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A generalized Liouville’s formula

MA Wen-Xiu1,2,3,4 YONG Xue-lin3,5 QIN Zhen-yun6
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Abstract. A generalized Liouville’s formula is established for linear matrix differential equa-

tions involving left and right multiplications. Its special cases are used to determine the localness

of characteristics of symmetries and solutions to Riemann-Hilbert problems in soltion theory.

§1 Introduction

Lax pairs play a key role in solving soliton equations [1]. A Lax pair consists of two matrix

spectral problems

Φx = U(u, λ)Φ, Φt = V (u, λ)Φ,

where U and V are two square matrices depending on the potential u and the spectral parameter

λ [2]. The compatibility condition of the Lax pair is the zero curvature equation

Ut − Vx + [U, V ] = 0,

which presents a so-called soliton equation.

The modern Riemann-Hilbert method in soliton theory [3] uses an equivalent Lax pair [4]

Ψx = iλ[Λ,Ψ] +Q(u, λ)Ψ, Ψt = iλm[Λ,Ψ] + P (u, λ)Ψ,

where i is the imaginary unit, m is a natural number, Λ is a constant diagonal matrix, and

tr(Q) = tr(P ) = 0. A property that detΨ is independent of x and t is needed in solving a

related Riemann-Hilbert problem, which determines N -soliton solutions to the resulting soliton

equation [3].

In this letter, we would like to explore a more general result on the derivative of detΨ,

which constitutes a generalized Liouville’s formula. One specific case can be used to prove the

localness of characteristics of symmetries of soliton hierarchies, and another can be used in

determining solutions to the associated Riemann-Hilbert problems.
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§2 Generalized Liouville’s formula

We present a general result on the derivative of the determinant of a matrix which solves a

linear matrix differential equation involving left and right multiplications.

Theorem 2.1. Let µ, A and B be square matrices depending on x. If µ satisfies a linear

matrix differential equation

µx = Aµ+ µB, (2.1)

then we have

(detµ)x = [tr(A) + tr(B)] detµ, (2.2)

and thus

detµ(x) = e
∫ x
x0

[tr(A(x′))+tr(B(x′))] dx′
detµ(x0), (2.3)

where x0 ∈ R is a given initial point.

Proof: Assume that

µ = (µjk)n×n = (µ1, µ2, · · · , µn), B = (bjk)n×n = (b1, b2, · · · , bn),
where n is a natural number, and µj and bj (1 ≤ j ≤ n) are the j-th columns of µ and B,

respectively. Let us denote the (j, k) cofactor of µ by Mjk, where 1 ≤ j, k ≤ n. Then, we have

n∑
j=1

µjkMjl =
n∑

j=1

µkjMlj =

 0, if 1 ≤ k ̸= l ≤ n,

detµ, if 1 ≤ k = l ≤ n.
(2.4)

On one hand, from µx = Aµ+ µB, we get

µj,x = Aµj + µbj , 1 ≤ j ≤ n.

Thus, we can compute that

(detµ)x =

n∑
j=1

|µ1, · · · , µj−1, µj,x, µj+1 · · · , µn|

=
n∑

j=1

|µ1, · · · , µj−1, Aµj + µbj , µj+1, · · · , µn|

=
n∑

j=1

|µ1, · · · , µj−1, Aµj , µj+1, · · · , µn|

+

n∑
j=1

|µ1, · · · , µj−1, µbj , µj+1, · · · , µn|. (2.5)

On the other hand, noting

Aµj = (
n∑

k=1

a1kµkj , · · · ,
n∑

k=1

ankµkj)
T , 1 ≤ j ≤ n,

µbj = (
n∑

k=1

µ1kbkj , · · · ,
n∑

k=1

µnkbkj)
T , 1 ≤ j ≤ n,

where A = (ajk)n×n is assumed, we can compute by the Laplace expansion of a determinant
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along a column that
n∑

j=1

|µ1, · · · , µj−1, Aµj , µj+1, · · · , µn| =
n∑

j=1

n∑
l=1

( n∑
k=1

alkµkj

)
Mlj

=
n∑

j,k,l=1

alkµkjMlj =
n∑

k,l=1

alk

n∑
j=1

µkjMlj

=
n∑

k=1

akk detµ = tr(A) detµ, (2.6)

and
n∑

j=1

|µ1, · · · , µj−1, µbj , µj+1, · · · , µn| =
n∑

j=1

n∑
l=1

( n∑
k=1

µlkbkj

)
Mlj

=
n∑

j,k,l=1

µlkbkjMlj =
n∑

j,k=1

bkj

n∑
l=1

µlkMlj

=
n∑

j=1

bjj detµ = tr(B) detµ, (2.7)

where (2.4) has been used twice. Now the results in the theorem follow immediately from (2.5),

(2.6) and (2.7). The proof is finished. �
We remark that alternatively, the derivative formula for a determinant, (2.2), can be proved

through using Jacobi’s formula (see, e.g., [5]):

(detµ)x = tr(adj(µ)µx), (2.8)

where adj(µ) is the adjugate of µ (i.e., the transpose of its cofactor matrix).

It is also interesting to note that solutions to the linear matrix differential equation (2.1)

can be decomposed as follows:

µ = µaνµb, (2.9)

where ν is an arbitrary constant square matrix, and µa and µb solve the two special linear

matrix differential equations

µa,x = Aµa, µb,x = µbB, (2.10)

respectively. Actually, a solution µ(x) to (2.1) with an initial condition µ(x0) = µ0 can be

written as µa(x)µ0µb(x), if one takes µa(x0) and µb(x0) to be the identity matrix.

§3 Special cases

We present a few applications of Theorem 2.1 to special cases.

Firstly, a direct result follows, when one of the two matrices A and B in Theorem 2.1 is

zero.

Proposition 3.1. Let µ and A be square matrices depending on x. If µx = Aµ or µx = µA,

then (detµ)x = tr(A) detµ.
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The first half in the above proposition yields Liouville’s formula (see, e.g., [6]):

detµ(x) = e
∫ x
x0

tr(A(x′)) dx′
detµ(x0), x0 ∈ R. (3.1)

That is why we call the formula (2.3) a generalized Liouville’s formula.

A natural consequence that follows from Liouville’s formula is Abel’s identity. Let y1 and

y2 solve an ordinary differential equation of second order:

yxx + pyx + qy = 0,

where p and q are two functions of x. Then we have Abel’s identity

W (x) = W (x0)e
−

∫ x
x0

p(x′) dx′
, x0 ∈ R, (3.2)

where W (x) is the Wronskian of y1 and y2:

W (x) =

∣∣∣∣∣∣
y1 y2

y1,x y2,x

∣∣∣∣∣∣ .
This is because  y1 y2

y1,x y2,x


x

=

 0 1

−q −p

 y1 y2

y1,x y2,x

 .

Secondly, we prove the following result originated in soliton theory.

Proposition 3.2. Let µ,A and B be square matrices depending on x. If µx = [A,µ] + Bµ,

then (detµ)x = tr(B) detµ.

Proof: Since we have

µx = [A,µ] +Bµ = (A+B)µ− µA,

it follows from Theorem 2.1 that

(detµ)x = [tr(A+B)− tr(A)] detµ = tr(B) detµ,

which completes the proof. �
In particular, if B = 0, then we have (detµ)x = 0, which is widely used to prove localness

of characteristics of symmetries in a soliton hierarchy (see, e.g., [7]- [10]).

Also, if tr(B) = 0, then we still have (detµ)x = 0, which is crucially used in determining

solutions to the associated Riemann-Hilbert problems in soliton theory (see, e.g., [3]).
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