
∣∣∣∣∣∣
n−1∑
j=0

γj(x)
(
u
(j)
1 (x− τ)− u

(j)
2 (x− τ)

)∣∣∣∣∣∣
+

∣∣∣∣∣
∫ b

a

K(x, t)u(t− τ)dt

∣∣∣∣∣
≤ δ ∥u1 − u2∥M . (3.13)
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This implies that

|u1(x)− u2(x)| ≤

∫ x

a
(x− t)m−1

(∑m−1
k=0 ∥βk∥∞ +

∑n−1
j=0 ∥γj∥∞ + (b− a) ∥K∥∞

)
∥u1 − u2∥M

(m− 1)!

≤
(b− a)m

(∑m−1
k=0 ∥βk∥∞ +

∑n−1
j=0 ∥γj∥∞ + (b− a) ∥K∥∞

)
m!

∥u1 − u2∥∞ .

(3.14)

Thus, we have

∥u1 − u2∥∞ ≤
(b− a)m

(∑m−1
k=0 ∥βk∥∞ +

∑n−1
j=0 ∥γj∥∞ + (b− a) ∥K∥∞

)
m!

∥u1 − u2∥∞ . (3.15)

Since

(b− a)m
(∑m−1

k=0 ∥βk∥∞ +
∑n−1

j=0 ∥γj∥∞ + (b− a) ∥K∥∞
)

m!
< 1, (3.16)

therefore, u1 = u2 which completes the proof.

Using theorem 3.1, problem (1.1) with considering condition (3.1) has a unique solution.

To show the existence and uniqueness of solution for problem (1.1) with the mixed conditions

(1.2), it is enough to prove that the obtained solution of this equation satisfies the conditions

(1.2).

§4 Implementation of the method

In this section, the Bernstein polynomials method to approximate the solution of problem

(1.1) with the mixed conditions (1.2) will be discussed.

4.1 Function approximation

Any function u : [0, b] → R can be expand in the Bernstein basis as

uN (x) = BN (u(x)) =
N∑
r=0

u

(
br

N

)
Br,N (x− c), (4.1)

where, N is chosen as any positive integer such that N ≥ m, u
(
br
N

)
are unknown Bernstein

coefficients, 0 ≤ c ≤ b and Br,N (x) are the Bernstein basis polynomials of degree N described

in Section 3. Let ar = u
(
br
N

)
, then, Eq. (4.1) can be written in the following matrix form

BN (x− c)A =
N∑
r=0

arBr,N (x− c), x ∈ [0, b], (4.2)

where BN (x− c) = [B0,N (x− c) B1,N (x− c)... BN,N (x− c)] and A = [a0 a1... aN ]T .

Substituting (2.3) in (4.2), one obtains

uN (x) = BN (x− c)A = X(x− c)DTA, (4.3)
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where X(x− c) = [1 x− c (x− c)2 ... (x− c)N ] and D = (dij)(N+1)×(N+1), in which

dij =

{
(−1)j−i

bj

(
N
i

)(
N−i
j−i

)
for i ≤ j,

0 for i > j.

The k-order derivative X(x− c) is given by

X(k)(x− c) = X(x− c)(BT )k, (4.4)

where

BT =



0 1 0 . . . 0

0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . N

0 0 0 . . . 0

 .

for k = 0, 1, 2, ...,m. Substituting Eq. (4.4) in k-order derivative of Eq. (4.3), we get

u
(k)
N (x) = X(x− c)(BT )kDTA, (4.5)

Substituting x− τ instead of x in Eqs. (4.3) and (4.5), results in

uN (x− τ) = X(x− c)G(τ)DTA,

u
(k)
N (x− τ) = X(x− c)G(τ)(BT )kDTA, (4.6)

where

G(τ) =



(
0
0

)
(τ)0 −

(
1
0

)
(τ)1 . . . (−1)N

(
N
0

)
(τ)N

0
(
1
1

)
(τ)0 . . . (−1)N−1

(
N
1

)
(τ)N−1

...
...

. . .
...

0 0 . . .
(

N
N

)
(τ)0

 .

Collocating Eqs. (4.5) and (4.6) in the following points

xi = a+
b− a

N
i, i = 0, 1, ..., N, (4.7)

we get

u
(k)
N (xi) = X(xi − c)(BT )kDTA, (4.8)

uN (xi − τ) = X(xi − c)G(τ)DTA, (4.9)

u
(j)
N (xi − τ) = X(xi − c)G(τ)(BT )jDTA, (4.10)

for k = 0, 1, 2, ...,m and j = 0, 1, 2, ..., n, which can be written in the following matrix forms:

U(k) = X(BT )kDTA, (4.11)

U1 = XG(τ)DTA, (4.12)

U
(j)
1 = XG(τ)(BT )jDTA, (4.13)

where

X = [X(x0 − c) X(x1 − c) ... X(xN − c)]
T
,
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U(k) =
[
u
(k)
N (x0) u

(k)
N (x1) ... u

(k)
N (xN )

]T
,

U1 = [uN (x0 − τ) uN (x1 − τ) ... uN (xN − τ)]
T
,

U
(j)
1 =

[
u
(j)
N (x0 − τ) u

(j)
N (x1 − τ) ... u

(j)
N (xN − τ)

]T
.

4.2 Method of solution

Let us consider Eq. (1.1) as follows:

A(x) +B(x) = f(x) + C(x), (4.14)

where A(x) =
∑m

k=0 βk(x)u
(k)(x), B(x) =

∑n
j=0 γj(x)u

(j)(x − τ), and C(x) =
∫ b

a
K(x, t)u(t −

τ)dt. Since K(x, t) is a continuous function, so, ai(t − τ)iK(x, t) is Riemann integrable with

respect to t. Hence, using (4.6), C(x) can be written as

C(x) =

∫ b

a

K(x, t)u(t− τ)dt ≃
∫ b

a

K(x, t)X(x− c)G(τ)DTAdt = K(x)G(τ)DTA, (4.15)

where K(x) =
∫ b

a
K(x, t)X(x − c)dt = [k1(x) k2(x) ... kN (x)] . Collocating points (4.7) in Eq.

(4.15), result in

C =


C(x0)

C(x1)
...

C(xN )

 = KG(τ)DTA, K =


K(x0)

K(x1)
...

K(xN )

 . (4.16)

Setting the collocation points (4.7) in Eq. (4.14), one obtains

A(xi) +B(xi) = f(xi) + C(xi). (4.17)

So, we can write system (4.17) in the following matrix form
m∑

k=0

HU(k) +

n∑
j=0

LU
(j)
1 = F1 +C, (4.18)

where C is introduced in (4.16) and

H =


β(x0) 0 . . . 0

0 β(x1) . . . 0
...

...
. . .

...

0 0 . . . β(xN )

 , L =


γ(x0) 0 . . . 0

0 γ(x1) . . . 0
...

...
. . .

...

0 0 . . . γ(xN )

 ,

U
(j)
1 =


U (j)(x0 − τ)

U (j)(x1 − τ)
...

U (j)(xN − τ)

 , U(k) =


U (k)(x0)

U (k)(x1)
...

U (k)(xN )

 , F1 =


f(x0)

f(x1)
...

f(xN )

 ,

Substituting (4.11), (4.12),(4.13) and (4.16) in (4.18), results in
m∑

k=0

HX(BT )kDTA+
n∑

j=0

LXG(τ)(BT )jDTA−KG(τ)DTA = F1, (4.19)
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or  m∑
k=0

HX(BT )kDT +
n∑

j=0

LXG(τ)(BT )jDT −KG(τ)DT

A = F1. (4.20)

Let

[M1;F1] or M1A = F1, (4.21)

where M1 =
∑m

k=0 HX(BT )kDT +
∑n

j=0 LXG(τ)(BT )jDT − KG(τ)DT . Eq. (4.20) can be

writen as

[P1;F1] =



p0,0 p0,1 . . . p0,N ; f(x0)

p1,0 p1,1 . . . p1,N ; f(x1)

p2,0 p2,1 . . . p2,N ; f(x2)
...

...
. . .

...
...

pN−m,0 pN−m,1 . . . pN−m,N ; f(xN−m)

 ,

which corresponds to a system of (N − m + 1) linear algebraic equations with the unknown

coefficients ai, i = 0, 1, 2, ..., N −m + 1. Using the multipoint boundary conditions (1.2), the

following matrix is resulted{
m−1∑
k=0

[ak,lX(a) + bk,lX(b) + ck,lX(c)] (BT )kDT

}
A = dl, (4.22)

or

QlA = dl, l = 0, 1, 2, ...,m− 1, (4.23)

where Ql =
∑m−1

k=0 [ak,lX(a) + bk,lX(b) + ck,lX(c)] (BT )kDT = [ql,0, ql,1, ..., ql,N ]. Eventually,

replacing the row matrices (4.23) by the m rows of (4.21 ), we get

[M;F] or MA = F,

which corresponds to a system of (N + 1) linear algebraic equations. Then, this system can be

written as follows:

[M;F] =



p0,0 p0,1 . . . p0,N ; f(x0)

p1,0 p1,1 . . . p1,N ; f(x1)

p2,0 p2,1 . . . p2,N ; f(x2)
...

...
. . .

...
...

...

pN−m,0 pN−m,1 . . . pN−m,N ; f(xN−m)

q0,0 q0,1 . . . q0,N ; d0

q1,0 q1,1 . . . q1,N ; d1

q2,0 q2,1 . . . q2,N ; d2
...

...
. . .

...
...

...

qm−1,0 qm−1,1 . . . qm−1,N ; dm−1



. (4.24)

Solving (4.24), the unknown values of âk will be obtained, where, âk = uN

(
bk
N

)
, are the

approximate values of ak for k = 0, 1, 2, ..., N. Therefore, the approximate solution of Eq. (1.1)
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will be obtained in the following form:

BN (uN (x)) =
N∑

k=0

âkBk,N (x− c), 0 ≤ c ≤ b. (4.25)

§5 Convergence analysis

In this section, we will obtain an estimation of error bound for our numerical method. To do

this, we suppose that the infinity norm of a matrix A is defined by ∥A∥I = maxi
∑n

j=1 |aij |. The
sums of Bk,N can be estimated, in an elementary way, by means of the following expressions [7]:

TN,s :=
N∑

k=0

(k −Nx)sBk,N (x), x ∈ [0, 1], (5.1)

for N = 1, 2, ... and s = 0, 1, .... This relation can be written on the interval [a, b] as follows:

TN,s :=

N∑
k=0

((b− a)k − (a− x)N)sBk,N (x). (5.2)

Lemma 5.1. [7] If h (y) > 0 is bounded on [0, 1] and converges to zero with h, then for any

r = 0, 1, ..., uniformly in x, we have Nr
∑N

k=0 h
(∣∣ k

N − x
∣∣) ( k

N − x
)2r

Bk,N (x) −→ 0.

Therefore, the following result for h(y) > 0, a < y < b is concluded

Nr
N∑

k=0

h

(∣∣∣∣aN + (b− a)k

N
− x

∣∣∣∣)(
aN + (b− a)k

N
− x

)2r

Bk,N (x) → 0. (5.3)

At first, we perform a bound on supx∈[a,b] |u(x)−BN (u(x))| .

Theorem 5.2. Let u(x) is bounded on [a, b], differentiable in some neighborhood of x and has

the second derivative u′′(x) for some x ∈ [a, b]. If u(x) be the exact solution of problem (1.1)

with the mixed conditions (1.2) and BN (u(x)) be the Bernstein approximation of u(x), then

sup
x∈[a,b]

|u(x)−BN (u(x))| ≤ (b− a)2

8N
∥u′′∥∞. (5.4)

Proof. We can write

u(
aN + (b− a)k

N
− x) =u(x) +

(
aN + (b− a)k

N
− x

)
u′(x)

+

(
aN + (b− a)k

N
− x

)2 [1
2
u′′(x) + h(

aN + (b− a)k

N
− x)

]
, (5.5)

where h(y) := hx(y) is bounded for all y and converges to zero with y. This yields

BN (u(x)) =

N∑
k=0

u

(
a+

(b− a)k

N

)
Bk,N (x− c)

=u(x) +
1

2
u′′(x)TN,2(x) +N−2

N∑
k=0

((b− a)k − (a− x)N)
2

× h

(
aN + (b− a)k

N
− x

)
Bk,N (x− c). (5.6)
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Using (5.3), the last term does not exceed O( 1
N ), and then

|u(x)−BN (u(x))| ≤ 1

2
u′′(x)TN,2(x) ≤ (b− a)

(x− a)(b− x)

2N(b− a)
∥u′′∥∞

=
(x− a)(b− x)

2N
∥u′′∥∞ ≤ (b− a)2

8N
∥u′′∥∞, (5.7)

thus, supx∈[a,b] |u(x)−BN (u(x))| ≤ (b−a)2

8N ∥u′′∥∞.

Theorem 5.3. Consider the Fredholm integro-differential-difference equation (1.1) with vari-

able coefficients and mixed conditions (1.2). Let BN (u(x)) be the Bernstein approximation of

u(x) and BN (uN (x)) be the approximate solution of (1.1). Then,

sup
x∈[a,b]

|BN (u(x))−BN (uN (x))| ≤ k(M)
∥∥∥Â∥∥∥

I
O(ε), (5.8)

where k(M) is condition number of M and Â = [â0, â1, ..., âN ] be the solution of (4.24) computed

through our presented method.

Proof. We can write

|BN (u(x))−BN (uN (x))| =

∣∣∣∣∣
N∑

k=0

(ak − âk)Bk,N (x− c)

∣∣∣∣∣ ≤ sup
0≤k≤N

|ak − âk|
N∑

k=0

Bk,N (x− c),

(5.9)

where
∑N

k=0 Bk,N (x− c) = 1. This implies that

sup
x∈[a,b]

|BN (u(x))−BN (uN (x))| ≤ sup
0≤k≤N

|ak − âk|. (5.10)

Note that A = [a0 a1... aN ]
T

and Â = [â0 â1... âN ]
T

are the exact and approximate solu-

tions of MA = F, respectively. Also, suppose that the perturbation matrix E is such that

(M+E) Â = F. It can be shown that
∥∥∥A− Â

∥∥∥
I
≤ k(M)

∥E∥I

∥M∥I

∥∥∥Â∥∥∥
I
. It is known that the

Gaussian elimination with partial pivoting is almost numerically stable. Therefore, if we use

this method for solving the linear system MA = F, then
∥E∥I

∥M∥I
is close to the machine precision

ε. This implies that ∥∥∥A− Â
∥∥∥
I
≤ k(M)

∥∥∥Â∥∥∥
I
O(ε). (5.11)

Using relations (4.12) and (5.11), one obtains

sup
x∈[a,b]

|BN (u(x))−BN (uN (x))| ≤ k(M)
∥∥∥Â∥∥∥

I
O(ε), (5.12)

and the proof is completed.

Theorem 5.4. Consider the assumptions of Theorems 5.2 and 5.3. Then, we have the following

error estimation

sup
x∈[a,b]

|u(x)−BN (uN (x))| ≤ (b− a)2

8N
∥u′′∥∞ + k(M)

∥∥∥Â∥∥∥
I
O(ε). (5.13)

Proof. The triangle inequality implies that

sup
x∈[a,b]

|u(x)−BN (uN (x))| ≤ sup
x∈[a,b]

|u(x)−BN (u(x))|+ sup
x∈[a,b]

|BN (u(x))−BN (uN (x))| .

(5.14)
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According to Theorems 5.2 and 5.3, the purpose is achieved.

§6 Numerical examples

In this section, we will apply the Bernstein polynomials method (BPM) on some examples

and compare the quality of the computed solutions with the solutions obtained by some other

efficient methods. In order to show the error, we introduce the notations αN = (b−a)2

8N , eN (x) =

|u(x)−BN (uN (x))|, ∥eN∥2 =
(∫ b

a
e2N (x)dx

) 1
2

and ∥ηN∥ = supx∈[a,b] |u(x)−BN (uN (x))|, where
u(x) and BN (uN (x)) are the exact solution and the solution obtained by presented method,

respectively. Also, we use the notation k(M) which was defined in Section 5. In all examples,

the computing times (CPUs) in seconds to obtain the numerical solutions BN (uN (x)) are also

given.

Example 1. [21] Consider the following integro-differential-difference equation with variable

coefficients

u′′′(x)− xu′(x) + u′′(x− 1)− xu(x− 1) = f(x) +

∫ 1

−1

u(t− 1)dt, (6.1)

subject to the initial conditions u(0) = 0, u′(0) = 1 and u′′(0) = 0, where f(x) = −(x +

1)(sin(x − 1) + cos(x)) − cos(2) + 1. The exact solution of this equation is u(x) = sin(x). We

implement the suggested method with different values of N and approximate the solution of

(4.25) for c = 0. Tables 1, 2 and Figure 1 show the numerical results for this example. Table

1 compares the approximate solution by BPM with the Legendre spectral collocation method

(LSCM) [21] and the Fibonacci collocation method (FCM) [16]. The outcomes reveal that the

results by our method are very promising and superior to LSCM and FCM. From Table 2, we

conclude that Theorem 5.4 can be applied to this example. Figure 1 depicts the absolute errors

of our method with N = 6 and 7. One can see that, as N is increased, the error is decreased.

Table 1. Comparison of the approximate solutions of u(x) for Example 1.

x Exact BPM LSCM [21] FCM [16]
solution N = 6 N = 7 M = 6 M = 7 N = 8 N = 9

-1 -0.841471 -0.841319 -0.841427 -0.866814 -0.83644 -1.114125 -3.078521
-0.8 -0.717356 -0.717330 -0.717352 -0.729305 -0.71498 -0.869866 -1.875847
-0.6 -0.564642 -0.564551 -0.564637 -0.569211 -0.563732 -0.633677 -1.054038
-0.4 -0.389418 -0.389372 -0.389402 -0.390626 -0.389177 -0.4110374 -0.5333391
-0.2 -0.198569 -0.198455 -0.198567 -0.198802 -0.198643 -0.2014897 -0.2163871
0 0 0 0 0 0 0 0
0.2 0.198569 0.198455 0.198567 0.198769 0.19865 0.2016525 0.2155338
0.4 0.389418 0.389372 0.389402 0.390107 0.389294 0.4137037 0.5200945
0.6 0.564642 0.564551 0.564637 0.566704 0.564314 0.6476974 0.9903835
0.8 0.717356 0.717330 0.717352 0.721914 0.716785 0.9164897 1.689322
1 0.841471 0.841319 0.841427 0.850444 0.840739 1.235210 2.667579
∥ηN∥ 0 5.439E−4 4.703E−5 2.53434E−2 5.03053E−3 3.937393E−1 2.23705E−0
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Table 2. Numerical results for Example 1.

N αN k(A) ∥eN∥2 O(ε) CPUs
6 0.0833 53.729 4.911E−4 6.2189E−6 3.2743
7 0.0714 73.103 1.649E−5 1.3928E−8 5.1047
8 0.0625 96.922 1.203E−6 6.9103E−9 6.2448
9 0.0555 138.27 9.769E−8 5.2018E−10 8.0830

Figure 1. Plot of the absolute errors by presented method with N = 6, 7 in Example 1.

Example 2. [27] Consider the following integro-differential-difference equation with variable

coefficients

(x+ 4)2u′′(x)− (x+ 4)u′(x) + u(x− 1)− u′(x− 1) = f(x) +

∫ 1

−1

u(t)dt, (6.2)

subject to the initial conditions u(0) = ln(4) and u′(0) = 1
4 , where f(x) = ln(x + 3) − 1

x+3 +

3 ln(3)−5 ln(5). The exact solution of this equation is u(x) = ln(x+4). The numerical results for

this example are displayed in Tables 3, 4 and Figure 2. A comparison between the approximate

solutions of BPM, LSCM [21] and Boubaker polynomial method (BOPM) [27] are presented in

Table 3. From Table 4, we conclude that Theorem 5.4 can be applied to this example. The

absolute errors of this method is depicted in Figure 2 with N = 6 and 7. It is seen that, as N

is increased, the error is decreased and the accuracy increases as well. Therefore, our method

for solving this problem is very effective and more accurate with respect to LSCM and BOPM.

Example 3. [8] Consider the following integro-differential-difference equation with variable

coefficients

u′′(x)− xu′(x) + xu(x)− u′(x− 1) + u(x− 1) = f(x) +

∫ 1

−1

(3t− 2x)u(t)dt, (6.3)

subject to the initial conditions u(0) = 1 and u′(0) = 0, where f(x) = x(sin(x) + cos(x)) −
cos(x)+sin(x−1)+cos(x−1)+4xsin(1). The exact solution of this equation is u(x) = cos(x).

The numerical results for this example are displayed in Table 5, 6 and Figure 3. Table 5 exhibits

the approximate solutions for BPM, LSCM [21] and Laguerre collocation method (LCM) [8].

From Table 6, we conclude that Theorem 5.4 can be applied to this example. The absolute
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Table 3. Comparison of the approximate solutions of u(x) for Example 2.

x Exact BPM LSCM [21] BOPM [27]
solution N = 6 N = 7 M = 6 M = 7 N = 6 N = 7

-1 1.09861 1.09861 1.09861 1.09861 1.09861 1.098596 1.098657
-0.9 1.1314 1.1314 1.1314 1.1314 1.1314 1.131387 1.131431
-0.8 1.16315 1.16315 1.16315 1.16315 1.16315 1.163138 1.163173
-0.7 1.19392 1.19392 1.19392 1.19392 1.19392 1.193911 1.193937
-0.6 1.22378 1.22378 1.22378 1.22378 1.22378 1.223766 1.223787
-0.5 1.25276 1.25276 1.25276 1.25276 1.25276 1.252755 1.252771
-0.4 1.28093 1.28093 1.28093 1.28093 1.28093 1.280928 1.280939
-0.3 1.30833 1.30833 1.30833 1.30833 1.30833 1.308329 1.308336
-0.2 1.335 1.335 1.335 1.335 1.335 1.335 1.335001
-0.1 1.36098 1.36098 1.36098 1.36098 1.36098 1.360976 1.360977
0 1.38629 1.38629 1.38629 1.38629 1.38629 1.386294 1.386294
∥ηN∥ 0 3.1525E−7 4.2922E−8 5.86528E−7 1.77093E−6 1.66E−5 4.50E−5

Table 4. Numerical results for Example 2.

N αN k(A) ∥eN∥2 O(ε) CPUs
5 0.1 21.139 4.2015E−8 2.1760E−6 2.1649
6 0.0833 48.046 8.1038E−9 3.3605E−7 4.0137
7 0.0714 63.274 6.3391E−10 1.8214E−9 6.2703
8 0.0625 85.291 7.7344E−11 9.2264E−10 7.7394

Figure 2. Plot of the absolute errors by presented method with N = 6, 7 in Example 2.

errors of this method is depicted in Figure 3 with N = 6 and 7. From these results, it is evident

that the presented method provides a good approximate solution in comparison with LSCM

and LCM.
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Table 5. Comparison of the approximate solutions of u(x) for Example 3.

x Exact BPM LSCM [21] LCM [8]
solution N = 6 N = 7 M = 6 M = 7 N = 12 N = 12,M = 15

0 1 1 1 1 1 0.999999 1
0.1 0.995004 0.995004 0.995004 0.995004 0.995004 0.996593 0.996600
0.2 0.980067 0.980067 0.980067 0.980066 0.980066 0.986641 0.986365
0.3 0.955336 0.955336 0.955336 0.955333 0.955334 0.969544 0.969444
0.4 0.921061 0.921061 0.921061 0.921052 0.921057 0.946139 0.946036
0.5 0.877583 0.877583 0.877583 0.877566 0.877577 0.916382 0.916381
0.6 0.825336 0.825336 0.825336 0.825314 0.825328 0.880504 0.880768
0.7 0.764842 0.764842 0.764842 0.764827 0.76483 0.838776 0.839522
0.8 0.696707 0.696707 0.696707 0.696723 0.696685 0.791509 0.793010
0.9 0.62161 0.62161 0.62161 0.621705 0.62161 0.739046 0.741629
1 0.540302 0.540302 0.540302 0.540552 0.540205 0.681764 0.685810
∥ηN∥ 0 5.2805E−7 9.1044E−8 2.50083E−4 9.68491E−5 1.4146E−2 2.023575E−3

Table 6. Numerical results for Example 3.

N αN k(A) ∥eN∥2 O(ε) CPUs
6 0.0833 39.576 1.0385E−8 6.2047E−9 3.7728
7 0.0714 57.422 3.6041E−8 1.0225E−10 5.8407
10 0.05 154.02 6.7714E−11 3.3197E−14 8.4226
12 0.0416 183.69 2.1437E−13 1.5581E−15 10.493

Figure 3. Plot of the absolute errors by presented method with N = 6, 7 in Example 3.

Example 4. [15] Finally, consider the following integro-differential-difference equation with

variable coefficients

u′′(x) + xu′(x) + xu(x) + u′(x− 1) + u(x− 1) = f(x) +

∫ 0

−1

tu(t− 1)dt, (6.4)

with conditions

u(0) = 1, u′(0) = −1,

where f(x) = e−x + e. The exact solution of this equation is u(x) = e−x. Tables 7, 8, 9 and

Figure 4 display the numerical results for this example. Tables 7 and 8 show the approximate

solutions and absolute errors of BPM, LSCM [21] and the homotopy analysis method (HAM)

[15], respectively. From Table 9, we conclude that Theorem 5.4 can be applied to this example.

Figure 4 depicts the absolute errors of our method with N = 9 and 10. So, not only because
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of its performance in providing more efficient results, but also because of its efficiency and

accuracy, our method is preferable.

Table 7. Comparison of the approximate solutions of u(x) for Example 4.

x Exact BPM LSCM [21] HAM [15]
solution N = 9 N = 10 M = 10 M = 12 m = 10 m = 15

-1 2.71828 2.71828 2.71828 2.71874 2.71832 2.71636 2.71821
-0.8 2.22554 2.22554 2.22554 2.22572 2.22556 1.82165 1.82210
-0.6 1.82212 1.82212 1.82212 1.82216 1.82212 1.82165 1.82210
-0.4 1.49182 1.49182 1.49182 1.49182 1.49182 1.49170 1.49182
-0.2 1.2214 1.2214 1.2214 1.2214 1.2214 1.22140 1.22140
0 1 1 1 1 1 1 1

Table 8. Comparison of the absolute errors for Example 4.

x BPM LSCM [21] HAM [15]
N = 9 N = 10 M = 10 M = 12 m = 10 m = 15

-1 5.7163E−6 1.3246E−6 4.58316E−4 3.88267E−5 1.92193E−3 7.42184E−5
-0.8 4.4159E−6 1.0190E−7 1.80503E−4 1.52916E−5 1.06345E−3 4.07102E−5
-0.6 1.1415E−7 9.1437E−8 4.38150E−5 3.71185E−6 4.71496E−4 1.54921E−5
-0.4 3.9057E−7 7.4491E−8 3.97513E−6 3.36791E−7 1.2820E−4 4.40566E−7
-0.2 4.2957E−7 1.3824E−8 6.31221E−6 5.34763E−7 3.25198E−4 2.57853E−6
0 0 0 0 0 0 0

Table 9. Numerical results for Example 4.

N αN k(A) ∥eN∥2 ∥ηN∥ O(ε) CPUs
9 0.0138 132.81 6.3810E−7 5.7163E−6 7.0338E−11 7.2053
10 0.0125 158.30 1.1143E−7 1.3246E−6 3.2905E−13 8.5270
12 0.0104 194.58 6.7013E−10 8.2033E−9 2.9461E−15 10.143
15 0.0083 244.69 9.5582E−13 7.7233E−11 4.4296E−17 12.079

Figure 4. Plot of the absolute errors by presented method with N = 9, 10 in Example 4.



Esmail Hesameddini, Mehdi Shahbazi. Application of Bernstein polynomials for solving... 491

§7 Conclusion

In this paper, the Bernstein polynomials method was applied to obtain the numerical so-

lutions of Fredholm integro-differential-difference equation with variable coefficients and mixed

conditions. The properties of Bernstein polynomials were used to convert the equation into

a system of algebraic equations which could be solved more easily. Some theorems were per-

formed to show the existence, uniqueness and the convergence analysis of this method. The

obtained results showed that the Bernstein polynomials method for solving Fredholm integro-

differential-difference equation with variable coefficients and mixed conditions was very effective

and simple with a high accuracy with respect to some other well-known methods such as Fi-

bonacci collocation method, Legendre spectral collocation method, Boubaker polynomial bases

method, Laguerre collocation method and homotopy analysis method.
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