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Enhanced optimal delaunay triangulation methods with

connectivity regularization
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Abstract. In this paper, we study the underlying properties of optimal Delaunay triangulations
(ODT) and propose enhanced ODT methods combined with connectivity regularization. Based
on optimizing node positions and Delaunay triangulation iteratively, ODT methods are very
effective in mesh improvement. This paper demonstrates that the energy function minimized
by ODT is nonconvex and unsmooth, thus, ODT methods suffer the problem of falling into
a local minimum inevitably. Unlike general ways that minimize the ODT energy function in
terms of mathematics directly, we take an outflanking strategy combining ODT methods with
connectivity regularization for this issue. Connectivity regularization reduces the number of
irregular nodes by basic topological operations, which can be regarded as a perturbation to help
ODT methods jump out of a poor local minimum. Although the enhanced ODT methods cannot
guarantee to obtain a global minimum, it starts a new viewpoint of minimizing ODT energy
which uses topological operations but mathematical methods. And in terms of practical effect,
several experimental results illustrate the enhanced ODT methods are capable of improving the

mesh furtherly compared to general ODT methods.

Nowadays, with the fast development of information technology, computer simulation casts
an increasingly important role in many fields, such as finite element analysis, game physics
engine, geographic information system, and so on. And mesh is the foundation for most of the
computing tasks. There are many works for generating meshes and optimizing meshes [1], [2],
[3], [4], [5], [6], [7], [8], [9]. Among these, the variational meshing methods based on energy
function minimization have attracted more and more attention recently [10], [11], [12], [13], [14],
due to the excellent performances in both mesh generation and mesh improvement. The concept
of optimal Delaunay triangulation (ODT) is introduced by Jin and Chen [13] first and they
prove that ODT methods obtain an optimal mesh by minimizing the linear interpolation error
[14]which is called the ODT energy. Though ODT methods are very effective in improving the
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quality of bad elements [15], it is not easy to obtain its optimal solution of ODT energy function.
Driven by this problem, we propose an outflanking strategy, which combines ODT methods
with connectivity regularization and makes connectivity regularization serve as a perturbation
to help ODT methods jump out of a poor local minimum.

The ODT energy function is usually a very complicated form and related to the node position
and mesh topology. There are no ODT methods that can optimize the node position and mesh
connectivity at the same time. Jin and Chen [13] prove that the ODT energy function attains
its minimum when the mesh is the Delaunay triangulation for a fixed number of nodes. Hence,
they present a typical solution to minimize the ODT energy function by optimizing the mesh
topology and node positions iteratively. Since there are many algorithms and open sources to
obtain a Delaunay triangulation [7], [16], it is easy to optimize the mesh topology. However,
minimizing the ODT energy is difficult. Chen [14] present some local relaxation methods that
move only one node at a time. These methods are easy to fall into a local optimum. Alliez
et al. [15] move all the nodes simultaneously, but this method cannot guarantee to decrease
the energy. To jump out of local optima, Chen et al. [17] combine edge flip with ODT. Chen
and Holst [11] present a global method using Newton’s method. They prove that the method
converges faster and can obtain a better mesh, but this method is not suitable for largescale
problems and still suffers the problem of falling into poor local optima. Chen et al. [18] apply
a quasi-Newton method. Nevertheless, since the ODT energy function is nonconvex, any local
search method inevitably falls into a local optimum. There are some works [18], [19] combining
a perturbation scheme to avoid this problem. But if the magnitude of random perturbation is
too small, the method will roll back to the same local minimum, if the magnitude of random
perturbation is too large, the method would amount to restarting optimization with a random
initialization.

Our work demonstrates that even if the optimal node positions can be obtained under any
fixed mesh topological connection, we cannot know whether the node positions correspond to
the global minimum. Consequently, ODT methods still suffer the problem of falling into a local
minimum by optimizing the mesh topology and node positions iteratively. ODT methods tend
to equally distribute the edge lengths, thereby, generate regular meshes [20], [21]. Obviously,
a triangular mesh where all elements are regular triangles and valences of all nodes within
boundaries are 6 is the typical high-quality mesh. Based on this observation, we start another
viewpoint that focuses on the combination of connectivity regularization with ODT rather
than the iterative scheme to minimize the ODT energy function itself through mathematical
methods. As a further development of ODT methods, the proposed methods edit the node
connectivity directly, which is very different from the previous works.

The rest of the paper is organized as follows. In Section 2, we briefly review the optimal
Delaunay triangulations and the class of ODT methods. And then we demonstrate that the
ODT energy function is nonconvex and unsmooth with a simple case, and even if the optimal
node position can be obtained under any fixed mesh topological connection, it still suffers the
problem of falling into a local minimum by optimizing the mesh topology and node positions
iteratively. In Section 3, we specify the connectivity regularization to reduce the irregular
nodes by basic topological operations. And under an outflanking strategy, the enhanced ODT
methods are proposed by introducing the connectivity regularization into ODT methods. In
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Section 4, some examples including uniform meshes and graded meshes are tested with the
proposed enhanced ODT methods to show its effectiveness. Section 5 is the conclusive part of
this paper.

§1 Revisiting Optimal Delaunay Triangulations

ODT methods are very effective in mesh generation and mesh improvement, but they may
suffer the problem of getting stuck in the local optimal solution.

1.1 The concept of ODT

ODT is an optimization-based approach in terms of linear interpolation error for a given
function f(z)=||z||%. Let X be a set of nodes in a convex domain 2 and T be a triangulation
of X.

Then we can obtain another set of nodes Xi(x, ||x||?) by lifting up the X to the function
f(z). Let fi(x) be the piecewise linear nodal interpolant of X; based on T', as shown in Figure
1. And the ODT energy function is defined as the L! norm of the interpolation error of f(x)
by fi(x), as the one bellow:

Fopr(X,T) = /Q 1 fa(e) — £(@)llde. (L1)

Figure 1. Illustration of the ODT energy.

The ODT energy function is related to the node position and mesh topological connection,
and it is very difficult to optimize the node position and mesh topology connection at the same
time. Chen [13] prove that the ODT energy function attains its minimum when the mesh is the
Delaunay triangulation for a given number of fixed nodes. Hence, he decomposes it into two
sub-problems: solving Fopr(X,T) with the location of nodes fixed, and solving Eopr(X,T)
with the connectivity of vertices fixed. Constructing a Delaunay triangulation for a given set of
nodes have been well studied [6], [7], [8] hence the focus of most ODT methods is on optimizing
the node positions.
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More general, as for graded meshes, the function of interpolation error can be defined with
incorporating a density function p(z),

Eopr(X,T) = /Q 1f1(z) = f ()]l p(x)da. (1.2)

1.2 Methodology of ODT

For the application to mesh improvement, ODT methods can be classified into local and
global classes. The local methods are easy to implement. The global methods are more effec-
tive but have heavier time cost. The differences among ODT methods are the way to solve
Eopr(X,T).

Local methods. Considering moving only one node x; at one time, we calculate the
derivative of Eopr(X,T) and make it equal to 0. Chen and Holst [20] give the following
formula to update the node position,

" 1
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where T} represents a triangle and || * || represents the area operation. And ; is the first-ring

T;(@)ID), (1.3)

neighbours of the vertex z;.Alliez et al.[15] simplify the Eq. 3 and presented a more commonly
used equation, as bellowing;:

v = 2 @Im@. (14)

T;€9;
where ¢; is the circumcentre of T;. Namely for an ODT, each interior vertex z; is a weighted
centroid of circumcentres of simplices in the star shape of x;. There are also some other
modifications [21], nevertheless, they all move a node by considering the information of its

first-ring neighbours.

Global methods. Global methods move all nodes simultaneously to minimize the Fopr(X,T).

As an optimization problem, there are many practical ways to solve it [22]. Chen and Holst
[11] adopt Newton’s method, and showe that global methods can obtain a better mesh than
local methods. Chen et al. [18] propose to apply a quasi-Newton method. However, since
Eopr(X,T) is nonconvex, any local search method inevitably falls into a local optimum. We
will show the nonconvex of Eopr(X,T) in the next section and demonstrate that even if the
optimal node position can be obtained under any fixed mesh topological connection, it still
suffers the problem of falling into a local minimum by optimizing the mesh topology and vertex
positions iteratively.

As for surface meshes, ODT methods are implemented through reprojecting nodes [15] or
suboptimal methods [23] , and Feng et al. [24] make ODT methods appropriate for surface
curved triangulations which are different from the linear discretization we talk about. For 3D
cases, Gao et al. extend ODT to tetrahedral meshes [25] .
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@ (b) (©) @
Figure 2. The example of 11 nodes and its corresponding ODT energy.(a) The example of 11
nodes; (b) and (c) Delaunay triangulations of the 11 nodes; (d) The corresponding energy.

1.3 The property of the ODT energy and limitation of the ODT meth-
ods

Eopr is related to the mesh topology and node positions. Although it is difficult to fully
study the underlying mathematical property of this function rigorously, we compute the Fopr
functions of plenty of triangulations to seek the rules. Herein, we use one example partly with
a simple 2D triangulation of eleven nodes for demonstration. In this example, we move a node
along a straight line parameterized by t as shown in Figure 2a. In Figure 2a, the red node is
inserted within the envelope of the ten blue nodes. A Delaunay triangulation is constructed
using the ten fixed nodes and the one moving node, and Figures 2b and 2c show two middle
times of the Delaunay mesh during the movement. We plot the ODT energy function of the
mesh with respect to t in Figure 2d. It can be seen that Eopr is nonconvex and unsmooth.
Furthermore, changing the connectivity of a mesh will cause abrupt changes in Eopr. Hence,
even if the optimal node positions can be obtained under any fixed mesh topological connection
at some point, we cannot know whether the Ep DT corresponds to the global minimum and
ODT methods still suffer the problem of falling into a local minimum by optimizing the mesh
topology and vertex positions iteratively.

Clearly, any large-scale mesh can be seen as a series of connected simple triangulations,
and the connected simple triangulations are mutually independent during ODT optimization.
Hence, the total Eopr of a large-scale mesh can be seen as a sum of Eopr of its piecewise parts.
The simple triangulation depicted in Figure 2 only has one parameter t, the x coordinate of the
red nodes, which is why we are capable of plotting the curve of Eopr in detail. Since the Fopr
of such a simple triangulation is nonconvex and unsmooth, one can imagine the complexity of
the Eopr of general cases. In fact, the Eopr of large-scale meshes is too complex to grasp,
and the global minimum is no doubt hard to obtain.

As mentioned above, Chen et al. [18] apply random node perturbation to help these methods
jump out from the ditch. However, an appropriate magnitude of random perturbation is not
easy to be obtained. And if it is too small, the methods will roll back to the same local minimum;
if it is too large, the methods will restart the optimization with a random initialization.

§2 Enhanced ODT methods

In this section, we introduce an outflanking strategy based on the connectivity regulariza-
tion. Although connectivity regularization serves as a perturbation, it works in most cases and
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casts off the problem of perturbation amplitude, which is more qualified to handle the inherent
problems of ODT methods. It is worth mentioning that Chen et al. [17] also think the topolog-
ical operation can be regarded as a perturbation to help ODT jump out of poor local optima.
But our method has a more organized strategy of topological operations instead of single edge
swap. ODT methods tend to generate regular meshes [20], [21] and the regularity of mesh is
influenced by the connectivity also known as topology to a great extent. Therefore, it is very
meaningful to study how to optimize the connectivity of the mesh by edge flip, edge split and
edge collapse while keeping the number of nodes in the mesh unchanged. The introduction
of connectivity regularization is not based on positive-going mathematical formula derivation
but experience and observation. The experience tells us that although exploiting mathematical
methods to minimize ODT energy directly is most people’s choice and well developed, it hits
a bottleneck to some extent and its biggest variable is the selection of optimization algorithm.
The observation shows us that each connectivity change is likely to cause a sudden change in
ODT energy, as depicted in Figure 2. Hence, we are inpired to combine topological optimiza-
tion with ODT methods. In spite of the lack of rigorous mathematical proof, this can lead to
further improvements for ODT methods instead of pure mathematical methods. And testing
result prove our idea, which will discussed in the next section.

2.1 Connectivity regularization

Generally, uniform ODT methods tend to equally distribute the edge lengths, thereby gen-
erates regular meshes [20], [21]. As for mesh connectivity, a regular mesh is a mesh where all
node valances are 6 for planar triangular meshes. As the differences between node valences and
6 are smaller, the level of regularity and the quality of the mesh are higher.

Alliez et al. [26] propose a method by randomly picking an edge and performing an edge
flipping only if it favors valence 6 for interior nodes, and valence 4 on boundary nodes. Surazhsky
and Gotsman [27] propose a method that can move the irregular node pairs to further improve
meshes. Li et al. [28] propose a theoretical analysis and an interactive editing framework
combining edge flip, edge split, and edge collapse to reduce the irregular nodes. Aghdaii et al.
[29] and Vidal et al. [30] propose the concept of 5-6-7 mesh, referring to a closed surface triangle
mesh where each vertex has valence 5, 6, or 7.

For the mesh with a certain number of nodes, the connectivity can be arbitrarily modified by
the simple edge flip [26]. The edge split and edge collapse can also improve the mesh connectivity
by adding a node and deleting a node. The number of nodes should not be changed in ODT
methods usually. Clearly, performing the same number of edge splitting and edge collapsing
will not change the node number. Basic operations including edge flip, edge collapse, and edge
split are illustrated in Figure 3.

Essentially, the optimal valence of a node is determined by its local Gaussian curvature
[31]. If the Gaussian curvature is greater than 0, the local shape is an elliptical surface and
the optimal valence can be less than 6. And if the Gaussian curvature is less than 0, the local
shape is hyperbolical surface and the optimal valence can be greater than 6. As for plane and
paraboloid, the Gaussian curvature is always 0. Inspired by the formulas in [32], the optimal
valence of a node v can be defined as,
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Figure 3. Basic topological operations. Edge flip (right), edge collapse (middile) and edge split
(right).

vValopt (V) = round(z 6;/60), (2.5)
JjEN
where NV is the number of neighboring elements, 6; is the angle of its neighboring element at
the angular vertex v . The valyp,(,) of an interior node on a plane is 6, and a boundary node is
related to its boundary angle. We denote a node with the valence of n as vn, e.g. for a regular
interior node on a plane, it is v6.
Practically, as for a node valence, what we care is not the absolute valence but the relative
difference to the optimal valence. We take a residual form to measure the level of connectivity
regularity as the following function,

res(v) = Z (val(v) — valyp(v))?, (2.6)
veM
where val(v) is valence of node v, and val,p:(v) is its optimal valence. Connectivity regulariza-

tion is to minimize the value of Equation.6. The viewpoint of the residual form enables us to
extent connectivity regularization to surface meshes. Herein, we take the case of planar meshes
as an example for illustration, and the case for surface meshes can be derived naturally. Usually,
most optimal node valences of a surface mesh are still equal to 6.

We conduct connectivity regularization using valence editing, which is composed of a series
of basic operations. Furthermore, improvable configurations are the direct subjects we conduct
connectivity regularization on. Figure 4 illustrates the simple improvable configurations formed
by v3,v4,v8,v9,v10, and they can be improved with basic operations. Through iterative oper-
ations, all of the nodes can be reduced to v5, v6,v7, which have a residual value no more than 1.
Some connected v5, v7 can form complex improvable configurations and they can be improved
through basic operations, as demonstrated in Figure 5. The time cost of diminishing each
improvable configuration is O(1). And similarly, connectivity regularization can be done for
surface meshes on the condition that each node gets its own optimal valence and the difference
to its optimal valence.

Although there are still existing potential improvable cases besides the involving 13 con-
figurations [33], numerical experiments show that chasing the perfection of mesh connectivity
blindly will reduce the effectiveness rate. Further valence improvements can lead to more time
cost and large-scale disturbance for meshes. On the other hand, the purpose of connectivity
regularization is to help the ODT methods jump out of the local minimum iteratively but not
to obtain the optimal mesh valence at once. Some extremely complex improvable cases in the
potential can naturally convert into easy ones or even do not exist anymore after times of iter-
ations. Hence, in view of a trade-off between effect and complexity, these mentioned operations
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have already pushed ODT methods to satisfactory results.

2.2 Connectivity regularization with the number of nodes unchanged

The concept of ODT is usually not allowed to change the number of nodes. Although
connectivity regularization without limitations will boost the ODT methods greatly, there is
still a necessity to develop the enhanced ODT methods with the number of nodes unchanged
in some cases.

Obviously, any simple improvable configuration or complex improvable configuration has a
certain number of edge flips and edge splits or edge collapses, resulting in the certain number
change of nodes. Once we recognize all of the improvable configurations, we want to diminish
improvable configurations with the number of nodes unchanged as more as possible. This
situation is analogous to the crammed knapsack problem with the capacity of the knapsack being
0. Supposing that there are N items and ¢ is the item index, each improvable configuration can
be seen as an item to fill in the knapsack with a capacity of ¢; and a value of v;. The capacity
¢; is equal to the number change of nodes including -2, -1, 0, 1, 2, and the value v; can be
uniform or distinguished between simple configurations and complex configurations. Dynamic
programming can maximize the value of the knapsack with the knapsack crammed. And the
state transition formula is defined as,

dp(j3) = max{dp(j — ¢;) + v;,dp(j)},1 <=1 <= N,0 <= j <= 4N, (2.7)
where j is the current capacity of knapsack. Noticing there are negative capacities, we
set a pivot equal to 2N to handle this problem, which is equivalent to translate the capacity
range. The index j ranging from 0 to 4N stands for the actual capacity ranging from —2N to
2N. Naturally, dp(2N), the pivot is initialized as 0 and other elements in dp are initialized as
negative infinity. The index i loops from 1 to N as ¢; is tried to push in the knapsack. If ¢; > 0,
we update dp(j) with j ranging from 4N to ¢;. If ¢; < 0, we update dp(j) with j ranging from
0 to 4N + ¢;.

Herein, we denote the connectivity regularization based on a dynamic program as Vallmp.
The time complexity of searching all the improvable configurations is linear, thus, the time
complexity of algorithm Vallmp is O(N?), determined by the dynamic programming scheme.
Note that pure combining connectivity regularization with ODT methods is also accepted if
there is a relaxation for the number of nodes. The purpose of the algorithm is to help the ODT
methods jump out from the local minimum not to obtain the optimal mesh valence, hence it
does not need to handle all cases that can be improved at once, and we iterate the mesh only
once for every stage in the method.

2.3 Extension to surface meshes

Enhanced-ODT methods mainly consist of three kinds of operations: Delaunay triangula-
tion, optimizing node positions, and connectivity regularization. Realizing the enhanced-ODT
methods for surface meshes only requests some modifications to the original version. Surface
Delaunay triangulation is well studied in [34] [35] [36] [37] [38] and we adopt the metric proposed
in [35] [36] to maintain the Delaunay properties. Optimizing node positions on surface meshes
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can be conducted through reprojection [39]. And connectivity regularization for surface meshes
can be also naturally derived with considerations on feature curves on surface meshes.

2.4 Algorithms for enhanced ODT methods

The commonly-used ODT methods usually have two stages: first optimize node positions
with local manners or global manners; then optimize mesh topology. Combined with connec-
tivity regularization based on dynamic programming scheme, the enhanced ODT methods are
as Algorithm 1.

Algorithm 1 Enhanced ODT methods

Input: Initial mesh T'; Iteration times M and N.
Output: Final optimized mesh T

1: Iteration variables m =0, n =0

2: while m < M do

3:  call the ValImp;

4:  while n < N/M do
5: ODT optimization;
6: n=n-+1;

7. end while

8 m=m+1;

9: n=0.

10: end while

Note that we use constant iterations to stop the optimization in this paper (N = 10 and
M = 2), an alternative approach to stop the optimization is dependent on Fopr change or
FEopr upper bound.

Figure 6. Mesh models of Example 1 before (left) and after (right) LMVI.

§3 Numerical experiments and analysis

The proposed algorithm is implemented aided by Cinolib [40]. Some of our testing examples
including uniform meshes and graded meshes are chosen to illustrate the effectiveness of our
proposed methods in this section. The qualities of the original meshes are at a low level, and
their boundary nodes and feature nodes are fixed during the optimization process. We use
element angles and the following quality metric to measure the meshes,
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Figure 7. Mesh models of Example 2 before (left) and after (right) LMVIL.

Figure 8. Mesh models of Example 3 before (left) and after (right) GMVI.

Figure 9. Mesh models of Example 4 before (left) and after (right) GMVI.
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Figure 10. Mesh models of Example 5 before (left) and after (right) GMVL.

Figure 11. Mesh models of Example 6 before (left) and after (right) LMVI.

e
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Figure 12. Mesh models of Example 7 before (left) and after (right) GMVI.
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Table 1. Statistics of numerical experiments.

Model Method*  Avg. q Min. q Min. 6/(°) Avg. Min. §/(°) FEopr Times(s)
Original 0.692 0.024 0.801 30.495 12.355 -
Laplacian ~ 0.955 0.298 15.984 48.375 4.076 -
Example 1 GETme 0.956 0.300 15.972 49.004 4.014 -
LM 0.965 0.378 24.025 51.565 3.270 0.56
LMVI 0.967 0.475 24.192 51.843 3.218 1.28
GM 0.966 0.378 24.263 51.793 3.241 0.78
GMVI 0.969 0.529 24.506 52.133 3.154 1.51
Original 0.865 0.034 1.487 42,511 54.739 -
Laplacian ~ 0.941 0.301 14.347 48.685 25.483 -
Example 2 GETme 0.943 0.317 19.042 48.855 24.425 -
LM 0.949 0.351 26.810 49.077 22.992 0.86
LMVI 0.954 0.401 26.580 49.077 22.992 0.86
GM 0.961 0.384 26.300 50.527 21.311 1.02
GMVI 0.965 0.395 26.592 51.041 20.929 2.35
Original 0.888 0.107 4.812 42.711 95.824 -
Laplacian ~ 0.945 0.172 5.889 48.435 44.365 -
Example 3 GETme 0.949 0.175 5.904 48.987 43.015 -
LM 0.953 0.176 5.943 49.138 39.763 11.71
LMVI 0.961 0.198 6.684 50.342 37.193 28.14
GM 0.953 0.176 5.943 49.143 38.068 18.54
GMVI 0.963 0.198 6.684 49.989 36.517 37.59
Original 0.926 0.334 12.099 47.033 304.029 -
Laplacian  0.950 0.494 20.028 50.002 168.236 -
Example 4 GETme 0.952 0.496 20.011 50.115 162.436 -
LM 0.957 0.500 20.479 50.372 153.587 3.01
LMVI 0.962 0.534 20.499 50.550 151.002 8.25
GM 0.959 0.534 20.499 50.250 152.164 5.85
GMVI 0.963 0.536 20.499 50.809 149.408 10.32
Original 0.702 0.032 5.369 35.265 68.254 -
Laplacian  0.852 0.044 6.021 46.325 27.635 -
Example 5 GETme 0.856 0.045 6.021 46.628 26.747 -
LM 0.864 0.047 6.135 48.036 25.365 17.22
LMVI 0.884 0.052 6.124 48.336 23.602 42.64
GM 0.878 0.047 6.115 47.921 24.856 23.36
GMVI 0.886 0.052 6.120 48.546 23.021 54.63
Original 0.804 0.156 10.426 34.652 57.624 -
Laplacian ~ 0.945 0.213 12.414 48.464 25.460 -
Example 6 GETme 0.947 0.212 12.436 48.502 25.421 -
LM 0.958 0.439 18.321 49.979 23.875 9.243
LMVI 0.970 0.446 18.458 50.002 23.504 20.483
GM 0.967 0.440 18.324 49.978 23.648 9.962
GMVI 0.974 0.446 18.543 50.013 23.462 25.602
Original 0.835 0.081 8.535 33.221 104.476 -
Laplacian ~ 0.951 0.140 9.215 47.346 49.242 -
Example 7 GETme 0.952 0.141 9.438 47.402 49.122 -
LM 0.962 0.328 21.986 49.125 43.021 8.710
LMVI 0.972 0.335 22.462 49.502 42.456 20.012
GM 0.968 0.332 22.214 49.342 42.782 10.875
GMVI 0.976 0.336 22.664 49.674 42.368 24.487

465

* LM: local methods; LMVI: local methods with Vallmp; GM: global methods: GMVI: global
methods with Vallmp.
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a=AV3x8)/(12+12+13), (3.8)
where [; represents edge lengths and S represents area of a triangular element. The value of
this metric ranges from 0 to 1 and the optimal value of the metric is 1. Results of numerical
experiments using general ODT methods and enhanced ODT methods are listed in Table 1. In
table 1, global methods and local methods are implemented as Section 2.2 states. LM means
local methods for ODT, GM means global methods for ODT, LM VI means local methods with
valence improvement for ODT, GMVI means global methods with valence improvement for
ODT. And LMVI and GMVI belong to the enhanced ODT methods. Besides, we also use the
well-known Laplacian smoothing and the state-of-art GETme [41] for comparison. Example
1 and Example 2 are two planar triangular meshes, and the rest three examples are surface
meshes. Example 1 is a uniform triangular mesh with 2298 elements, and Example 2 is a
grading mesh with 10085 elements. The two original examples before and after LMVI method
are shown in Figure 6 and Figure 7. Example 3 is a horse mesh model consisting of 39698
elements. Figure 8 is the comparison of the original mesh and optimized mesh by using GMVI.
Example 4 is a fandisk mesh model consisting of 4874 elements. It is an industrial model with
feature curves. We treat feature nodes fixed similarly to boundary nodes. Comparison between
the original Example 4 and the example optimized by GMVI is shown in Figure 9. Example 5
is a surface mesh model of the human heart consisting of 70000 elements. Comparison between
the original Example 4 and the example optimized by GMVT is shown in Figure 10. Example 6
is a bunny mesh model consisting of 23124 elements. Comparison between the original Example
6 and the example optimized by LMVT is shown in Figure 11. Example 7 is a rocker mesh model
consisting 21700 elements, and comparison between the original Example 7 and the example
optimized by GMVI is shown in Figure 12.

Through observing the table and the figures, it can be seen that ODT methods have advan-
tages over pure geometric methods on the whole and the enhanced methods with Vallmp have
advantages over classical ODT methods due to connectivity regularization. Obviously, results
of LMVI seems superior to results of LM and GMVI seems superior to results of GM. This indi-
cates connectivity optimization can furtherly improve those meshes which cannot be improved
by the conventional method any further, making the combination of connectivity optimization
much meaningful. On the other hand, although some improvements are not significant, result
differences between LM and LMVI turn to be larger than the differences between LM and GM,
which implies the connectivity optimization does work and its impacts are even larger than the
impacts on optimization algorithm.

For another, the precision of FEA is strongly related to the worst element. Geometric s-
moothing does not change the connectivity and cannot eliminate nodes of extremely irregular
valences like v3, v10, which tend to result in elements at poor quality. But ODT methods can get
rid of them, which is why ODT methods have significant advantages on the metrics of Min.q,
Min.f0 and Avg.Min.f. And because of the combination with connectivity regularization, the
enhanced ODT methods are endowed with the extra capablity of making "connectivity" dis-
tribute more evnenly, which have better performances on these metrics compared with general
ODT methods. Meanwhile, in terms of the metric Eopr standing for the ODT energy, the
enhanced ODT methods have the lowest values. As stated above, although we cannot guarantee
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to obtain the global minimum, we do reduce Eppr through the function Vallmp. The results
have verified the fact that connectivity regularization works well as a perturbation to help ODT
methods jump out of a poor local minimum based on an outflanking strategy instead of pure
mathematical methods.

§4 Conclusions

In this paper, we demonstrate that the ODT energy function is nonconvex and unsmooth,
and propose enhanced ODT methods combined with connectivity regularization. For ODT
methods even if the optimal node positions can be obtained under any fixed mesh topologi-
cal connection, they still suffer the problem of falling into a local minimum by optimizing the
mesh topology and node positions iteratively. We take an outflanking strategy combining ODT
methods with connectivity regularization for this problem through reducing the irregular nodes
by edge flip, edge split, and edge collapse while keeping the number of nodes in the mesh un-
changed. Connectivity regularization can be regarded as a perturbation to help ODT methods
jump out of a poor local minimum. Although the enhanced ODT methods cannot guarantee
to obtain a global minimum, we start a new viewpoint of minimizing ODT energy which uses
topological operations but mathematical methods. Practically, numerical experiments demon-
strate that our enhanced ODT methods can generate a higher quality mesh than general ODT
methods. Our future work will try to extend the enhanced ODT methods to polygonal meshes.
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