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Poisson Distribution Results for ϑ-Spirallike Functions of

Order γ

Şahsene Altınkaya

Abstract. The main objective of this organized paper is to establish the Poisson distribution

conditions for the ϑ-spirallike function classes Sϑ(γ;ψ) and Kϑ(γ;ψ). We also investigate an

integral operator associated with the Poisson distribution.

§1 Introduction

Let E be the open unit disk on the complex plane C. We denote by A, the class of functions
f which are analytic in E with f(0) = f ′(0)− 1 = 0. Such a function has the following Taylor
series expansion

f(z) = z +

∞∑
k=2

akz
k. (1)

If f is univalent, we indicate a subset of A by S.

We now refer to the class of spirallike functions.

Let ϑ ∈
(
−π

2 ,
π
2

)
. A logarithmic ϑ-spiral is a curve given by

ω = ω0 exp(−e−iϑt) (−∞ < t <∞) ,

where ω0 is a nonzero complex number. Thus ω = ω(t) is a logarithmic ϑ-spiral, then

ℑ
[
eiϑ logω(t)

]
= constant (−∞ < t <∞) .

Observe that 0-spirals are radial half-lines. For each ϑ
(
|ϑ| < π

2

)
there is a unique ϑ-spiral

which joins a given point ω ̸= 0 to the origin (see [7]).

A domain D containing the origin is named ϑ-spirallike if for each point ω ̸= 0 in D the arc
of the ϑ-spiral from ω to the origin lies entirely in D. This obviously implies that D is simply
connected. An analytic univalent function f is named ϑ-spirallike if its range is ϑ-spirallike.
The class of ϑ-spirallike functions in the open unit disk E is indicated by Sϑ. Analytically, this
means that a function f ∈ A belongs to the class Sϑ if and only if

ℜ
(
eiϑ

zf ′(z)

f(z)

)
> 0

(
|ϑ| < π

2
, z ∈ E

)
.

The class Sϑ of ϑ-spirallike functions was defined by S̆pac̆ek [16] and he proved that Sϑ ⊂ S∗.
We note at this point that S0 = S∗. Libera [8] extended this definition to functions ϑ-spirallike
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of order γ (0 ≤ γ < 1) indicated by Sϑ(γ) as follows:

ℜ
(
eiϑ

zf ′(z)

f(z)

)
> γ cosϑ

(
|ϑ| < π

2
, z ∈ E

)
.

Clearly, Sϑ(γ) ⊂ Sϑ. Later, Murugusundaramoorthy and Magesh [12] (see also [10]) introduce
the following subclasses of ϑ-spirallike functions as below:

Sϑ(γ;ψ) =

{
f ∈ A : ℜ

(
eiϑ

zf ′(z)

(1− ψ)f(z) + ψzf ′(z)

)
> γ cosϑ, |ϑ| < π

2
, z ∈ E

}
and

Kϑ(γ;ψ) =

{
f ∈ A : ℜ

(
eiϑ

zf ′′(z) + f ′(z)

f ′(z) + ψzf ′′(z)

)
> γ cosϑ, |ϑ| < π

2
, z ∈ E

}
,

where 0 ≤ ψ < 1 and 0 ≤ γ < 1.

In this organized paper, we provide some results for the Poisson distribution conditions of
the ϑ-spirallike function classes Sϑ(γ;ψ) and Kϑ(γ;ψ). We also investigate an integral operator
associated with this condition.

§2 Problem Formulation

We aim to start by stating the Poisson distribution and some basis lemmas for further
investigations.

The Poisson distribution is one of the most powerful tools in the examination of many prob-
lems of multivariate data research fields. Stated differently, nowadays, the Poisson distribution
is generated from univalent functions. In this context, Porwal [14] introduced some basic in-
equalities. Corresponding inequalities have been obtained for different subclasses of analytic
functions (see [1], [5], [13]). Moreover, the well known elementary distributions such as Borel,
Logarithmic, Pascal and Poisson have been partially used in the theory of univalent functions
(for example, see [2], [3], [4], [6], [9], [11], [15], [17]).

Suppose that X is a non-negative discrete random variable. Then, the probability distribu-
tion function is given as below:

P (X = k) =
mke−m

k!
(k = 0, 1, 2, 3, . . .),

where m is called the parameter.

Based upon the above function, let us develop the following power series:

P (z) = z +

∞∑
k=2

e−mmk−1

(k − 1)!
zk.

Performing the obvious calculations, we have that the radius of convergence of the above power
series is infinity.

For the sake of simplicity, the following notations
∞∑
k=2

mk−1

(k − 1)!
= em − 1,

∞∑
k=2

mk−1

(k − 2)!
= mem

and
∞∑
k=3

mk−1

(k − 3)!
= m2em

will be used in the proof of theorems.
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Lemma 1. (see [12]) A function f defined by (1) is in the class Sϑ(γ;ψ) if
∞∑
k=2

[(1− ψ)(k − 1) secϑ+ (1− γ)(1− ψ + kψ)] |ak| ≤ 1− γ,

where |ϑ| < π
2 , 0 ≤ ψ < 1 and 0 ≤ γ < 1.

Lemma 2. A function f defined by (1) is in the class Kϑ(γ;ψ) if
∞∑
k=2

k [(1− ψ)(k − 1) secϑ+ (1− γ)(1− ψ + kψ)] |ak| ≤ 1− γ,

where |ϑ| < π
2 , 0 ≤ ψ < 1 and 0 ≤ γ < 1.

§3 Results

In this part, we offer to get the Poisson distribution conditions for the classes Sϑ(γ;ψ) and
Kϑ(γ;ψ).

Theorem 3. Let m > 0. If the following result holds

[(1− ψ) secϑ+ (1− γ)ψ]mem ≤ 1− γ, (2)

then P (z) ∈ Sϑ(γ;ψ).

Proof. By considering Lemma 1 with the Poisson relation

P (z) = z +

∞∑
k=2

e−mmk−1

(k − 1)!
zk,

it is enough to prove that
∞∑
k=2

[(1− ψ)(k − 1) secϑ+ (1− γ)(1− ψ + kψ)]
e−mmk−1

(k − 1)!
≤ 1− γ.

Next, writing k = (k − 1) + 1, after routine computations, we find that
∞∑
k=2

[(1− ψ)(k − 1) secϑ+ (1− γ)(1− ψ + kψ)]
e−mmk−1

(k − 1)!

= [(1− ψ) secϑ+ (1− γ)ψ]
∞∑
k=2

(k − 1)
e−mmk−1

(k − 1)!

+(1− γ)

∞∑
k=2

e−mmk−1

(k − 1)!

= [(1− ψ) secϑ+ (1− γ)ψ]

∞∑
k=2

e−mmk−1

(k − 2)!

+(1− γ)
∞∑
k=2

e−mmk−1

(k − 1)!

= {[(1− ψ) secϑ+ (1− γ)ψ]mem + (1− γ)(em − 1)} e−m

= [(1− ψ) secϑ+ (1− γ)ψ]m+ (1− γ)(1− e−m).
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Indeed, the last expression is bounded by 1− γ if and only if (2) holds.

Thus, the proof is complete.

Setting ψ = 0 in Theorem 3, we get

Corollary 4. Let m > 0. Then P (z) ∈ Sϑ(γ), with

mem secϑ ≤ 1− γ.

Theorem 5. Let m > 0. If the following result holds

[(1− ψ) secϑ+ (1− γ)ψ]m2em + [2(1− ψ) secϑ+ (1− γ)(2ψ + 1)]mem ≤ 1− γ, (3)

then P (z) ∈ Kϑ(γ;ψ).

Proof. By considering Lemma 2 with the Poisson relation

P (z) = z +
∞∑
k=2

e−mmk−1

(k − 1)!
zk,

it is enough to prove that
∞∑
k=2

k [(1− ψ)(k − 1) secϑ+ (1− γ)(1− ψ + kψ)]
e−mmk−1

(k − 1)!
≤ 1− γ.

Further, writing k2 = (k − 1)(k − 2) + 3(k − 1) + 1 and k = (k − 1) + 1, we immediately find
that

∞∑
k=2

k [(1− ψ)(k − 1) secϑ+ (1− γ)(1− ψ + kψ)]
e−mmk−1

(k − 1)!

= [(1− ψ) secϑ+ (1− γ)ψ]

∞∑
k=2

(k − 1)(k − 2)
e−mmk−1

(k − 1)!

+ [2(1− ψ) secϑ+ (1− γ)(2ψ + 1)]

∞∑
k=2

(k − 1)
e−mmk−1

(k − 1)!
+ (1− γ)

∞∑
k=2

e−mmk−1

(k − 1)!

= [(1− ψ) secϑ+ (1− γ)ψ]
∞∑
k=3

e−mmk−1

(k − 3)!

+ [2(1− ψ) secϑ+ (1− γ)(2ψ + 1)]
∞∑
k=2

e−mmk−1

(k − 2)!
+ (1− γ)

∞∑
k=2

e−mmk−1

(k − 1)!

=
{
[(1− ψ) secϑ+ (1− γ)ψ]m2em + [2(1− ψ) secϑ+ (1− γ)(2ψ + 1)]mem

+(1− γ)(em − 1)} e−m

= [(1− ψ) secϑ+ (1− γ)ψ]m2 + [2(1− ψ) secϑ+ (1− γ)(2ψ + 1)]m

+(1− γ)(1− e−m).

Indeed, the last expression is bounded previously by 1− γ if and only if (3) holds.

Setting ψ = 0 in Theorem 5, we get
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Corollary 6. Let m > 0. Then P (z) ∈ Kϑ(γ), with

m2em secϑ+ [2 secϑ+ (1− γ)]mem ≤ 1− γ.

§4 An Integral Operator

In this part, we will prove similar results associated with a special integral operator I(z) as
below:

I(z) =

z∫
0

P (ξ)

ξ
dξ. (4)

Theorem 7. Suppose that m > 0. If the following result holds

[(1− ψ) secϑ+ (1− γ)ψ] (1− e−m) + (1− ψ)(1− γ − secϑ)
(1− e−m −me−m)

m
≤ 1− γ,

then I(z) ∈ Sϑ(γ;ψ).

Proof. From (4), we obtain

I(z) = z +
∞∑
k=2

e−mmk−1

(k − 1)!

zk

k

= z +
∞∑
k=2

e−mmk−1

k!
zk.

By considering Lemma 1, it can be written
∞∑
k=2

[(1− ψ)(k − 1) secϑ+ (1− γ)(1− ψ + kψ)]
e−mmk−1

k!
≤ 1− γ.

Next, after routine computations, we find that
∞∑
k=2

[(1− ψ)(k − 1) secϑ+ (1− γ)(1− ψ + kψ)]
e−mmk−1

k!

= [(1− ψ) secϑ+ (1− γ)ψ]
∞∑
k=2

k
e−mmk−1

k!

+(1− ψ)(1− γ − secϑ)
∞∑
k=2

e−mmk−1

k!

=

{
[(1− ψ) secϑ+ (1− γ)ψ] (em − 1) + (1− ψ)(1− γ − secϑ)

(
em − 1−m

m

)}
e−m

= [(1− ψ) secϑ+ (1− γ)ψ] (1− e−m) + (1− ψ)(1− γ − secϑ)

(
1− e−m −me−m

m

)
.

Here the proof ends.

Corollary 8. Let m > 0. Then P (z) ∈ Sϑ(γ), with

secϑ(1− e−m) + (1− γ − secϑ)
(1− e−m −me−m)

m
≤ 1− γ.

Theorem 9. Let m > 0. If the following result holds

[(1− ψ) secϑ+ (1− γ)ψ]mem ≤ 1− γ,
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then I(z) ∈ Kϑ(γ;ψ).

Proof. By considering Lemma 1, it can be written
∞∑
k=2

k [(1− ψ)(k − 1) secϑ+ (1− γ)(1− ψ + kψ)]
e−mmk−1

k!
≤ 1− γ,

or, equivalently
∞∑
k=2

[(1− ψ)(k − 1) secϑ+ (1− γ)(1− ψ + kψ)]
e−mmk−1

(k − 1)!
≤ 1− γ.

The continuing part of the proof is similar to Theorem 3, so the proof ends.

Corollary 10. Let m > 0. Then P (z) ∈ Kϑ(γ), with

mem secϑ ≤ 1− γ.
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