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On the grouping effect of the l1−2 models

SHEN Yi1 GUO Wan-ling1 HU Rui-fang2,∗

Abstract. This paper aims to study the mathematical properties of the l1−2 models that

employ measurement matrices with correlated columns. We first show that the l1−2 model

satisfies the grouping effect which ensures that coefficients corresponding to highly correlated

columns in a measurement matrix have small differences. Then we provide the stability analysis

based on the sparse approximation property. When the entries of the vectors have different

signs, we show that the grouping effect also holds for the constraint l1+2 minimization model

which is implicated by the linearized Bregman iteration.

§1 Introduction

Many high-dimensional signals have inherently low-dimensional structures, i.e., most in-

formation can be represented by fewer coefficients. The fundamental problem of compressed

sensing is recovering sparse signals from limited measurements. Sparse recovery has gained

much attention, with applications in several areas such as signal processing, astronomy, and

digital image restoration. Interested readers could consult, for example, [5, 7, 8] for details.

Let X ∈ Rn×p denote the measurement matrix and β∗ ∈ Rp denote an unknown true vector

to be recovered. The standard model of compressed sensing is formulated as an underdetermined

linear system

y = Xβ∗ + z, (1.1)

where y ∈ Rn is said to be the measurements and z denotes the noise term. Throughout this

paper, the matrix X is assumed to be a surjective map with n < p. It follows that the linear

system has infinite solutions. The goal of compressed sensing is to recover β∗ successfully from

y and X by taking sparsity into account. The l1 norm which works as the convex relaxation

of l0 has been widely used in information theory and statistical learning, see e.g. [5, 8, 18, 26].

Another relaxed method is lq “norm” with 0 < q ≤ 1, interested readers can see the recent

work in [6, 10,17] and references therein.
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To ensure successful recovery, the measurement matrices are usually assumed to be inco-

herent systems. Since measurement matrices with highly correlated columns often appear in

machine learning and statistics. This assumption may have limitations in some situations. For

the highly coherence system, the difference between the l1 and l2 norms denoted as l1−2, has

been shown to have superior performance over the classic l1 method in [11, 12, 22]. For q = 1

and q = 2, the lq norm of the vector β is defined by ∥β∥q = (
∑p

i=1 |βi|q)
1/q

. The unconstrained

l1−2 model is formulated as follows,

min
β∈Rp

λ (∥β∥1 − ∥β∥2) +
1

2
∥y −Xβ∥22. (1.2)

The corresponding constrained version is

min
β∈Rp

λ{∥β∥1 − ∥β∥2} subject to Xβ = y (1.3)

where λ is a positive parameter. Numerical experiments demonstrate that the l1−2 method is

always better than the l1 method to recover sparse vectors, especially for the high coherence

sensing matrices [12]. The l1−2 penalty term is also successfully used in multichannel blind

deconvolution problem where the measurement operator is highly correlated [21]. But currently,

the corresponding theory that guarantees the performance of the l1−2 model for dependent

matrices is lacking. This motivates us to analyze l1−2 based models from a statistical point

of view. More specifically, we study the grouping effect and provide the stable guarantee for

correlated Gaussian random matrices.

The grouping effect property of the elastic net was first introduced to [25, Theorem 1] then

further discussed in [3,15,16,24]. Elastic net is a linear combination of l1 and l2 penalties, and

combines properties of LASSO and ridge regularization. Let xi denote the i-th column vector

of the measurement matrix X. The design matrix is assumed to be standardized, i,e, ∥xi∥2 = 1,

i = 1, . . . , p. Then the correlation between the vector xi and the vector xj is denoted by

ρ := ⟨xi,xj⟩ = xT
i xj ,

where xT
i denotes the transpose of xi. Note that if xi and xj are close, then ρ ≈ 1. Simple

calculation leads to

∥xi − xj∥22 = 2− 2 ⟨xi,xj⟩ = 2(1− ρ). (1.4)

Roughly speaking, if xi and xj are close, the corresponding difference between the coefficient

paths of predictors i and j is expected to be small, i,e, β̂i ≈ β̂j . If any two columns of the

measurement matrix xi and xj are highly relevant, then the corresponding coefficients β̂i and

β̂j are expected to be very close. Mathematically, the grouping effect can be expressed as∣∣∣β̂i − β̂j

∣∣∣ ≤ δ∥xi − xj∥2,

where δ is a constant. Zou [25] first studied the grouping effect of elastic net and gave the

mathematical theorem for the situation of the same sign. Zhou gave the strict mathematical

proof process and relaxed the condition of the same sign, such that the conclusion still holds

for the elastic net model [24]. We also can find this property in other models such as image

restoration and signal processing. For example, the constrained l1+2 minimization model was

proved to satisfy the grouping effect on condition of the same signs [3]. The balance approach

which was first obtained in [2] from the image inpainting problem also satisfies the grouping

effect property [16].
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Several sufficient conditions have been obtained to guarantee that sparse vectors can be

recovered from (1.2) robustly. Basically, there are two types of sufficient conditions. One is

based on the restricted isometry property [5] and the other is based on the mutual coherence [7].

The first sufficient condition for stable recovery was given in [22]. Another sufficient condition

via mutual coherence was studied in [19]. Both of them require that the column vectors should

be uncorrelated. Since the l1−2 model takes good numerical performance of high correlated

matrix, we consider stable recovery of the l1−2 model with measurement matrix with highly

correlated columns. A commonly used statistical model is the covariance matrix which takes

columns to be Gaussian vectors with correlated entries.

The rest of this paper is organized as follows. In Section 2, we prove the main results on

grouping effect of two l1−2 models. In Section 3, we extend the work in [3]. We prove that

the grouping effect of the l1+2 model holds without the condition that the coefficients have the

same signs. In Section 4, the stability of the constraint l1−2 model is obtained.

§2 The grouping effect

In this section, we will focus on l1−2 models. We study the grouping effect property and

give the relevant proof. Since the l1−2 models are non convex, the relationship between the

model (1.2) and (1.3) is not clear. The grouping effect properties of the model (1.2) and the

model (1.3) were differently established. We consider the unconstrained minimization program

(1.2) first.

Theorem 1. Given the response y and the standardized matrix X. Let β̂ =
(
β̂1, . . . , β̂p

)T
∈ Rp

be the solution to the minimization program (1.2). If β̂iβ̂j > 0, then∣∣∣β̂i − β̂j

∣∣∣ ≤ √
2(1− ρ)

λ

∥∥∥y −Xβ̂
∥∥∥
2

∥∥∥β̂∥∥∥
2
. (2.1)

Proof. For any given real number β, sgn(β) denotes its sign. Since the vector β̂ is the solution

to minimization program (1.2), for each i,j, we have

0 ∈ λ sgn
(
β̂i

)
− λ

β̂i∥∥∥β̂∥∥∥
2

− xT
i

(
y −Xβ̂

)
(2.2)

and

0 ∈ λ sgn
(
β̂j

)
− λ

β̂j∥∥∥β̂∥∥∥
2

− xT
j

(
y −Xβ̂

)
. (2.3)

Under the assumption that β̂iβ̂j > 0, both sgn
(
β̂i

)
and sgn

(
β̂j

)
contain only one element (1

or −1). Hence, the “∈” in (2.2) and (2.3) can be replaced by “=”, and sgn
(
β̂i

)
= sgn

(
β̂j

)
.

Subtracting equation (2.2) from equation (2.3) gives

λ
β̂i − β̂j∥∥∥β̂∥∥∥

2

= −
(
xT
i − xT

j

) (
y −Xβ̂

)
. (2.4)

Since ∣∣∣(xT
i − xT

j

) (
y −Xβ̂

)∣∣∣ ≤ ∥xi − xj∥2
∥∥∥y −Xβ̂

∥∥∥
2
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Figure 1. Contour line of the cost function in Example 1.

and rearranging the terms (2.4), we have∣∣∣β̂i − β̂j

∣∣∣ ≤ ∥xi − xj∥2
λ

∥∥∥y −Xβ̂
∥∥∥
2

∥∥∥β̂∥∥∥
2

=

√
2(1− ρ)

λ

∥∥∥y −Xβ̂
∥∥∥
2

∥∥∥β̂∥∥∥
2
.

Compared with the results of the elastic net, the condition β̂iβ̂j > 0 in Theorem 1 seems

superfluous. While the following example shows that the condition β̂iβ̂j > 0 is necessary for

the l1−2 model.

Example 1. The linear system y = Xβ is with

y =

(
−0.01

0.06

)
and X =

(
0.025 0.026

−0.026 −0.024

)
.

The cost function is set to be

F (β) = λ(∥β∥1 − ∥β∥2) +
1

2
∥Xβ − y∥22

with λ = 0.01. The contour of the function F (β) is presented in Figure 1. The columns vectors

x1 and x2 are highly correlated. It is observed in Figure 1 that there exist two local minimizers.

One local minimizer is (β1, 0). We see that the difference between the two coefficients |β̂1 − β̂2|
is large. The other local minimizer which is (0, β2) has the same property. Therefore, the

assumption β̂iβ̂j > 0 can not be removed in Theorem 1.

To solve the constrained l1−2 model (1.3), an iterative scheme based on the difference of

convex algorithm (DCA) was proposed in [12]. The Lagrange multiplier formulation of the

constrained l1−2 model (1.3) is

L(β,ω) = λ(∥β∥1 − ∥β∥2) + ωT(y −Xβ), (2.5)

where ω is the Lagrange multiplier. It was proved in [12] that the sequence generated by DCA
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iterations converges to a stationary point which satisfies the first-order optimality condition:
0 ∈ λ sgn

(
β̂
)
− λ

β̂∥∥∥β̂∥∥∥
2

−XTω,

Xβ̂ = y.

(2.6)

For any given matrix X, let ∥X∥2 denote its spectral norm. The following results show that

any stationary point which satisfies (2.6) has the grouping effect property.

Theorem 2. Suppose that the response y is given and the measurement matrix X is standard-

ized, Let β̂ =
(
β̂1, . . . , β̂p

)T
satisfy (2.6). If β̂iβ̂j > 0, then∣∣∣β̂i − β̂j

∣∣∣ ≤√2(1− ρ)

(∥∥∥β̂∥∥∥
2

√
p
∥∥∥(XXT)

−1
∥∥∥
2
+
∥∥∥(XXT

)−1
∥∥∥
2
∥y∥2

)
. (2.7)

Proof. For every i ̸= j ∈ {1, . . . , p} such that β̂iβ̂j > 0, the first equation in (2.6) leads to

λ sgn
(
β̂i

)
− λ

β̂i∥∥∥β̂∥∥∥
2

− xT
i ω = 0, (2.8)

λ sgn
(
β̂j

)
− λ

β̂j∥∥∥β̂∥∥∥
2

− xT
j ω = 0. (2.9)

Subtracting equation (2.8) from equation (2.9) gives

λ
β̂i − β̂j∥∥∥β̂∥∥∥

2

= −
(
xT
i − xT

j

)
ω.

It follows that ∣∣∣β̂i − β̂j

∣∣∣ ≤ √
2(1− ρ)

λ
∥ω∥2

∥∥∥β̂∥∥∥
2
. (2.10)

Next we estimate ∥ω∥2. For the stationary point, there exists a vector p ∈ ∂
(∥∥∥β̂∥∥∥

1

)
such that

XTω = λ

p− β̂∥∥∥β̂∥∥∥
2

 .

Multiplying both sides by X, we have that

ω = λ

(XXT)−1Xp− (XXT)−1Xβ̂∥∥∥β̂∥∥∥
2

 = λ

(XXT)−1Xp− (XXT)−1y∥∥∥β̂∥∥∥
2

 .

Therefore,

∥ω∥2 ≤ λ

∥∥(XXT)−1X
∥∥
2
∥p∥2 +

∥∥(XXT)−1
∥∥
2
∥y∥2∥∥∥β̂∥∥∥

2


≤ λ

√p ∥(XXT)−1∥2 +
∥∥(XXT)−1

∥∥
2
∥y∥2∥∥∥β̂∥∥∥

2

 . (2.11)
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Note that ∥p∥2 ≤ √
p and∥∥(XXT )−1X

∥∥
2
=

√∥∥∥∥((XXT )
−1

X
)T

(XXT )
−1

X

∥∥∥∥
2

=

√∥∥∥XT (XXT )
−2

X
∥∥∥
2

=

√∥∥∥(XXT )
−1
∥∥∥
2
. (2.12)

It follows from (2.10) and (2.11) that (2.7) holds.

§3 Linearized Bregman Iteration

This section considers the l1+2 model that is implicated by the iterative scheme in [3]. A

simple and fast iteration scheme based on linearized Bregman iteration was proposed to [23]

find the sparse solution to the linear system (1.1). The convergence analysis for the linearized

Bregman iteration was given in [3,4]. The limit of sequence generated by the linearized Bregman

iteration was proved to be the unique solution of the convex minimization problem

min
β∈Rp

{
λ1∥β∥1 + λ2∥β∥22

}
subject to Xβ = y, (3.1)

where λ1 and λ2 are positive parameters. The linearized Bregman iteration has led to a frame

based deblurring algorithm in [3] and a low rank matrix completion algorithm in [1]. The

following result says if β̂iβ̂j > 0, then the solution of minimization problem (3.1) satisfies the

grouping effect property.

Theorem 3. [3, Theorem 4.6.] Given the response y and the standardized matrix X. Let

β̂ =
(
β̂1, . . . , β̂p

)T
be the solution to the minimization program (3.1). If β̂iβ̂j > 0, we have∣∣∣β̂i − β̂j

∣∣∣ ≤ √
2(1− ρ)

2λ2

(
λ1

√
p
∥∥∥(XXT)

−1
∥∥∥
2
+ 2λ2

∥∥∥(XXT
)−1
∥∥∥
2
∥y∥2

)
. (3.2)

Motivated by the work in [24], we prove in this section that the conclusion of Theorem 3

still holds without the condition that β̂iβ̂j > 0. We start with the following lemma on the non

zero entries of the true vector. The Lagrange multiplier formulation of the model (3.1) is

L(β,ω) = λ1∥β∥1 + λ2∥β∥22 + ωT(y −Xβ), (3.3)

where ω is the Lagrange multiplier.

Lemma 4. Suppose that β̂ ∈ Rp is a solution of the program (3.1). Let i ∈ {1, . . . , p}, if

β̂i ̸= 0, then ∣∣xT
i ω
∣∣ = λ1 + 2λ2

∣∣∣β̂i

∣∣∣ > λ1,

and if β̂i = 0, then
∣∣xT

i ω
∣∣ ≤ λ1.

Proof. Let the function F denote as the regularized empirical error in (3.1) by

F (β) = λ1∥β∥1 + λ2∥β∥22 + ωT(y −Xβ).

Denote ei ∈ Rp the vector with the i-th component 1 and all the other components 0. Here
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Xei = xi. Then for ϵ ∈ R we have

F
(
β̂ + ϵei

)
− F

(
β̂
)
= λ1

(∣∣∣β̂i + ϵ
∣∣∣− ∣∣∣β̂i

∣∣∣)+ λ2

(
2β̂iϵ+ ϵ2

)
− ϵxT

i ω. (3.4)

We can consider the two different cases, for i ∈ {1, . . . , p}. If β̂i ̸= 0, we restrict

ϵ ∈
(
−
∣∣∣β̂i

∣∣∣ , ∣∣∣β̂i

∣∣∣)
and see that both β̂i + ϵ and β̂i have the same signs and∣∣∣β̂i + ϵ

∣∣∣− ∣∣∣β̂i

∣∣∣ = sgn
(
β̂i

)(
β̂i + ϵ− β̂i

)
= sgn

(
β̂i

)
ϵ. (3.5)

Combining (3.4) and (3.5), we have

F
(
β̂ + ϵei

)
− F

(
β̂
)
=
(
λ1 sgn

(
β̂i

)
+ 2λ2β̂i − xT

i ω
)
ϵ+ λ2ϵ

2 ≥ 0.

For |ϵ| is sufficiently small, we can derive λ1 sgn
(
β̂i

)
+ 2λ2β̂i − xT

i ω = 0. Hence∣∣xT
i ω
∣∣ = ∣∣∣λ1 sgn

(
β̂i

)
+ 2λ2β̂i

∣∣∣
=
∣∣∣(λ1 + 2λ2

∣∣∣β̂i

∣∣∣) sgn(β̂i

)∣∣∣
= λ1 + 2λ2

∣∣∣β̂i

∣∣∣ (3.6)

> λ1.

If β̂i = 0, we see from (3.4) that

F
(
β̂ + ϵei

)
− F

(
β̂
)
= λ1|ϵ|+ λ2ϵ

2 − xT
i ωϵ ≥ 0.

When xT
i ω ̸= 0 and ϵ has the same sign, we have(

λ1 −
∣∣xT

i ω
∣∣) |ϵ|+ λ2ϵ

2 ≥ 0.

Let |ϵ| be sufficiently small, there have ∣∣xT
i ω
∣∣ ≤ λ1. (3.7)

Now we state the main result in this section. The proof can be viewed as a further analysis

of the proof of [3, Theorem 4.6].

Theorem 5. Suppose that the response y is given and the measurement matrix X is standard-

ized, then a minimization solution β̂ =
(
β̂1, . . . , β̂p

)T
of (3.1) satisfies (3.2).

Proof. From the Lagrange multiplier formulation (3.3), solving (3.1) is equivalent to solving0 ∈ λ1 sgn
(
β̂
)
+ 2λ2β̂ −XTω,

y = Xβ̂.
(3.8)

Since the vector β̂ is the solution of (3.1), for each i ̸= j ∈ {1, . . . , p}, the first equation in (3.8)

can be written as

0 ∈ λ1 sgn
(
β̂i

)
+ 2λ2β̂i − xT

i ω (3.9)

and

0 ∈ λ1 sgn
(
β̂j

)
+ 2λ2β̂j − xT

j ω. (3.10)

Note that for all β̂i ̸= 0 (i ∈ {1, . . . , p}), the sgn
(
β̂i

)
contains only one element. So in the
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equations of (3.9) and (3.10), we can use “=” instead of “∈”. To prove the inequality (3.2), we

consider the four different cases as follows.

Case 1. β̂i and β̂j are both non zero and have the same signs. Namely, sgn
(
β̂i

)
= sgn

(
β̂j

)
. This

part has been shown in [3]. We include it for completeness. Subtracting equation (3.9)

from equation (3.10) gives

0 = λ1

(
sgn

(
β̂i

)
− sgn

(
β̂j

))
+ 2λ2

(
β̂i − β̂j

)
−
(
xT
i − xT

j

)
ω.

Since sgn
(
β̂i

)
− sgn

(
β̂j

)
= 0, we find that

2λ2

(
β̂i − β̂j

)
−
(
xT
i − xT

j

)
ω = 0.

It is equal to

β̂i − β̂j =

(
xT
i − xT

j

)
ω

2λ2
.

Combining with (1.4), we conclude that∣∣∣β̂i − β̂j

∣∣∣ = ∣∣∣∣∣
(
xT
i − xT

j

)
ω

2λ2

∣∣∣∣∣ ≤
√
2 (1− ρ)∥ω∥2

2λ2
. (3.11)

Case 2. β̂i and β̂j are both non zero and have different signs. Then sgn
(
β̂i

)
= − sgn

(
β̂j

)
and

by (3.9) and (3.10), we see that

0 = 2λ1 sgn
(
β̂i

)
+ 2λ2

(
β̂i − β̂j

)
−
(
xT
i − xT

j

)
ω.

Since sgn
(
β̂i − β̂j

)
= sgn

(
β̂i

)
, we have(

2λ1 + 2λ2

∣∣∣β̂i − β̂j

∣∣∣) sgn(β̂i)−
(
xT
i − xT

j

)
ω = 0.

Hence, ∣∣∣β̂i − β̂j

∣∣∣ = ∣∣∣∣∣
(
xT
i − xT

j

)
ω

2λ2

∣∣∣∣∣− λ1

λ2
≤
√

2(1− ρ)∥ω∥2
2λ2

. (3.12)

Case 3. β̂i ̸= 0 and β̂j = 0. Now we infer from (3.6) and (3.7) and get∣∣xT
i ω
∣∣ = λ1 + 2λ2

∣∣∣β̂i

∣∣∣ ≥ ∣∣xT
j ω
∣∣+ 2λ2

∣∣∣β̂i

∣∣∣ .
After rearranging, we derive ∣∣∣β̂i

∣∣∣ ≤ ∣∣xT
i ω
∣∣− ∣∣xT

j ω
∣∣

2λ2
.

Since β̂j = 0, we have∣∣∣β̂i − β̂j

∣∣∣ ≤ ∣∣xT
i ω
∣∣− ∣∣xT

j ω
∣∣

2λ2
≤
√

2(1− ρ)

2λ2
∥ω∥2. (3.13)

Case 4. If β̂i = β̂j = 0, then (3.2) is trivial.

Next we estimate ∥ω∥2. The first equation in (3.8) gives

XTω = λ1 sgn
(
β̂
)
+ 2λ2β̂.

Multiplying both sides by X, we can derive that

ω = λ1

(
XXT

)−1
X sgn

(
β̂
)
+ 2λ2

(
XXT

)−1
Xβ̂.
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Therefore,

∥ω∥2 =
∥∥∥λ1

(
XXT

)−1
X sgn

(
β̂
)
+ 2λ2

(
XXT

)−1
y
∥∥∥
2

≤ λ1

∥∥∥(XXT
)−1

X
∥∥∥
2

∥∥∥sgn(β̂)∥∥∥
2
+ 2λ2

∥∥∥(XXT
)−1
∥∥∥
2
∥y∥2. (3.14)

Because each entry of sgn
(
β̂
)
is in [−1, 1], we have

∥∥∥sgn(β̂)∥∥∥
2
≤ √

p. By combining (3.11)

((3.12) or (3.13)), (3.14) and (2.12) together, we finally obtain∣∣∣β̂i − β̂j

∣∣∣ ≤ (λ1

√
p
∥∥∥(XXT )

−1
∥∥∥
2
+ 2λ2

∥∥∥(XXT
)−1
∥∥∥
2
∥y∥2

) √
2(1− ρ)

2λ2
.

§4 Sparse Approximation Property

The stability of convex model with correlated measurements was established in [13–15,20].

This section establishes the stability of the l1−2 model with the correlated Gaussian random

matrices. The correlated Gaussian random matrix XΣ is with independent and identically

distributed rows obeying the distribution N (0,Σ) with zero mean and a covariance matrix Σ.

The square root of the smallest eigenvalue of Σ is denoted by ρ1(Σ) and its maximal variance

is denoted by ρ22(Σ), respectively. Throughout this section, the measurement matrix that is

normalized by

X =
1√
n
XΣ

with Σ being a positive definite matrix. It was proved in [14, Theorem 1] that the following

inequlality

∥Xβ∥2 ≥ κ1∥β∥2 − κ2

√
log p

n
∥β∥1 for all β ∈ Rp (4.1)

holds with high probability with two positive constants κ1 = ρ1(Σ)
4 and κ2 = 9ρ2(Σ). It was

illustrated in [14] that many types of matrices satisfy (4.1) such as Toeplitz matrices, spiked

identity models.

Let βS denote the vector whose s-th entry is equal to s-th entry of β for s in S and equal

to zero otherwise. The sparse approximation property was used to provide sufficient conditions

for the stable recovery of the basis pursuit problem in [9, 17]. The relationship between the

sparse approximation property in [9, 17] and the inequality (4.1) was discussed in [15].

Proposition 6. [15, Proposition 4.] If the number of measurements n satisfies

n > 2(κ2/κ1)
2s log p, (4.2)

then with probability at least 1−c3 exp (−c4n), the normalized measurement matrix satisfies the

sparse approximation property,

∥βS∥2 ≤ c1∥Xβ∥2 + c2
∥β − βS∥1√

2s
, for all β ∈ Rp and #S ≤ 2s. (4.3)

with

c1 =
1

κ1 − κ2

√
2s log p

n

, c2 =
κ2

√
2s log p

n

κ1 − κ2

√
2s log p

n

, (4.4)
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c3 and c4 are positive constants.

We denote

a(s) =

√
s− 1√
s+ 1

, b(s) = 1 +

√
2√

s− 1
.

The performance guarantees of the l1−2 model are stated as follows.

Theorem 7. Consider the linear regression model (1.1) with

n > 72(κ2/κ1)
2s log p. (4.5)

Let β∗
s be the best s-sparse approximation of β∗ with s ≥ 2. If the noise vector z is bounded by

∥z∥2 ≤ ε, then the minimizer β̂ of the following programming:

min
β∈Rp

{∥β∥1 − ∥β∥2} subject to ∥Xβ − y∥2 ≤ ε, (4.6)

satisfies

∥β̂ − β∗∥2 ≤ C5ε+ C6
∥β∗ − β∗

s∥1√
s

(4.7)

with probability at least 1− c3 exp (−c4n), where positive constants

C5 =

(
1 +

1

a(s)

)
2c1

1− c2b(s)

and

C6 =

(
1 +

1

a(s)

)( √
s√

s− 1

) √
2c2

1− c2b(s)
+

2
√
s√

s− 1
depend on κ1, κ2, s and p.

Proof. Let h = β̂ − β∗. It follows that

∥Xh∥2 = ∥X(β̂ − β∗)∥2
= ∥(Xβ̂ − y)− (Xβ∗ − y)∥2
≤ ∥Xβ∗ − y∥2 + ∥Xβ̂ − y∥2
≤ 2ε.

For any S ⊂ {1, . . . , n}, we have

0 ≥
(
∥β̂∥1 − ∥β∗∥1

)
−
(
∥β̂∥2 − ∥β∗∥2

)
≥ ∥(β∗ + h)S∥1 + ∥(β∗ + h)Sc∥1 − (∥β∗

S∥1 + ∥β∗
Sc∥1)− ∥h∥2

≥ ∥hSc∥1 − ∥hS∥1 − 2∥β∗
Sc∥1 − ∥h∥2.

It follows that

∥hSc∥1 ≤ ∥hS∥1 + ∥hS∥2 + ∥hSc∥2 + 2∥β∗
Sc∥1. (4.8)

By the index set Λ, we denote the locations of the s largest entries of the vector β∗ in magnitude.

Using the standard decomposition method in compressed sensing, we let Λ1 denote locations

of the s largest entries in magnitude of h in Λc where Λc is the complement set of Λ. Then Λ2

denotes the locations of the s largest entries into magnitude of h in (Λ ∪ Λ1)
c, and so on. A

key inequality proved in [22] is∑
i≥2

∥hΛi∥2 ≤ ∥hΛc∥1 − ∥hΛc∥2√
s− 1

. (4.9)
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Let T = Λ ∪ Λ1, then T c = ∪i≥2Λi. It follows from (4.8) and (4.9) that

∥hT c∥2 ≤
∑
i≥2

∥hΛi∥2 ≤ ∥hΛc∥1 − ∥hΛc∥2√
s− 1

≤ ∥hΛ∥1 + ∥hΛ∥2 + 2∥β∗
Λc∥1√

s− 1

≤ (
√
s+ 1)∥hΛ∥2 + 2∥β∗

Λc∥1√
s− 1

. (4.10)

It follows from (4.9) and (4.10) that

∥h∥2 = ∥hT + hT c∥2

≤ ∥hT ∥2 +
∑
i≥2

∥hΛi∥2

≤ ∥hT ∥2 +
(
√
s+ 1)∥hΛ∥2 + 2∥β∗

Λc∥1√
s− 1

≤ ∥hT ∥2 +
(
√
s+ 1)∥hT ∥2 + 2∥β∗

Λc∥1√
s− 1

=

(
1 +

√
s+ 1√
s− 1

)
∥hT ∥2 +

2√
s− 1

∥β∗
Λc∥1. (4.11)

Together with sparse approximation property we have

∥hT ∥2 ≤ c1∥Xh∥2 + c2
∥hT c∥1√

2s
,

≤ 2c1ε+ c2
∥hT ∥1 + ∥hT ∥2 + ∥hT c∥2 + 2∥β∗

T c∥1√
2s

≤ 2c1ε+ c2
∥hT ∥1 + ∥hT ∥2 + ∥hT c∥2 + 2∥β∗

Λc∥1√
2s

≤ 2c1ε+ c2

[(
1 +

1√
2s

)
∥hT ∥2 +

1√
2s

∥hT c∥2 + 2
∥β∗

Λc∥1√
2s

]
≤ 2c1ε+ c2

[(
1 +

1√
2s

)
∥hT ∥2 +

1√
2s

(
√
s+ 1)∥hΛ∥2 + 2∥β∗

Λc∥1√
s− 1

+ 2
∥β∗

Λc∥1√
2s

]
≤ 2c1ε+ c2

[(
1 +

1√
2s

)
∥hT ∥2 +

1√
2s

(
√
s+ 1)∥hT ∥2 + 2∥β∗

Λc∥1√
s− 1

+ 2
∥β∗

Λc∥1√
2s

]
.

(4.12)

The inequality (4.12) implies that

∥hT ∥2 ≤ 2c1ε

1− c2b(s)
+

√
2c2

1− c2b(s)

( √
s√

s− 1

)
∥β∗

Λc∥1√
s

. (4.13)

The inequality (4.7) follows from (4.11) and (4.13). A sufficient condition of (4.6) is

1− c2b(s) > 0,

which is implied by

c2 < 0.2. (4.14)

Using (4.4), we verify that (4.5) is a sufficient condition for (4.14) holds.
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