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Modified integral equation combined with the

decomposition method for time fractional differential

equations with variable coefficients

Muhammad Amin Sadiq Murad

Abstract. In this paper, the modified integral equation, namely, Elzaki transformation cou-

pled with the Adomian decomposition method called Elzaki Adomian decomposition method

(EADM) is used to investigate the solution of time-fractional fourth-order parabolic partial d-

ifferential equations (PDEs) with variable coefficients. The introduced method is used to solve

two models of the proposed problem, the analytical and approximate solutions of the models are

obtained. The outcomes illustrate that the proposed technique is a highly accurate, and facili-

tates the process of solving differential equations by comparing it, with the exact solution and

those obtained by the variation iteration method (VIM) and Laplace homotopy perturbation

method (LHPM).

§1 Introduction

Fractional calculus has been applied to many applications in defferent branches of science

such as economy, biology, physics, engineering, and many more. Because of its ability in

describing the characteristics of various linear and nonlinear phenomena in different fields,

numbers of researchers and mathematicians have begun to apply the fractional calculus to their

problems. The analytical and exact solutions to the differential equations of fractional order are

quite difficult to achieve, therefore the numerical methods are used to find their approximate

solutions.

The fourth-order parabolic PDEs played an enormous role in applied sciences in different

fields, such as engineering, mechanics, and physics. Many well-known physical problems are

described by fourth-order parabolic PDEs with variable coefficients. In [1] deformation of a

viscoelastic beam and mathematical modeling of its plate deflection were described by fourth-

order parabolic PDEs. Many researchers tried to improve the numerical techniques to investi-

gate the solution of the fourth-order parabolic PDEs with variable coefficients of integer and

fractional orders. The variation iteration method to solve the present problem was employed
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by Biazar and Ghazvini [2], who modified Laplace VIM for solving the fourth-order PDEs with

variable coefficients [3], Adomian decomposition method (ADM) [4], homotopy perturbation

method(HPM) [5], variation iteration method and Adomian decomposition method [6], a com-

parison between He’s homotopy perturbation method and variation iteration method [7], and

tension spline method [8]. Pandey and Mishra solved the time-fractional fourth-order PDEs us-

ing the homotopy analysis Sumudu transform technique [9]. Recently, Javidi and Ahmad used

the Laplace homotopy perturbation method to find the solution for the proposed problem [10].

Elzaki integral transform is a modification of the Laplace and Sumudu transforms which

were invented by Tariq [11]. Elzaki transformation is an efficient and powerful technique that

has found the exact solutions to several differential equations that cannot be solved by Sumudu

transform [12]. In the last decade, the Elzaki transform has been used to study the exact and

approximate solutions for many differential equations with integer and fractional orders [13–16].

In [17] HPM coupled with the Elzaki transform is used to solve the fourth-order parabolic PDEs,

also Elzaki transform and HPM are combined to investigate the solution of time-fractional

Navier-Stokes equation and system of non-linear PDEs see [18,19]. Tariq and Biazar used Elzaki

transform combined with the Adomian decomposition method to solve a class of time-fractional

PDEs [20]. The well-known sin-gordon equation was solved by Elzaki transform and Adomian

polynomial technique [21], also Loyinmi and Akinfe used Elzaki transformation coupled with

HPM to solve Fisher’s reaction-diffusion [22]. Naveed and Muhammad [23], applied Elzaki

transform combined with the variation iteration method to solve nonlinear oscillators.

The purpose of the present paper is to expand the applications of the decomposition method

combined with the Elzaki transformation and show the computational efficiency of the EADM

technique in solving fractional differential equations. Consider time-fractional fourth-order

parabolic PDE with variable coefficients:

Dα
t v (x, y, t) + β (x, y)

∂4v

∂x4
+ γ (x, y)

∂4v

∂y4
= 0, t > 0, a < x, y < b, (1)

where β (x, y) , γ (x, y) > 0 and 1 < α ≤ 2

subjected to the initial conditions

v (x, y, 0) = h0 (x, y) , vt (x, y, 0) = h1 (x, y) ,

and the boundary conditions

v(a, y, t) = f0(y, t), v(b, y, t) = f1(y, t),

v(x, a, t) = f2(x, t), v(x, b, t) = f3(x, t),

∂2v

∂x2
(a, y, t) = g0(y, t),

∂2v

∂x2
(b, y, t) = g1(y, t),

∂2v

∂y2
(x, a, t) = g2(x, t),

∂2v

∂y2
(x, b, t) = g3(x, t).

where h0, h1, fi, and gi, i = 0, 1, 2, 3 are continuous functions. The existence and uniqueness of

the proposed problem are studied in [24][25].

§2 Periliminary

In this section, we introduce some definitions and properties of fractional calculus and Elzaki

transform which are used in this article.
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Definition 2.1. [24] A real valued function g(y), y > 0is belong to the space Cσ, σ ∈ R if

there exists at least a real number d > σ, such that g (y) = ydg1 (y) where g1 (y) ∈ C (0,∞) ,

and it is said to be in the space Cn
σ if gn ∈ Rσ, n ∈ N.

Definition 2.2. The function f (u) is called Riemann-Liouville fractional integral of order

α ≥ 0, if it defines as:

Jαf (u) =
1

Γ (α)

u∫
0

(u− t)
α−1

f (t) dt, α > 0, t > 0. (2)

In particular J0f (u) = f (u).

For θ ≥ 0 and ϑ ≥ −1 some properties of the operator Jα

1. JαJθf (u) = Jα+θf (u)

2. JαJθf (u) = JθJαf (u)

3. Jαxϑ = Γ(ϑ+1)
Γ(α+ϑ+1)x

α+ϑ.

Definition 2.3. The function f ∈ Cn
−1, n ∈ N is called Caputo fractional derivative if it defines

as

Dαf (u) =
1

Γ (n− α)

u∫
0

(u− t)
n−α−1

f (n) (t) dt, n− 1 < α ≤ n. (3)

Definition 2.4. [11] The Elzaki transform of the function f (u) is defined as:

E [f (u)] = T (v) = v

∞∫
0

f (u) e
−u
v du u > 0. (4)

In partial derivative case:

E

[
∂f (x, u)

∂u

]
=

∞

v

∫
0

∂f

∂u
e

−u
v du.

Using integration by parts, we obtain

E

[
∂f (x, u)

∂u

]
=

T (x, v)

v
− vf (x, 0)

Suppose that f is piecewise continuous, then we can calculate E
[
∂f
∂x

]
as follows:

E

[
∂f (x, u)

∂x

]
=

∞∫
0

ve
−u
v

∂f (x, u)

∂x
du =

∂

∂x

∞∫
0

ve
−u
v f (x, u) du =

∂

∂x
T (x, v) ,

Similarly, we can have:

E

[
∂2f (x, u)

∂x2

]
=

d2T (x, v)

dx2

Assume that ∂f
∂u = h, then we have:

E

[
∂2f (x, u)

∂u2

]
= E

[
∂h (x, u)

∂u

]
=

1

v
E [h (x, u)]− vh (x, 0)

E

[
∂2f (x, u)

∂u2

]
=

T (x, v)

v2
− f (x, 0)− v

∂f

∂u
(x, u)
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Table 1. Elzaki table of transform for some functions.

f (t) E [f (t)] = T (v)
1 v2

t v3

tn n!vn+2

eat v2

1−av

sin at av3

1+a2v2

cos at v2

1+a2v2

ta−1

Γ(a) , a = 0 va+1

By mathematical induction one can extend this result to the nth partial derivative as:

E

[
∂nf (x, u)

∂un

]
=

T (x, v)

vn
−

n−1∑
i=0

v2−n+i ∂if (x, 0)

∂ui
. (5)

§3 Elzaki Adomian decomposition method (EADM)

Consider the following time- fractional fourth-order PDE:

Dα
t v (x, y, t) + r (x, y)

∂4v (x, y, t)

∂x4
+ l (x, y)

∂4v (x, y, t)

∂y4
= g (x, y, t) , 1 < α ≤ 2 (6)

Subject to the initial conditions

v (x, y, 0) = f (x, y) , vt (x, y, 0) = h (x, y) ,

where g (x, y, t)be a source term,r and l are known functions, f (x, y) and h (x, y) are algebraic

functions, also Dα
t v (x, y, t) is the Caputo fractional derivative of v (x, t)which is introduced as:

Dα
t v (x, y, t) =

1

Γ (n− α)

t∫
0

v(n) (x, y, φ)

(t− φ)
α+1−n dφ, n− 1 < α ≤ n,

Elzaki form of the Caputo operators

E [Dα
t v (x, y, t)] =

1

sα
E [v (x, y, t)]−

n−1∑
k=0

v(k) (x, y, 0) s2−α+k (7)

Applying the Elzaki transform on (6), we obtain

E [Dα
t v (x, y, t)] + E

[
r (x, y)

∂4v (x, y, t)

∂x4
+ l (x, y)

∂4v (x, y, t)

∂y4

]
= E [g (x, y, t)]

Taking Caputo operator of Elzaki transform, we obtain

E [v (x, y, t)] = s2f (x, y) + s3h (x, y)− sαE

[
r (x, y)

∂4v (x, y, t)

∂x4
+ l (x, y)

∂4v (x, y, t)

∂y4

]
+sαE [g (x, y, t)]

Taking the Elzaki inverse for both sides, gives

v (x, y, t) = H (x, y, t)− E−1

[
sαE

[
r (x, y)

∂4v (x, y, t)

∂x4
+ l (x, y)

∂4v (x, y, t)

∂y4

]]
,
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Figure 1. The EADM solutions of v (x, t) of (9) at (a) α = 1.5, (b) α = 1.75, (c) α = 2, and
(d) exact solution.

where H (x, y, t) represents the initial conditions and the source term arises. Applying Adomian

decomposition method to get out the nonlinear terms (if any), then the approximate solution

of the proposed problem is the infinite series:

v (x, y, t) =
∞∑

n=0

vn (x, y, t) . (8)

§4 Numerical results

We will apply the decomposition method coupled with the modified integral transform

(Elzaki transform) on two models of time-fractional fourth-order parabolic PDEs with variable

coefficients. These applications show that the proposed technique converges very fast and gives

the effective results.

In Figure 1 we have four graphs; (a) and (b) consist of the solutions of (9) at α = 1.5 and

α = 1.75 respectively, using EADM. Figure 1 (a) and (b) show that fractional order approaches

to integer order solution surfaces of fractional order are convergent to the integer order surface.

In Figure 1 the graphs (c) and (d) represent EADM solution of v (x, t) at α = 2 and the exact

solution of (9) respectively. Figure 1 (c) and (d) show that the proposed method is in good

agreement with the exact solution. Consequently, any surface can be modeled as desired by a

physical phenomenon happening in nature.

Example 4.1. Consider one dimension time-fractional fourth-order parabolic PDEs with vari-

able coefficients:

Dα
t v (x, t) +

(
1

x
+

x4

120

)
∂4v (x, t)

∂x4
= 0,

1

2
< x < 1, t > 0, 1 < α ≤ 2, (9)
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with the initial conditions v (x, 0) = 0, ∂v
∂t (x, 0) = 1 + x5

120 ,

and the boundary conditions

v

(
1

2
, t

)
=

(
1 +

(
1
2

)5
120

)
sin (t, α) , v (1, t) =

(
121

120

)
sin (t, α) ,

∂2v

∂x2

(
1

2
, t

)
=

1

6

(
1

2

)3

sin (t, α) ,
∂2v

∂x2
(1, t) =

1

6
sin (t, α) ,

where sin (t, α) =
∞∑
i=0

(−1)itiα+1

Γ(iα+2)

Applying the Elzaki transform on (9), we obtain

E

[
Dα

t v (x, t) +

(
1

x
+

x4

120

)
∂4v

∂x4

]
= 0.

Using the formula (7), we obtain

E [v (x, t)] = s3
(
1 +

x5

120

)
− sαE

[(
1

x
+

x4

120

)
∂4v

∂x4

]
.

Applying the inverse Elzaki transform

v (x, t) = E−1

[
s3
(
1 +

x5

120

)]
− E−1

[
sαE

[(
1

x
+

x4

120

)
∂4v

∂x4

]]
,

v (x, t) =

(
1 +

x5

120

)
t− E−1

[
sαE

[(
1

x
+

x4

120

)
∂4v

∂x4

]]
.

Using the ADM, we obtain

v0 (x, t) =

(
1 +

x5

120

)
t

vn+1 (x, t) = −E−1

[
sαE

[(
1

x
+

x4

120

) ∞∑
n=0

∂4vn
∂x4

]]
, n = 0, 1, 2, . . . .

v1 (x, t) = −E−1

[
sαE

[(
1

x
+

x4

120

)
∂4v0
∂x4

]]
v1 (x, t) = −E−1

[
sαE

[(
1 +

x5

120

)
t

]]
= −E−1

[
sα+3

(
1 +

x5

120

)]
v1 (x, t) = −

(
1 +

x5

120

)
tα+1

Γ (α+ 2)
,

v2 (x, t) = E−1

[
sαE

[(
1 +

x5

120

)
tα+1

Γ (α+ 2)

]]
= E−1

[
s2α+3

(
1 +

x5

120

)]
v2 (x, t) =

(
1 +

x5

120

)
t2α+1

Γ (2α+ 2)
.

In the same way, one can have

v3 (x, t) = −
(
1 +

x5

120

)
t3α+1

Γ (3α+ 2)
,

v4 (x, t) =

(
1 +

x5

120

)
t4α+1

Γ (4α+ 2)
.

According to the ADM the result can be expressed as:

v (x, t) = v0 (x, t) + v1 (x, t) + v2 (x, t) + v3 (x, t) + . . . .
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Table 2. Exact solution and numerical evaluation when t = 0.2, 0.4, 0.6 for (9).

v (x, t) =

(
1 +

x5

120

)
t−

(
1 +

x5

120

)
tα+1

Γ (α+ 2)
+

(
1 +

x5

120

)
t2α+1

Γ (2α+ 2)

−
(
1 +

x5

120

)
t3α+1

Γ (3α+ 2)
+

(
1 +

x5

120

)
t4α+1

Γ (4α+ 2)
. . .

v (x, t) =

(
1 +

x5

120

)(
t− tα+1

Γ (α+ 2)
+

t2α+1

Γ (2α+ 2)
− t3α+1

Γ (3α+ 2)
+

t4α+1

Γ (4α+ 2)
. . .

)
.

(10)

Assume that α = 2, then the equation (10) becomes

v (x, t) =

(
1 +

x5

120

)(
t− t3

3!
+

t5

5!
− t7

7!
+

t9

9!
. . .

)
v (x, t) =

(
1 +

x5

120

)
sin (t) .

Thus, the exact solution v (x, t) =
(
1 + x5

120

)
sin t of (9) is obtained where α = 2.

Table 2: illustrates the exact and approximate solutions of (9) using EADM for different values

of x, t, and α, and compares the obtained results with VIM, LHPM [10], and the exact solution

by calculating only the third-order terms of the series. Therefore, the results of EADM are in

good agreement with those obtained by VIM and LHPM.

Example 4.2. Consider the problem of two dimensional time-fractional fourth-order parabolic

PDE:

Dα
t v (x, y, t) + 2

(
1

x2
+

x4

6!

)
∂4v

∂x4
+ 2

(
1

y2
+

y4

6!

)
∂4v

∂y4
= 0, 0 < x, y < 1, t > 0, (11)

with the initial conditions

v (x, y, 0) = 0,
∂v

∂t
(x, y, 0) = 2 +

x6

6!
+

y6

6!
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and the boundary conditions

v

(
1

2
, y, t

)
=

(
2 +

(
1
2

)6
6!

+
y6

6!

)
sin (t) , v (1, y, t) =

(
2 +

1

6!
+

y6

6!

)
sin (t) ,

∂2v

∂x2

(
1

2
, y, t

)
=

(
1
2

)4
6!

sin (t) ,
∂2v

∂x2
(1, y, t) =

1

6!
sin (t) , t > 1,

∂2v

∂y2

(
x,

1

2
, t

)
=

(
1
2

)4
6!

sin (t) ,
∂2v

∂y2
(x, 1, t) =

1

6!
sin (t) , t > 1.

Applying the Elzaki transform on (11), we get

E

[
Dα

t v (x, y, t) + 2

(
1

x2
+

x4

6!

)
∂4v

∂x4
+ 2

(
1

y2
+

y4

6!

)
∂4v

∂y4

]
= 0.

Using formula (7), we get

E [v (x, y, t)] = s3
(
2 +

x6

6!
+

y6

6!

)
− sαE

[
2

(
1

x2
+

x4

6!

)
∂4v

∂x4
+ 2

(
1

y2
+

y4

6!

)
∂4v

∂y4

]
.

Applying the inverse Elzaki transform, we have

v (x, y, t) = E−1

[
s3
(
2 +

x6

6!
+

y6

6!

)]
− E−1

[
sαE

[
2

(
1

x2
+

x4

6!

)
∂4v

∂x4
+ 2

(
1

y2
+

y4

6!

)
∂4v

∂y4

]]
,

v (x, y, t) =

(
2 +

x6

6!
+

y6

6!

)
t− E−1

[
sαE

[
2

(
1

x2
+

x4

6!

)
∂4v

∂x4
+ 2

(
1

y2
+

y4

6!

)
∂4v

∂y4

]]
.

Using the ADM, we obtain

v0 (x, y, t) =

(
2 +

x6

6!
+

y6

6!

)
t

vn+1 (x, y, t) = −E−1

[
sαE

[(
2 +

x6

6!
+

y6

6!

) ∞∑
n=0

∂4vn
∂x4

]]
, n = 0, 1, 2, . . . .

v1 (x, y, t) = −E−1

[
sαE

[(
2 +

x6

6!
+

y6

6!

)
∂4v0
∂x4

]]
v1 (x, y, t) = −E−1

[
sαE

[(
2 +

x6

6!
+

y6

6!

)
t

]]
= −E−1

[
sα+3

(
2 +

x6

6!
+

y6

6!

)]
v1 (x, y, t) = −

(
2 +

x6

6!
+

y6

6!

)
tα+1

Γ (α+ 2)
.

In the same way, one can have

v2 (x, t) =

(
2 +

x6

6!
+

y6

6!

)
t2α+1

Γ (2α+ 2)
,

v3 (x, y, t) = −
(
2 +

x6

6!
+

y6

6!

)
t3α+1

Γ (3α+ 2)
,

v4 (x, y, t) =

(
2 +

x6

6!
+

y6

6!

)
t4α+1

Γ (4α+ 2)
.

According to the ADM the result can be expressed in the series:

v (x, y, t) = v0 (x, y, t) + v1 (x, y, t) + v2 (x, y, t) + v3 (x, y, t) + . . . .
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Table 3. Exact solution and numerical evaluation when t = 0.2 for (11).

x α = 1.5 α = 1.75 α = 2
vV IM vEADM vV IM vEADM vV IM vEADM vExact

0.1 0.389267 0.389368 0.391901 0.394618 0.394672 0.397339 0.397339
0.2 0.389927 0.389368 0.391901 0.394618 0.394672 0.397339 0.397339
0.3 0.389268 0.389368 0.391902 0.394618 0.394672 0.397339 0.397339
0.4 0.389270 0.389370 0.391904 0.394627 0.394674 0.397339 0.397339
0.5 0.389276 0.389376 0.391910 0.394644 0.394681 0.397341 0.397341
0.6 0.389293 0.389393 0.391927 0.394682 0.394698 0.397347 0.397347
0.7 0.389332 0.389432 0.391965 0.394762 0.394736 0.397344 0.397344
0.8 0.389409 0.389511 0.392044 0.394991 0.394816 0.397483 0.397483
0.9 0.389555 0.389655 0.392192 0.394991 0.394963 0.397632 0.397632

Thus, we have

v (x, y, t) =

(
2 +

x6

6!
+

y6

6!

)
t−

(
2 +

x6

6!
+

y6

6!

)
tα+1

Γ (α+ 2)
+

(
2 +

x6

6!
+

y6

6!

)
t2α+1

Γ (2α+ 2)

−
(
2 +

x6

6!
+

y6

6!

)
t3α+1

Γ (3α+ 2)
+

(
2 +

x6

6!
+

y6

6!

)
t4α+1

Γ (4α+ 2)
. . . ,

v (x, y, t) =

(
2 +

x6

6!
+

y6

6!

)(
t− tα+1

Γ (α+ 2)
+

t2α+1

Γ (2α+ 2)
− t3α+1

Γ (3α+ 2)
+

t4α+1

Γ (4α+ 2)
. . .

)
.

(12)

Assume that α = 2, then the equation (12) becomes

v (x, y, t) =

(
2 +

x6

6!
+

y6

6!

)(
t− t3

3!
+

t5

5!
− t7

7!
+

t9

9!
. . .

)
v (x, y, t) =

(
2 +

x6

6!
+

y6

6!

)
sin t.

Thus, the exact solution v (x, y, t) =
(
2 + x6

6! +
y6

6!

)
sin t of (11) is obtained where α = 2.

Table 3: gives the exact and approximate solutions of (11) for different values of x and α using

EADM, and compares the obtained results with those obtained by VIM [7] and the exact solu-

tion by calculating only the third-order terms of the series. Therefore, EADM converges faster

than the variation iteration method.

§5 Conclusion

The objective of this work is to investigate the solution of time-fractional fourth-order PDEs

with variable coefficients, and show that the Elzaki Adomian decomposition method is an effi-

cient method and facilitate the process of solving the time-fractional differential equations. The

proposed technique applied to two models with different dimensions; the exact and approximate

solutions are obtained for each model. In the first model, our obtained results using EADM

are in good agreement with those developed by VIM and LHPM, in the second model, it seems
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that the approximate solution using EADM converge faster than VIM. Finally, according to the

obtained results, the Elzaki Adomian decomposition method is better than VIM and LHPM,

also the facilitation of solving time-fractional differential equations can take as an advantage

over the other methods.
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