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Bootstrap inference of the skew-normal two-way

classification random effects model with interaction

YE Ren-dao1,∗ AN Na1 LUO Kun2 LIN Ya1

Abstract. In this paper, we consider the statistical inference problems for the fixed effect and

variance component functions in the two-way classification random effects model with skew-

normal errors. Firstly, the exact test statistic for the fixed effect is constructed. Secondly,

using the Bootstrap approach and generalized approach, the one-sided hypothesis testing and

interval estimation problems for the single variance component, the sum and ratio of variance

components are discussed respectively. Further, the Monte Carlo simulation results indicate that

the exact test statistic performs well in the one-sided hypothesis testing problem for the fixed

effect. And the Bootstrap approach is better than the generalized approach in the one-sided

hypothesis testing problems for variance component functions in most cases. Finally, the above

approaches are applied to the real data examples of the consumer price index and value-added

index of three industries to verify their rationality and effectiveness.

§1 Introduction

The two-way classification random effects model has been widely used in industry, agri-
culture, economics, medical science and many other fields. The existed studies often assume
that both random effects and error terms follow normal distributions[1,2,3,4]. However, the
actual data increasingly presents commonly and frequently asymmetric skew-normal distribu-
tion characteristics. If we continue to make statistical inferences on the two-way classification
random effects model under normal distribution assumption, there will be large deviations and
even misleading conclusions[5,6]. Therefore, the statistical inference for the two-way classifica-
tion random effects model based on skew-normal assumption is of great scientific and practical
importance.

In the literature, many authors were interested in the skew-normal random effects mod-
el. For example, Ye, et al.[7] discussed the statistical properties of the one-way classification
model with skew-normal random effects, and gave a test approach for the fixed effect. Meng
and Xiao[8] and Ghosh, et al.[9] respectively applied the skew-normal one-way classification
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random effects model and skew-normal bivariate random effects model to research the credibil-
ity premium and HIV-RNA. Further, the statistical inference for the fixed effect and variance
components has been studied in depth. For example, Harville and Zimmermann[10] and Manor
and Zucker[11] respectively studied the posterior distribution and small sample inference for
the fixed effect in the mixed-effects linear models. Wang, et al.[12] discussed the estimation
of variance components in the partial EIV model based on the jackknife resampling method.
Ye, et al.[13] established the generalized p-values and generalized confidence intervals for the
variance components in general random effects model with balanced data.

As is well-known, it is difficult to construct the exact statistical approach based on the tradi-
tional theory for the complex model and data. For this, the Bootstrap approach and generalized
approach are widely used in statistical modeling problems. For example, Ye, et al.[14,15] and
Sinha[16] applied the Bootstrap approach to the unbalanced two-way random effects model,
panel data model and generalized linear mixed model, and studied the hypothesis testing prob-
lems for variance components. Xu, et al.[17,18] constructed the parametric Bootstrap tests for
main effects in unbalanced two-factor and three-factor nested designs under heteroscedasticity.
Tian, et al.[19] used the Bootstrap and generalized approach to test the equality of regression
coefficients. However, the existed studies have not systematically discussed the statistical in-
ferences on the fixed effect and variance component functions under skew-normal distribution
assumption. In this paper, the Bootstrap approach and generalized approach for the fixed effect
and variance component functions are established in the two-way classification random effects
model with skew-normal errors.

The paper is organized as follows. In Section 2, the two-way classification random effects
model with skew-normal errors is introduced. In Section 3, the exact approach for the one-
sided hypothesis testing problem of the fixed effect is constructed. In Sections 4 to 6, using
the Bootstrap approach and generalized approach, the test statistics and pivot quantities for
the single variance component, the sum and ratio of variance components are established. In
Section 7, the Monte Carlo simulation results are presented to verify the excellent statistical
properties of the proposed approaches. In Section 8, the proposed approaches are applied to
the real data examples of the consumer price index and value-added index of three industries.
In Section 9, the summary of this paper is given.

§2 Preliminaries

Firstly, we consider the two-way classification random effects model with skew-normal errors

y = 1nµ+ Zαα+ Zββ + Zγγ + ε, (1)

where y is a n × 1 random vector, µ is the fixed effect, α, β and γ are the random effects,
ε is a n × 1 vector of random errors, n = abc, Zα = Ia ⊗ 1b ⊗ 1c, Zβ = 1a ⊗ Ib ⊗ 1c, and
Zγ = Ia ⊗ Ib ⊗ 1c. Besides, 1m is a m × 1 vector with every element unity, Im is an identity
matrix of order m, and ⊗ denotes the Kronecker product. Assume that α ∼ Na(0, σ

2
αIa), β ∼

Nb(0, σ
2
βIb), γ ∼ Nab(0, σ

2
γIab), ε ∼ SNn(0, σε2In,αε), and all random vectors are mutually

independent, where SNm(µ0,Σ0,α0) denotes them-dimensional skew-normal distribution with
location parameter µ0, positive definite scale parameter Σ0, and skewness parameter α0. In
particular, when αε = 0, model (1) is reduced to the normal two-way classification random
effects model[1,2,20].

Let Mn×n be the set of all n×n matrices over the real field ℜ, and use A′, tr(A) and rk(A)
to denote the transpose, trace and rank of matrix A respectively. Besides, PA = A(A′A)−A′
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and J̄n = 1n1
′
n/n. From Arellano-Valle, et al.[21], Azzalini and Dalla Valle[22] and Azzalini

and Capitanio[23], the density function of multivariate skew-normal distribution is given as
Definition 2.1.

Definition 2.1. The random effect V follows a multivariate skew-normal distribution, denoted
by V ∼ SNm(µ0,Σ0,α0), if its density function is

fV (x;µ0,Σ0,α0) = 2ϕm(x;µ0,Σ0)Φ
(
α′

0Σ
−1/2
0 (x− µ0)

)
, (2)

where ϕm(x;µ0,Σ0) is the m-dimensional normal density function with mean vector µ0 and
covariance matrix Σ0, and Φ(·) is the standard normal distribution function.

From Ye and Wang[24], the noncentral skew chi-square distribution and noncentral skew F
distribution are given for the first time as Definitions 2.2-2.3.

Definition 2.2. Let U ∼ SNn(v, In,α0). The distribution of T = U ′U is defined as the
noncentral skew chi-square distribution with n degrees of freedom, the noncentrality parameter
λ = v′v, and the skewness parameters δ1 = α′

0v and δ2 = α′
0α0, denoted by T ∼ Sχ2

n(λ, δ1, δ2).
In particular, if δ1 = 0, then T ∼ χ2

n(λ).

Definition 2.3. Assume that Q1 ∼ Sχ2
m1

(λ, δ1, δ2), Q2 ∼ χ2
m2

, and Q1 and Q2 are mutually

independent. The distribution of F = Q1/m1

Q2/m2
is called the noncentral skew F distribution with

degrees of freedom m1 and m2, the noncentral parameter λ, and the skewness parameters δ1
and δ2, denoted by F ∼ SFm1,m2(λ, δ1, δ2).

Based on Ye, et al.[25], Theorem 2.1 is given as follows.

Theorem 2.1. For model (1), let Q = y′Ay/σ2
∗ with nonnegative definite A ∈ Mn×n, k =

rk(A), and σ2
∗ = 1

k [σ
2
εtr(A)+σ2

αtr(AZαZ
′
α)+σ2

βtr(AZβZ
′
β)+σ2

γtr(AZγZ
′
γ)]. Then the necessary

and sufficient conditions under which Q ∼ Sχ2
k(λ, δ1, δ2), for some δ1 ∈ ℜ including δ1 = 0, are

(i) ΩA is idempotent of rank k,
(ii) λ = µ′

yAµy/σ
2
∗,

(iii) δ1 = α′
1Ω

1/2Aµy/(dσ∗), and
(iv) δ2 = α′

1P1P
′
1α1/d

2,
where µy = 1nµ, Σy = σ2

αZαZ
′
α + σ2

βZβZ
′
β + σ2

γZγZ
′
γ + σ2

εIn = σ2
∗Ω, d = (1 +α′

1P2P
′
2α1)

1/2,

α1 =
σεΣ

−1/2
y αε

[1+α′
ε(In−σ2

εΣ
−1
y )αε]

1/2 , and P = (P1, P2) is an orthogonal matrix in Mn×n such that

Ω1/2AΩ1/2 = P

(
Ik 0
0 0

)
P ′ = P1P

′
1.

Theorem 2.2. For model (1), let A1 = (Ia − J̄a) ⊗ J̄b ⊗ J̄c, A2 = J̄a ⊗ (Ib − J̄b) ⊗ J̄c,
A3 = (Ia − J̄a)⊗ (Ib − J̄b)⊗ J̄c, A4 = Ia ⊗ Ib ⊗ (Ic − J̄c). Then we have

Vi =
Ti

σ2
i

∼ χ2
ni
, i = 1, · · · , 4, (3)

and Vi(i = 1, · · · , 4) are mutually independent, where Ti = y′Aiy, σ2
1 = bcσ2

α + cσ2
γ + σ2

ε ,
σ2
2 = acσ2

β + cσ2
γ + σ2

ε , σ
2
3 = cσ2

γ + σ2
ε , σ

2
4 = σ2

ε , n1 = a − 1, n2 = b − 1, n3 = (a − 1)(b − 1),
and n4 = ab(c− 1).

Proof. For model (1), the scale parameter matrix of y is

Σy = σ2
αZαZ

′
α + σ2

βZβZ
′
β + σ2

γZγZ
′
γ + σ2

εIn

= σ2
α(Ia ⊗ Jb ⊗ Jc) + σ2

β(Ja ⊗ Ib ⊗ Jc) + σ2
γ(Ia ⊗ Ib ⊗ Jc) + σ2

εIn.
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It can be concluded that Σy is as follows after spectral decomposition

Σy =
4∑

i=1

σ2
iAi + σ2

0 J̄n,

where σ2
0 = bcσ2

α + acσ2
β + cσ2

γ + σ2
ε , σ

2
1 = bcσ2

α + cσ2
γ + σ2

ε , σ
2
2 = acσ2

β + cσ2
γ + σ2

ε , σ
2
3 =

cσ2
γ + σ2

ε , and σ2
4 = σ2

ε . Accordingly, A1 = (Ia − J̄a) ⊗ J̄b ⊗ J̄c, A2 = J̄a ⊗ (Ib − J̄b) ⊗ J̄c,
A3 = (Ia − J̄a)⊗ (Ib − J̄b)⊗ J̄c, and A4 = Ia ⊗ Ib ⊗ (Ic − J̄c).

For Theorem 2.2, it suffices to show that λi = 0, AiΩiAi = Ai, and Ti are mutually
independent based on Theorem 2.1, where Ωi = σ−2

i Σy, i = 1, · · · , 4. By Theorem 2.1, we have

λ1 = µ′
yA1µy/σ

2
1 = µ′1′

nA11nµ/σ
2
1 = 0.

Further, we obtain

A1Ω1A1 = A1

[
σ2
αbc(Ia ⊗ J̄b ⊗ J̄c) + σ2

βac(J̄a ⊗ Ib ⊗ J̄c) + σ2
γc(Ia ⊗ Ib ⊗ J̄c) + σ2

εIn
]
A1/σ

2
1

=
bcσ2

α + cσ2
γ + σ2

ε

σ2
1

A1 = A1.

In the same way, λi = 0 and AiΩiAi = Ai are also available for i = 2, 3, 4.
Since

A1ΣyA2 = A1(σ
2
αZαZ

′
α + σ2

βZβZ
′
β + σ2

γZγZ
′
γ + σ2

εIn)A2 = 0,
T 1 and T 2 are mutually independent by Proposition 2.2 in Ye, et al.[25], namely V1 and V2 are
mutually independent. Similarly, Vi(i = 1, · · · , 4) are mutually independent, so the results in
Theorem 2.2 are obtained.

§3 Inference on the fixed effect

In this section, the one-sided hypothesis testing problem for fixed effect in model (1) is
considered. The hypothesis of interest is

H0 : µ ≤ µ0 versus H1:µ > µ0, (4)

where µ0 is a specified value. Without loss of generality, we assume µ0 = 0, then the hypothesis
testing problem (4) is transformed to

H0 : µ ≤ 0 versus H1:µ > 0. (5)

By Theorem 2.1, we have

V0 = y′PZγy/σ
2
∗ ∼ Sχ2

n0
(λ, δ1, δ2),

where PZγ = Ia ⊗ Ib ⊗ J̄c, σ
2
∗ = cσ2

α + cσ2
β + cσ2

γ + σ2
ε , n0 = ab, λ = µ′

yPZγµy/σ
2
∗, µy = 1nµ,

δ1 = α′
1Ω

1/2PZγµy/(dσ∗), δ2 = α′
1P1P

′
1α1/d

2, and Ω, d, α1 and P1 are given in Theorem 2.1.
By Theorem 2.2, we have

V4 = y′A4y/σ
2
4 ∼ χ2

n4
.

Furthermore, by Proposition 2.2 in Ye, et al.[25], it is easy to get that V0 and V4 are mutually
independent. Based on Definition 2.3, the exact test statistic is constructed as

F =
(c− 1)y′PZγy/σ

2
∗

y′A4y/σ2
4

∼ SFn0,n4(λ, δ1, δ2). (6)

Under the null hypothesis H0 in (5), we obtain

F ∼ Fn0,n4 , (7)

where Fn0,n4 represents the F distribution with degrees of freedom n0 and n4. By F in (7), the
p-value is computed as

p = P (F > Fn0,n4(δ)|H0), (8)
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where δ is the nominal significance level and Fn0,n4(δ) is the 100δ empirical percentile of Fn0,n4 .
The null hypothesis is rejected whenever the above p-value is less than the nominal significance
level of δ.

§4 Inference on the single variance components

Using the Bootstrap approach and generalized approach, the hypothesis testing problems
for the single variance component in model (1) are discussed. The hypotheses of interest are

H0 : σ2
α ≤ c0 versus H1:σ

2
α > c0, (9)

H0 : σ2
β ≤ c0 versus H1:σ

2
β > c0, (10)

H0 : σ2
γ ≤ c0 versus H1:σ

2
γ > c0, (11)

where c0 is a specified value.

4.1 The Bootstrap approach

Firstly, the unbiased estimator of σ2
i is given by (3) as follows

σ̂2
i =

Ti

ni
, i = 1, · · · , 4. (12)

If σ2
3 is known, then V1 in (3) will be the test statistic for hypothesis testing problem (9).

However, σ2
3 is often unknown in practical applications. Under the null hypothesis H0 in (9),

by replacing the parameter σ2
3 with its estimator σ̂2

3 in V1, the corresponding test statistic is
given by

F1 =
T1

bcc0 + T3/n3
. (13)

Obviously, it is difficult to obtain the exact distribution of F1, so the Bootstrap approach is
used to construct the test statistic. Thus, the Bootstrap test statistic based on (13) is expressed
as

F1B =
T1B

bcc0 + T3B/n3
, (14)

where T1B ∼ (bcc0 + t3/n3)χ
2
n1
, T3B ∼ (t3/n3)χ

2
n3
, and t3 is the observed value of T3. By F1B

in (14), the Bootstrap p-value is computed as

p1 = P (F1B > f1|H0), (15)

where f1 denotes the observed value of F1 in (13). The null hypothesis H0 in (9) is rejected
whenever the above p-value is less than the nominal significance level of δ.

Remark 4.1. When σ2
β = σ2

γ = 0 and αε = 0, model (1) is reduced to the normal one-way
classification random effects model, then F1B in (14) degenerates into the result of Yang, et
al.[26].

Similarly, the Bootstrap test statistics for hypothesis testing problems (10) and (11) are
respectively represented as

F2B =
T2B

acc0 + T3B/n3
, F3B =

T3B

cc0 + T4B/n4
,

where T2B ∼ (acc0 + t3/n3)χ
2
n2

and T3B ∼ (t3/n3)χ
2
n3

in F2B, and T3B ∼ (cc0 + t4/n4)χ
2
n3

and
T4B ∼ (t4/n4)χ

2
n4

in F3B . Here t4 is the observed value of T4. Based on F2B and F3B , the
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Bootstrap p-values are respectively computed as

p2 = P (F2B > f2|H0), p3 = P (F3B > f3|H0).

Similar to f1 in (15), f2 and f3 are observed values of test statistics.

Remark 4.2. The Bootstrap pivot quantity of σ2
α can be constructed as F̃1B based on F1B .

Suppose that F̃1B(ω) is the 100ω empirical percentile of F̃1B , then the 100(1− δ)% Bootstrap
confidence interval for σ2

α is given by[
t1

bcF̃1B(1− δ/2)
− t3

n3bc
,

t1

bcF̃1B(δ/2)
− t3

n3bc

]
,

where t1 is the observed value of T1. Likewise, the Bootstrap confidence intervals for σ2
β and

σ2
γ are also obtained.

4.2 The generalized approach

For hypothesis testing problem (9), the generalized test variable has the form of

F4 = V1(1/V3 + bcσ2
α/t3). (16)

It is apparent that f4 = t1/t3, the observed value of F4, is free of any unknown parameters.
The distribution of F4 is free of the nuisance parameters. From the expression in (16), F4 is
stochastically increasing in σ2

α. Hence, F4 is a generalized test variable for hypothesis testing
problem (9). Then, based on F4, the generalized p-value can be computed as

p4 = P (F4 ≥ t1/t3|H0) = P

(
V1 ≥ V3t1

bcV3c0 + t3

)
= 1− EV3

[
Fχ2

n1

(
V3t1

bcV3c0 + t3

)]
, (17)

where Fχ2
n1

is the cumulative distribution function of chi-square distribution with n1 degrees

of freedom, and the expectation of (17) is taken with respect to V3. The null hypothesis H0 in
(9) will be rejected if p4 is less than the nominal significance level of δ.

Remark 4.3. When αε = 0, model (1) is reduced to the normal two-way classification random
effects model, then p4 in (17) degenerates into the result of Weerahandi[27].

Next, to obtain the generalized confidence interval for σ2
α, we define

F ∗
4 =

1

bc

(
t1σ

2
1

T1
− t3σ

2
3

T3

)
.

Obviously, the distribution of F ∗
4 is free of any unknown parameters, and the observed value

of F ∗
4 is free of nuisance parameters. Thus, F ∗

4 is a generalized pivot quantity. According to
the quantile of F ∗

4 , the generalized upper confidence limit and lower confidence limit of σ2
α

are obtained at the confidence level of 1 − δ, which are written as F ∗
4 (1 − δ/2) and F ∗

4 (δ/2)
respectively.

Remark 4.4. When σ2
β = σ2

γ = 0 and αε = 0, the generalized confidence interval [F ∗
4 (δ/2),

F ∗
4 (1− δ/2)] degenerates into the result of Weerahandi[28].

Similarly, the generalized test variables of hypothesis testing problems (10) and (11) are
respectively expressed as

F5 = V2(1/V3 + acσ2
β/t3), F6 = V3(1/V4 + cσ2

γ/t4).

Based on F5 and F6, the generalized p-values for hypothesis testing problems (10) and (11) are
respectively computed as follows

p5 = 1− EV3

[
Fχ2

n2

(
V3t2

acV3c0 + t3

)]
, p6 = 1− EV4

[
Fχ2

n3

(
V4t3

cV4c0 + t4

)]
.
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Further, the generalized pivot quantities for σ2
β and σ2

γ are repectively given by

F ∗
5 =

1

ac

(
t2σ

2
2

T2
− t3σ

2
3

T3

)
, F ∗

6 =
1

c

(
t3σ

2
3

T3
− t4σ

2
4

T4

)
.

Similar to σ2
α, the generalized confidence intervals for σ2

β and σ2
γ can be obtained easily.

§5 Inference on the sum of variance components

In this section, the Bootstrap approach and generalized approach are applied into hypothesis
testing problem for the sum of three variance components in model (1). The hypothesis of
interest is

H0 : σ2
α + σ2

β + σ2
γ ≤ c1 versus H1:σ

2
α + σ2

β + σ2
γ > c1, (18)

where c1 is a specified value.

5.1 The Bootstrap approach

Under the null hypothesis H0 in (18), by replacing the parameters σ2
2 , σ

2
3 and σ2

4 with their
estimators σ̂2

2 , σ̂
2
3 and σ̂2

4 in V1 respectively, the corresponding test statistic is given by

F7 =
T1

bcc1 − b
a

(
T2

n2
− T3

n3

)
− (b−1)T3

n3
+ bT4

n4

. (19)

By (19), the Bootstrap test statistic for hypothesis testing problem (18) is defined as

F7B =
T1B

bcc1 − b
a

(
T2B

n2
− T3B

n3

)
− (b−1)T3B

n3
+ bT4B

n4

, (20)

where T1B ∼
(
bcc1 − b

a

(
t2
n2

− t3
n3

)
− (b−1)t3

n3
+ bt4

n4

)
χ2
n1
, T2B ∼ (t2/n2)χ

2
n2
, T3B ∼ (t3/n3)χ

2
n3
,

T4B ∼ (t4/n4)χ
2
n4
, and t2 is the observed value of T2. By F7B in (20), the Bootstrap p-value is

computed as

p7 = P (F7B > f7|H0), (21)

where f7 denotes the observed value of F7 in (19). The null hypothesis H0 in (18) is rejected
whenever the above p-value is less than the nominal significance level of δ.

Remark 5.1. Similar to Remark 4.2, the Bootstrap pivot quantity of σ2
α + σ2

β + σ2
γ can be

constructed as F̃7B based on F7B. Let F̃7B(ω) be the 100ω empirical percentile of F̃7B . The
100(1− δ)% Bootstrap confidence interval for σ2

α + σ2
β + σ2

γ is given by[
t1

bcF̃7B(1− δ/2)
+

1

ac

(
t2
n2

− t3
n3

)
+

(b− 1)t3
bcn3

− t4
cn4

,

t1

bcF̃7B(δ/2)
+

1

ac

(
t2
n2

− t3
n3

)
+

(b− 1)t3
bcn3

− t4
cn4

]
.

5.2 The generalized approach

For hypothesis testing problem (18), the generalized test statistic is defined as

F8 =
1

bc

(
t1
V1

− t3
V3

)
+

1

ac

(
t2
V2

− t3
V3

)
+

1

c

(
t3
V3

− t4
V4

)
− (σ2

α + σ2
β + σ2

γ),
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It is obvious that f8 = 0, the observed value of F8, is free of any unknown parameters. The
distributions of Vi(i = 1, · · · , 4) have no unknown parameters, thus the distribution of F8 is free
of nuisance parameters. In addition, F8 is stochastically decreasing in σ2

α+σ2
β +σ2

γ . Therefore,
F8 is a generalized test variable for hypothesis testing problem (18) and the generalized p-value
is computed as

p8 = P (F8 ≤ 0|H0)

= 1− EV2,V3,V4

[
Fχ2

n1

(
t1

(
bcc1 −

b

a

(
t2
V2

− t3
V3

)
− b

(
t3
V3

− t4
V4

)
+

t3
V3

)−1
)]

. (22)

The null hypothesis H0 in (18) will be rejected if p8 is less than the nominal significance level
of δ.

To obtain the confidence interval for σ2
α + σ2

β + σ2
γ , the generalized pivot quantity is defined

as

F ∗
8 =

1

bc

(
t1
V1

− t3
V3

)
+

1

ac

(
t2
V2

− t3
V3

)
+

1

c

(
t3
V3

− t4
V4

)
.

Let F ∗
8 (ω) be the 100ω empirical percentile of F ∗

8 , then the 100(1− δ)% generalized confidence
interval for σ2

α + σ2
β + σ2

γ is given by [F ∗
8 (δ/2), F

∗
8 (1− δ/2)].

§6 Inference on the ratio of variance components

Consider the hypothesis testing problems

H0 : σ2
α/σ

2
β ≤ c2 versus H1:σ

2
α/σ

2
β > c2, (23)

H0 : σ2
α/σ

2
γ ≤ c2 versus H1:σ

2
α/σ

2
γ > c2, (24)

H0 : σ2
β/σ

2
γ ≤ c2 versus H1:σ

2
β/σ

2
γ > c2, (25)

where c2 is a specified value.

6.1 The Bootstrap approach

Similar to Ye, et al.[29], by replacing σ2
2 and σ2

3 with their estimators σ̂2
2 and σ̂2

3 in V1 under
H0 from (23), then we have

F9 =
T1

bc2(T2/n2 − T3/n3)/a+ T3/n3
. (26)

Based on (26), the Bootstrap test statistic for hypothesis testing problem (23) is defined as

F9B =
T1B

bc2(T2B/n2 − T3B/n3)/a+ T3B/n3
,

where T1B ∼
(

bc2(t2/n2−t3/n3)
a + t3

n3

)
χ2
n1
, T2B ∼ (t2/n2)χ

2
n2
, and T3B ∼ (t3/n3)χ

2
n3
. By F9B ,

the Bootstrap p-value is computed as

p9 = P (F 9B > f9|H0), (27)

where f9 is the observed value of F9 in (26). The null hypothesis H0 is rejected whenever p9 is
less than the nominal significance level of δ.

Likewise, the Bootstrap test statistics for hypothesis testing problems (24) and (25) can be
respectively defined as

F10B =
T1B

bc2(T3B/n3 − T4B/n4) + T3B/n3
, F11B =

T2B

ac2(T3B/n3 − T4B/n4) + T3B/n3
.
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Then the Bootstrap p-values based on F10B and F11B are respectively computed as

p10 = P (F10B > f10|H0), p11 = P (F11B > f11|H0),

where f10 and f11 are observed values of test statistics.

Remark 6.1. The Bootstrap pivot quantity of σ2
α/σ

2
β can be constructed as F̃9B based on

F9B . Let F̃9B(ω) be the 100ω empirical percentile of F̃9B, Then the 100(1 − δ)% Bootstrap
confidence interval for σ2

α/σ
2
β is[(

b

(
t2
n2

− t3
n3

))−1(
at1

F̃9B(1− δ/2)
− at3

n3

)
,

(
b

(
t2
n2

− t3
n3

))−1(
at1

F̃9B(δ/2)
− at3

n3

)]
.

In the same way, the 100(1− δ)% Bootstrap confidence intervals for σ2
α/σ

2
γ and σ2

β/σ
2
γ are also

available.

6.2 The generalized approach

For hypothesis testing problem (23), the generalized test variable is

F12 =
aV2(t1V3 − t3V1)

bV1(t2V3 − t3V2)
− σ2

α

σ2
β

. (28)

By (28), the generalized p-value is computed as

p12 = P (F12 ≤ 0|H0) = 1− EV2,V3

[
Fχ2

n1

(
at1V2V3

(a− bc2)t3V2 + bc2t2V3

)]
. (29)

The null hypothesis H0 in (23) will be rejected if p12 is less than the nominal significance level
of δ.

To obtain the confidence interval for σ2
α/σ

2
β , we define

F ∗
12 =

aV2(t1V3 − t3V1)

bV1(t2V3 − t3V2)
,

where σ2
α/σ

2
β is the observed value of F ∗

12. Therefore, the generalized confidence interval can be
constructed by the quantile of F ∗

12.

Similar to (28), the generalized test variables for hypothesis testing problems (24) and (25)
are respectively

F13 =
V4(t1V3 − t3V1)

bV1(t3V4 − t4V3)
− σ2

α

σ2
γ

, F14 =
V4(t2V3 − t3V2)

aV1(t3V4 − t4V3)
−

σ2
β

σ2
γ

.

Thus, based on F13 and F14, the generalized p-values for hypothesis testing problems (24) and
(25) are respectively computed as

p13 = 1− EV3,V4

[
Fχ2

n1

(
t1V3V4

(bc2 + 1)t3V4 − bc2t4V3

)]
,

p14 = 1− EV3,V4

[
Fχ2

n2

(
t2V3V4

(ac2 + 1)t3V4 − ac2t4V3

)]
.

Further, the generalized confidence intervals for σ2
α/σ

2
γ and σ2

β/σ
2
γ can be obtained easily.

§7 Simulation study

The Type I error probability and power of the above testing approaches are investigated
from the numerical perspective by using the Monte Carlo simulation. For convenience, here
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we only provide the algorithm of the Bootstrap approach for hypothesis testing problem (9) as
follows.

Algorithm 1

Step 1: For a given (a, b, c, σ2
α, σ

2
γ , σ

2
ε , c0), generate t1 ∼ (bcσ2

α + cσ2
γ + σ2

ε)χ
2
n1

and t3 ∼
(cσ2

γ + σ2
ε)χ

2
n3
.

Step 2: Compute F1 in (13) , and denoted by f1.

Step 3: Generate T1B ∼ (bcc0 + t3/n3)χ
2
n1

and T3B ∼ (t3/n3)χ
2
n3
, then compute F1B in

(14).

Step 4: Repeat Step 3 l1 times and compute p1 by (15). If p1 < δ, then Q = 1. Otherwise,
Q = 0.

Step 5: Repeat Steps 1-4 l2 times and get Q1, · · · , Ql2 . Then the Type I error probability

is
l2∑
i=1

Qi/l2.

Based on the above algorithm, the power of hypothesis testing problem (9) under H1 can
be obtained similarly.

In this simulation, the parameters and sample sizes are set as follows. Firstly, let the
nominal significance level δ be 0.025, 0.05, 0.075, 0.1, and the number of inner loops l1 and
outer loops l2 both be 2500. Secondly, considering the hypothesis testing problem of fixed effect
in (5), the sample sizes (a, b, c) are (2,2,2), (2,3,4), (3,4,5) and (5,6,6). Let αε = α∗1n and
α∗ = 0, 0.5, 1, 1.5, 2, then we set σ2

β = σ2
ε = 1, σ2

α = 0.1, 0.5, 1, 1.5, and σ2
γ = 6, 6.5, 7, 8. Finally,

considering the hypothesis testing problems of variance component functions, the sample sizes
(a, b, c) are (3,4,5), (5,6,7), (6,8,10) and (8,10,12). For hypothesis testing problem (9), we
suppose c0 = 0.1, σ2

α = σ2
β = 0.1, σ2

γ = 0.1, 1, 2.5, 4, 6, and σ2
ε = 0.5, 2.5, 4, 6, 8. For hypothesis

testing problem (18), let c1 = 8, σ2
β = 0.5, σ2

α = 4, 4.5, 5, 5.5, 6, and σ2
ε = 0.5, 1, 1.5, 2, 2.5.

For hypothesis testing problem (5), Tables 1 and 2 respectively give the simulated Type I
error probabilities and powers. As in Table 1, the exact test statistic is slightly conservative
when the sample size is small. And the actual levels of the exact test statistic are near the
nominal significance levels as the sample size increases. As in Table 2, the powers of this
approach increase significantly.

For hypothesis testing problem (9), Table 3 presents the simulated Type I error probabilities
of the Bootstrap approach (BA) and generalized approach (GA) at different nominal significance
levels. When the sample size is small, the Type I error probabilities of BA is slightly liberal,
while those of GA is slightly conservative. With the increase of sample size, the actual levels
of the proposed two approaches are closer to the nominal significance levels. And the Type
I error probabilities of BA are better than those of GA in most cases. Table 4 presents the
simulated powers of BA and GA at different nominal significance levels. The powers of BA are
consistently better than those of GA.

For hypothesis testing problem (18), Tables 5 and 6 respectively give the simulated Type
I error probabilities and powers of BA and GA at different nominal significance levels. From
Table 5, the BA and GA are relatively conservative and liberal respectively under small sample
size. However, most of the results are significantly improved as the sample size increases. And
the Type I error probabilities of BA are better than those of GA in most cases. From Table 6,
as σ2

α + σ2
β + σ2

γ departs from the null hypothesis and the sample size increases, the powers of
BA and GA both increase, but the latter is consistently better than the former.

Remark 7.1. In the above simulations, we only provide the results under zero and positive
skewness parameter. When the skewness parameter is negative, the simulation results are
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similar to those of positive skewness parameter, so is omitted.

Remark 7.2. For hypothesis testing problem (23), we also give the simulations under the
parameter setting of c2 = 5, σ2

γ = 0.1, σ2
β = 4, 4.5, 5, 5.5, 6, and σ2

ε = 0.1, 0.5, 1, 1.5, 2. The
results show that the Type I error probabilities and powers of BA are both better than those
of GA under small sample size. As the sample size increases, the above two approaches can
efficiently control the Type I error probability. However, due to space limitations, the simulation
results are not shown. If the reader is interested, they can be obtained from the author.

Table 1. Type I error probabilities for (5) (σ2
β = σ2

ε = 1, µ = µ0 = 0).

a b c α∗ σ2
α σ2

γ
δ

0.025 0.05 0.075 0.1

2 2 2 0 0.1 6 0.0208 0.0448 0.0720 0.0972

0.5 6.5 0.0216 0.0452 0.0712 0.0960

1 7 0.0212 0.0452 0.0708 0.0956

1.5 8 0.0224 0.0432 0.0700 0.0960

2 3 4 0.5 0.1 6 0.0240 0.0452 0.0604 0.0808

0.5 6.5 0.0240 0.0444 0.0608 0.0828

1 7 0.0232 0.0464 0.0608 0.0820

1.5 8 0.0236 0.0480 0.0620 0.0844

3 4 5 1 0.1 6 0.0256 0.0548 0.0820 0.1088

0.5 6.5 0.0276 0.0564 0.0800 0.1060

1 7 0.0292 0.0564 0.0820 0.1076

1.5 8 0.0308 0.0568 0.0828 0.1104

5 6 6 2 0.1 6 0.0268 0.0576 0.0796 0.1064

0.5 6.5 0.0284 0.0532 0.0836 0.1048

1 7 0.0272 0.0592 0.0836 0.1084

1.5 8 0.0268 0.0596 0.0864 0.1108

Table 2. Powers for (5) (σ2
α = σ2

β = σ2
γ = 1, µ0 = 0).

a b c α∗ σ2
ε µ

δ

0.025 0.05 0.075 0.1

2 2 2 0 1 1 0.0393 0.0784 0.1148 0.1444

1.5 2 0.0864 0.1532 0.2028 0.2504

2 3 0.1600 0.2592 0.3496 0.4196

2.5 4 0.2564 0.4012 0.5140 0.6088

2 3 4 0.5 1 1 0.0760 0.1248 0.1588 0.1884

1.5 2 0.2424 0.3356 0.4028 0.4604

2 3 0.5376 0.6432 0.7040 0.7456

2.5 4 0.7904 0.8592 0.8928 0.9208

3 4 5 1 1 1 0.1416 0.1976 0.2428 0.2784

1.5 2 0.4360 0.5268 0.5844 0.6284

2 3 0.8104 0.8608 0.8868 0.9056

2.5 4 0.9660 0.9796 0.9852 0.9896

5 6 6 2 1 1 0.2280 0.2944 0.3352 0.3712

1.5 2 0.7092 0.7736 0.8084 0.8384

2 3 0.9752 0.9844 0.9868 0.9896

2.5 4 0.9996 1.0000 1.0000 1.0000
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Table 3. Type I error probabilities for (9) (σ2
β = σ2

α = c0 = 0.1).

δ

a b c σ2
γ σ2

ε 0.025 0.05 0.075 0.1

BA GA BA GA BA GA BA GA

3 4 5 0.1 0.5 0.0268 0.0184 0.0516 0.0384 0.0756 0.0596 0.1004 0.0816

1 2.5 0.0352 0.0212 0.0604 0.0432 0.0856 0.0660 0.1084 0.0892

2.5 4 0.0344 0.0224 0.0596 0.0452 0.0848 0.0700 0.1060 0.0940

4 6 0.0328 0.0232 0.0584 0.0480 0.0848 0.0716 0.1044 0.0964

6 8 0.0316 0.0244 0.0580 0.0476 0.0848 0.0736 0.1032 0.0964

5 6 7 0.1 0.5 0.0252 0.0228 0.0512 0.0452 0.0756 0.0712 0.0996 0.0952

1 2.5 0.0260 0.0240 0.0516 0.0452 0.0756 0.0708 0.1012 0.0956

2.5 4 0.0268 0.0236 0.0512 0.0476 0.0788 0.0724 0.1012 0.0944

4 6 0.0264 0.0244 0.0512 0.0476 0.0768 0.0740 0.1012 0.0972

6 8 0.0264 0.0244 0.0496 0.0488 0.0752 0.0744 0.1004 0.0980

6 8 10 0.1 0.5 0.0252 0.0244 0.0496 0.0472 0.0752 0.0736 0.1004 0.0972

1 2.5 0.0252 0.0244 0.0500 0.0464 0.0760 0.0712 0.1008 0.0956

2.5 4 0.0264 0.0248 0.0504 0.0480 0.0764 0.0728 0.1012 0.0976

4 6 0.0260 0.0240 0.0496 0.0488 0.0756 0.0736 0.1012 0.0976

6 8 0.0260 0.0244 0.0504 0.0484 0.0752 0.0740 0.1004 0.0984

8 10 12 0.1 0.5 0.0252 0.0244 0.0504 0.0476 0.0752 0.0724 0.1000 0.0984

1 2.5 0.0260 0.0232 0.0504 0.0488 0.0748 0.0728 0.1000 0.0972

2.5 4 0.0252 0.0244 0.0508 0.0492 0.0764 0.0728 0.1004 0.0980

4 6 0.0248 0.0236 0.0512 0.0488 0.0748 0.0744 0.1000 0.0984

6 8 0.0256 0.0248 0.0500 0.0496 0.0748 0.0748 0.1004 0.0988

Table 4. Powers for (9) (σ2
β = σ2

ε = c0 = 0.1).

δ

a b c σ2
α σ2

γ 0.025 0.05 0.075 0.1

BA GA BA GA BA GA BA GA

3 4 5 0.5 1 0.1444 0.1056 0.2120 0.1748 0.2628 0.2232 0.3048 0.2680

1 1.5 0.2160 0.1596 0.2960 0.2544 0.3496 0.3108 0.3980 0.3612

1.5 2 0.2428 0.1988 0.3320 0.2956 0.3916 0.3564 0.4380 0.4048

2 2.5 0.2644 0.2176 0.3548 0.3168 0.4140 0.3848 0.4616 0.4348

2.5 3 0.2752 0.2284 0.3692 0.3340 0.4288 0.4032 0.4760 0.4552

5 6 7 0.5 1 0.3032 0.2828 0.3924 0.3724 0.4612 0.4444 0.5164 0.5064

1 1.5 0.4872 0.4656 0.5752 0.5620 0.6360 0.6228 0.6744 0.6644

1.5 2 0.5632 0.5456 0.6468 0.6404 0.6964 0.6884 0.7340 0.7268

2 2.5 0.6028 0.5920 0.6860 0.6776 0.7284 0.7248 0.7688 0.7604

2.5 3 0.6284 0.6216 0.7116 0.7008 0.7492 0.7432 0.7848 0.7804

6 8 10 0.5 1 0.4392 0.4284 0.5316 0.5200 0.5956 0.5864 0.6288 0.6224

1 1.5 0.6568 0.6492 0.7228 0.7164 0.7672 0.7608 0.7964 0.7936

1.5 2 0.7368 0.7296 0.7920 0.7888 0.8256 0.8220 0.8528 0.8512

2 2.5 0.7808 0.7728 0.8256 0.8232 0.8576 0.8556 0.8768 0.8744

2.5 3 0.8004 0.7932 0.8488 0.8464 0.8744 0.8716 0.8964 0.8940

8 10 12 0.5 1 0.5988 0.5940 0.6760 0.6724 0.7256 0.7204 0.7612 0.7588

1 1.5 0.8184 0.8092 0.8604 0.8584 0.8952 0.8916 0.9100 0.9096

1.5 2 0.8852 0.8824 0.9164 0.9156 0.9388 0.9372 0.9464 0.9464

2 2.5 0.9144 0.9128 0.9428 0.9416 0.9556 0.9548 0.9636 0.9636

2.5 3 0.9344 0.9336 0.9528 0.9524 0.9652 0.9640 0.9720 0.9720
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Table 5. Type I error probabilities for (18) (σ2
α + σ2

β + σ2
γ = c1 = 8, σ2

β = 0.5).

δ

a b c σ2
α σ2

ε 0.025 0.05 0.075 0.1

BA GA BA GA BA GA BA GA

3 4 5 4 0.5 0.0236 0.0504 0.0544 0.1004 0.0880 0.1460 0.1172 0.1820

4.5 1 0.0204 0.0480 0.0512 0.0920 0.0832 0.1352 0.1100 0.1748

5 1.5 0.0172 0.0444 0.0496 0.0864 0.0752 0.1276 0.1052 0.1688

5.5 2 0.0168 0.0416 0.0464 0.0820 0.0740 0.1208 0.0992 0.1592

6 2.5 0.0196 0.0396 0.0428 0.0764 0.0712 0.1128 0.0976 0.1460

5 6 7 4 0.5 0.0100 0.0396 0.0336 0.0816 0.0600 0.1208 0.0896 0.1484

4.5 1 0.0112 0.0372 0.0356 0.0756 0.0608 0.1140 0.0876 0.1436

5 1.5 0.0144 0.0364 0.0400 0.0720 0.0624 0.1064 0.0908 0.1412

5.5 2 0.0176 0.0332 0.0416 0.0688 0.0656 0.1012 0.0924 0.1360

6 2.5 0.0204 0.0320 0.0456 0.0640 0.0692 0.0944 0.0956 0.1280

6 8 10 4 0.5 0.0112 0.0392 0.0312 0.0764 0.0576 0.1120 0.0872 0.1408

4.5 1 0.0140 0.0352 0.0380 0.0720 0.0616 0.1044 0.0896 0.1340

5 1.5 0.0192 0.0316 0.0420 0.0716 0.0680 0.0984 0.0924 0.1288

5.5 2 0.0224 0.0312 0.0452 0.0660 0.0700 0.0952 0.0952 0.1240

6 2.5 0.0232 0.0304 0.0464 0.0632 0.0724 0.0924 0.0964 0.1192

8 10 12 4 0.5 0.0152 0.0328 0.0388 0.0704 0.0612 0.1040 0.0884 0.1316

4.5 1 0.0196 0.0332 0.0420 0.0688 0.0672 0.0976 0.0908 0.1252

5 1.5 0.0220 0.0336 0.0448 0.0640 0.0720 0.0924 0.0952 0.1248

5.5 2 0.0232 0.0320 0.0460 0.0620 0.0724 0.0892 0.0960 0.1204

6 2.5 0.0232 0.0312 0.0476 0.0612 0.0732 0.0892 0.0964 0.1164

Table 6. Powers for (18) (c1 = 8, σ2
γ = σ2

ε = 0.5).

δ

a b c σ2
α σ2

β 0.025 0.05 0.075 0.1

BA GA BA GA BA GA BA GA

3 4 5 6 4.5 0.0936 0.1464 0.1508 0.2204 0.1948 0.2832 0.2284 0.3340

6.5 5 0.1068 0.1844 0.1616 0.2656 0.1976 0.3332 0.2364 0.3896

7 5.5 0.1100 0.2212 0.1680 0.3096 0.2144 0.3840 0.2512 0.4408

8 6 0.1152 0.2780 0.1848 0.3788 0.2344 0.4496 0.2764 0.5024

10 8 0.1492 0.4280 0.2204 0.5260 0.2628 0.5868 0.2912 0.6272

5 6 7 6 4.5 0.1040 0.1656 0.1708 0.2512 0.2212 0.3272 0.2696 0.3876

6.5 5 0.1156 0.2220 0.1856 0.3232 0.2468 0.4020 0.3064 0.4620

7 5.5 0.1196 0.2836 0.1988 0.3904 0.2700 0.4720 0.3192 0.5256

8 6 0.1380 0.3744 0.2352 0.4856 0.3004 0.5484 0.3428 0.6032

10 8 0.1800 0.5660 0.2612 0.6604 0.3104 0.7284 0.3408 0.7740

6 8 10 6 4.5 0.1056 0.1900 0.1780 0.2856 0.2408 0.3588 0.3008 0.4192

6.5 5 0.1320 0.2624 0.2092 0.3712 0.2832 0.4436 0.3424 0.5008

7 5.5 0.1324 0.3404 0.2264 0.4484 0.3060 0.5180 0.3584 0.5712

8 6 0.1552 0.4420 0.2652 0.5420 0.3452 0.6116 0.3916 0.6652

10 8 0.1972 0.6640 0.2880 0.7548 0.3392 0.8032 0.3700 0.8328

8 10 12 6 4.5 0.0996 0.2340 0.1820 0.3312 0.2528 0.4108 0.3260 0.4684

6.5 5 0.1340 0.3292 0.2244 0.4356 0.3116 0.5048 0.3832 0.5548

7 5.5 0.1400 0.4256 0.2472 0.5204 0.3368 0.5884 0.4044 0.6376

8 6 0.1676 0.5328 0.2940 0.6256 0.3776 0.6912 0.4364 0.7432

10 8 0.2052 0.7744 0.3012 0.8324 0.3608 0.8704 0.3992 0.8892
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§8 Illustrative examples

In this section, to illustrate the rationality and effectiveness of the proposed approaches,
we apply them to the examples of consumer price index (CPI) and value-added index of three
industries.

Example 1 The above approaches are applied to the study of CPI for Jiangsu, Zhejiang
and Shanghai from January to June in 2020. The frequency histogram of CPI is given in Figure
1. For testing the normality of the data, the p-values from R output of Shapiro-Wilk test,
Anderson-Darling test and Cramer-von Mises test are 1.186e-07, 2.536e-11 and 6.91e-09 respec-
tively. We can conclude that the CPI is not normally distributed at the nominal significance level
of 5%. Further, the chi-square goodness-of-fit test is used to test the null hypothesis that the CPI
is skew-normally distributed. The value of the test statistic χ2 = 4.3412 < χ2

2(0.95) = 5.9915,
so the null hypothesis is not rejected at the nominal significance level of 5%. Hence, the distri-
bution of CPI can be considered approximately skew-normal. Based on the method of moment
estimation, the CPI is approximately distributed as SN(96.9298, 6.62842, 22.3439) and its den-
sity curve is given in Figure 1.
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Figure 1. CPI histogram and probability density curve.

In model (1), y is a 144×1 observed values. Assume that α ∼ N8(0, σ
2
αI8), β ∼ N6(0, σ

2
βI6),

γ ∼ N48(0, σ
2
γI48), ε ∼ SN144(0, σ

2
εI144,αε), and all random vectors are mutually independent.

Firstly, consider the hypothesis testing problem for fixed effect

H0 : µ ≤ 0 versus H1:µ > 0. (30)

By (6), F = 1.6608 > F0.05(48, 96) = 1.4889. Hence, the null hypothesis H0 in (30) is rejected
at the nominal significance level of 5%.

Secondly, consider the hypothesis testing problem for the single variance component

H0 : σ2
α ≤ 2 versus H1:σ

2
α > 2. (31)

From (15) and (17), the Bootstrap p-value and generalized p-value are respectively 0.3681 and
0.3778 by 104 loops. Hence, the null hypothesis H0 in (31) is not rejected by the above two
approaches at the nominal significance level of 5%.

Thirdly, consider the hypothesis testing problem for the sum of variance components

H0 : σ2
α + σ2

β + σ2
γ ≤ 10 versus H1:σ

2
α + σ2

β + σ2
γ > 10. (32)

The Bootstrap p-value by (21) is 0.0426, and the generalized p-value by (22) is 0.0307. There-
fore, the above two p-values indicate that these two approaches both reject the null hypothesis
H0 in (32).
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Finally, consider the hypothesis testing problem for the ratio of variance components

H0 : σ2
α/σ

2
β ≤ 5 versus H1:σ

2
α/σ

2
β > 5. (33)

The Bootstrap p-value and generalized p-value are respectively 0.9425 and 0.9486 based on (27)
and (29). Thus, the null hypothesis H0 in (33) is not rejected by the two approaches at the
nominal significance level of 5%.

Example 2 The proposed approaches are applied to the value-added index of three indus-
tries in northwest China from 2010 to 2018. Similar to Example 1, Shapiro-Wilk, Anderson-
Darling, Cramer-von Mises tests are used to conduct the normality test for the data. It shows
that the p-values of the value-added index of three industries are 0.0003, 8.43e-05 and 0.0004
respectively. Therefore, the data is not normally distributed at the nominal significance lev-
el of 5%. Furthermore, to verify the skew-normality of the data, we intend to test the null
hypothesis H0: the value-added index of three industries are skew-normally distributed. And
the fitted value of the data is χ2 = 5.2167 < χ2

2(0.95) = 5.9915. Thus, the value-added in-
dex of three industries in northwest China is considered to follow the skew-normal distribution
SN(104.2468, 5.93522, 2.7602) at the nominal significance level of 5% and its density curve is
given in Figure 2.
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Figure 2. Value-added index histogram and probability density curve.

In model (1), y is a 135×1 observed values. Assume that α ∼ N3(0, σ
2
αI3), β ∼ N9(0, σ

2
βI9),

γ ∼ N27(0, σ
2
γI27), ε ∼ SN135(0, σ

2
εI135,αε), and all random vectors are mutually independent.

First of all, consider the hypothesis testing problem for the fixed effect

H0 : µ ≤ 0 versus H1:µ > 0. (34)

By (6), F = 2.4090 > F0.05(27, 108) = 1.5893. Therefore, the null hypothesis H0 in (34) is
rejected at the nominal significance level of 5%.

Next, consider the hypothesis testing problem for the single variance component

H0 : σ2
α ≤ 2 versus H1:σ

2
α > 2. (35)

By 104 loops, the Bootstrap p-value by (15) is 0.0099, and the generalized p-value by (17) is
0.0113. Hence, the above two p-values indicate that these two approaches both reject the null
hypothesis H0 in (35).

Then, consider the hypothesis testing problem for the sum of variance components

H0 : σ2
α + σ2

β + σ2
γ ≤ 12 versus H1:σ

2
α + σ2

β + σ2
γ > 12. (36)

By (21) and (22), the Bootstrap p-value and generalized p-value are respectively 0.0292 and
0.0223. As a result, the null hypothesis H0 in (36) is rejected by the two approaches at the
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nominal significance level of 5%.
Finally, consider the hypothesis testing problem for the ratio of variance components

H0 : σ2
α/σ

2
β ≤ 5 versus H1:σ

2
α/σ

2
β > 5. (37)

Based on (27) and (29), the Bootstrap p-value and generalized p-value are respectively 0.9869
and 0.6793. Thus, the null hypothesis H0 in (37) is not rejected by the two approaches at the
nominal significance level of 5%.

§9 Conclusion

In this paper, we study the one-sided hypothesis testing problems for the fixed effect and
variance component functions in the two-way classification random effects model with skew-
normal errors. Firstly, the exact test statistic for the fixed effect is constructed. Secondly, using
the Bootstrap approach and generalized approach, the test statistics and confidence intervals
for the single variance component, the sum and ratio of variance components are established.
Further, the Monte Carlo simulation results are given as follows. For the hypothesis testing
problem of the fixed effect, the exact test statistic performs well at different nominal significance
levels. For the hypothesis testing problems of the single variance component and sum of variance
components, the Bootstrap approach is better than the generalized approach, because the
former can more efficiently control the Type I error probability. For the hypothesis testing
problem of the ratio of variance components, the Bootstrap approach performs better under
small sample size, and the generalized approach is better than the Bootstrap approach as the
sample size increases. Finally, the above approaches are applied to the examples of the consumer
price index and value-added index of three industries to verify their rationality and validity.
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