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Semi entropy of uncertain random variables and its

application to portfolio selection

GAO Jin-wu1 Hamed Ahmadzade2,∗ Mehran Farahikia3,4

Abstract. Semi entropy is a measure to characterize the indeterminacy of the uncertain ran-

dom variable considering the values of the uncertain random variable which are lower than the

mean. As important roles of semi entropy in finance, this paper presents the concept of semi

entropy for uncertain random variables. In order to compute semi entropy for uncertain ran-

dom variables, Monte-Carlo approach is provided. As an application of semi entropy, portfolio

selection problems are optimized based on mean-semi entropy mode.

§1 Introduction

Semi entropy of an uncertain random variable is a device to measure indeterminacy of the

uncertain random variable via considering the values of the uncertain random variable which

are lower than the mean. Zhou et al. [23] introduced the concept of semi entropy for LR (Left-

Right) fuzzy variables based on credibility measure and applied it to portfolio selection problem

involving new markets as fuzzy variables. Furthermore, several authors devoted their works to

the case of credibilistic portfolio selection problems via semi entropy, for instance [7,8,24]. It is

mentioned that return of new market can be modeled as fuzzy variable or uncertain variable.

Also, in many situations, we deal with a portfolio including new markets and historical markets

which modeled as uncertain random variables. Therefore, we want to propose the concept of

semi entropy for uncertain random variable and apply it to portfolio optimization problem.

Thus, we first review some topics in the case of entropy and portfolio selection of uncertain

returns.

After foundation of uncertainty theory, Liu [10] proposed the concept of entropy for uncertain

variables via inception of Shanon entropy for random variables. After that, Dai [5] and Yao and

Dai [22] presented the concept of quadratic and sine entropy for uncertain variables, respectively.

Furthermore, Chen et al. [4] introduced cross (relative) entropy for uncertain variables for

measuring the difference between two uncertainty distributions.
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In many situations, we are faced with some phenomena involving uncertainty and random-

ness. These phenomena can be modeled by chance theory which was presented by Liu [17].

For characterizing indeterminacy of uncertain random variables, Sheng et al. [20] proposed the

concept of uncertain random variables and invoked it to the minimum spanning tree. Also, Jia

et al. [9] proposed the concept of cross entropy for uncertain random variables to characterize

the distance between two chance distributions. After that, Ahmadzade et al. [3] introduced the

concept of partial entropy of uncertain random variables and for optimizing portfolio selection

problems, for instance see [1,2]. Since values of uncertain random variables which greater than

mean are interested in finance, we should minimize entropy, variance or other risk measures

with respect to the values which lower than mean. Therefore, we introduce the concepts of se-

mi entropy and partial semi entropy for uncertain random variables. Furthermore, we propose

Monte Carlo simulation approach for computing the value of partial semi entropy. As an ap-

plication of semi entropy in finance, we optimize the portfolio selection problem via mean-semi

entropy model.

This paper is organized as follows. Section 2 recalls some concepts of uncertainty theory

and chance theory as they are needed. The concept of semi entropy and partial semi entropy

are proposed for uncertain random variable and their properties are studied in Section 3. The

Monte-Carlo approach for calculating partial semi entropy of uncertain random variables is

provided in Section 4. In Section 5, portfolio selection problems with the uncertain random

returns are solved via mean-semi entropy model. Finally, some brief conclusions are obtained

in Section 6.

§2 Preliminaries

In this section, we review some concepts of chance theory, including chance measure, uncer-

tain random variable, chance distribution, operational law, and expected value, and variance,

and so on.

2.1 Uncertain Variables

In this subsection, we provide several definitions and elementary concepts of uncertainty

theory that will be used in the next sections. For more details, the reader refers to [10,11].

Let L be a σ-algebra on a nonempty set Γ. A set function M : L → [0, 1] is called an

uncertain measure if it satisfies the following axioms:

(i) (Normality) M{Γ} = 1 for the universal set Γ.

(ii) (Duality) M{Λ}+M{Λc} = 1 for any event Λ.

(iii) (Subadditivity) For every countable sequence of events Λ1,Λ2, · · · , we have

M

{ ∞∪
i=1

Λi

}
≤

∞∑
i=1

M {Λi} .

(iv) (Product Axiom) Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, · · · the product

uncertain measure M is an uncertain measure satisfying M{
∏∞

k=1 Λk} =
∧∞

k=1 Mk{Λk} where

Λk are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.
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Definition 1. An uncertain variable ξ is a function from an uncertainty space (Γ,L,M) to the

set of real numbers such that {ξ ∈ B} is an event for any Borel set B.

Definition 2. (Liu [10]) The uncertain variables ξ1, ξ2, · · · , ξn are said to be independent if

M

{
n∩

i=1

{ξi ∈ Bi}

}
=

n∧
i=1

M {ξi ∈ Bi}

for any Borel sets B1, B2, · · · , Bn.

Theorem 1. (Liu [10]) Let ξ1, ξ2, · · · , ξn be independent uncertain variables, and f1, f2, · · · , fn
be measurable functions. Then f1(ξ1), f2(ξ2), · · · , fn(ξn) are independent uncertain variables.

Definition 3. (Liu [10]) The events Λ1,Λ2, · · · ,Λn are said to be independent if

M

{
n∩

i=1

Λ∗
i

}
=

n∧
i=1

M{Λ∗
i }

such that Λ∗
i are arbitrarily chosen from {Λi,Λ

c
i ,Γ}, i = 1, 2, · · · , n, respectively, where Γ is

sure event.

Definition 4. (Liu [11]) Let ξ be an uncertain variable with regular uncertainty distribution

Φ(x). Then the inverse function Φ−1(x) is called the inverse uncertainty distribution of ξ.

Theorem 2. (Liu [11]) Let ξ1, · · · , ξn be independent uncertain variables with regular uncer-

tainty distributions Φ1,Φ2, · · · ,Φn, respectively. If f is a strictly increasing function, then

ξ = f(ξ1, ξ2, · · · , ξn)
is an uncertain variable with inverse uncertainty distribution

Ψ−1(α) = f(Φ−1
1 (α), · · · ,Φ−1

n (α)).

2.2 Uncertain Random Variable

The chance space is refer to the product (Γ,L,M) × (Ω,A,Pr), in which (Γ,L,M) is an

uncertainty space and (Ω,A,Pr) is a probability space.

Definition 5. (Liu [17]) Let (Γ,L,M) × (Ω,A,Pr) be a chance space, and Θ ∈ L × A be an

uncertain random event. Then the chance measure of Θ is defined as

Ch{Θ} =

∫ 1

0

Pr{ω ∈ Ω | M{γ ∈ Γ|(γ, ω) ∈ Θ} ≥ r}dr.

Liu [17] proved that a chance measure satisfies normality, duality, and monotonicity proper-

ties, that is (i) Ch{Γ×Ω} = 1; (ii) Ch{Θ}+Ch{Θc} = 1 for any event Θ; (iii) Ch{Θ1} ≤ Ch{Θ2}
for any real number set Θ1 ⊂ Θ2. Besides, Hou [6] proved the subadditivity of chance measure,

that is, Ch {
∪∞

i=1 Θi} ≤
∑∞

i=1 Ch{Θi} for a sequence of events Θ1,Θ2, · · · .

Definition 6. (Liu [17])

An uncertain random variable is a measurable function ξ from a chance space (Γ,L,M) ×
(Ω,A,Pr) to the set of real numbers, i.e., {ξ ∈ B} is an event for any Borel set B.

To calculate the chance measure, Liu [18] presented a definition of chance distribution.
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Definition 7. (Liu [18]) Let ξ be an uncertain random variable. Then its chance distribution

is defined by

Φ(x) = Ch{ξ ≤ x}
for any x ∈ R.

Theorem 3. (Liu [18]) Let η1, η2, · · · , ηm be independent random variables with probability

distributions Ψ1,Ψ2, · · · ,Ψm, respectively, and τ1, τ2, · · · , τn be uncertain variables. Then the

uncertain random variable ξ = f(η1, η2, · · · , ηm, τ1, τ2, · · · , τn) has a chance distribution

Φ(x) =

∫
ℜm

F (x, y1, · · · , ym)dΨ1(y1) · · · dΨm(ym)

where F (x, y1, · · · , ym) is the uncertainty distribution of uncertain variable f(η1, η2, · · · , ηm,

τ1, τ2, · · · , τn) for any real numbers y1, y2, · · · , ym.

Definition 8. (Liu [18]) Let ξ be an uncertain random variable. Then its expected value is

defined by

E[ξ] =

∫ +∞

0

Ch{ξ ≥ r}dr −
∫ 0

−∞
Ch{ξ ≤ r}dr

provided that at least one of the two integrals is finite.

Let Φ denote the chance distribution of ξ. Liu [18] proved a formula to calculate the expected

value of uncertain random variable with chance distribution, that is,

E[ξ] =

∫ +∞

0

(1− Φ(x))dx−
∫ 0

−∞
Φ(x)dx.

Theorem 4. (Liu [17]) Let η1, η2, · · · , ηm be independent random variables with probability

distributions Ψ1,Ψ2, · · · ,Ψm, respectively, and τ1, τ2, · · · , τn be independent uncertain variables

(not necessarily independent), then the where E[f(y1, · · · , ym, τ1, · · · , τn)] is the expected value

of the uncertain variable f(y1, · · · ,
ym, τ1, · · · , τn) for any real numbers y1, · · · , ym.

Theorem 5. (Liu [17], Linearity of Expected Value Operator) Assume η1 and η2 are random

variables (not necessarily independent), τ1 and τ2 are independent uncertain variables, and f1
and f2 are measurable functions. Then

E[f1(η1, τ1) + f2(η2, τ2)] = E[f1(η1, τ1)] + E[f2(η2, τ2)].

Theorem 6. (Liu [17]) Let f : Rn → R be a measurable function, and ξ1, ξ2, · · · , ξn uncertain

random variables on the chance space (Γ,L,M) × (Ω,A,Pr). Then ξ = f(ξ1, ξ2, · · · , ξn) is an

uncertain random variable determined by

ξ(γ, ω) = f(ξ1(γ, ω), ξ2(γ, ω), · · · , ξn(γ, ω))
for all (γ, ω) ∈ Γ× Ω.

§3 Semi Entropy of Uncertain Random Variables

In order to propose semi entropy for uncertain random variables, we should recall the concept

of entropy for uncertain random variables introduced by Sheng et al. [20].
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Definition 9. (Sheng et al. [20]) ”Suppose ξ is an uncertain random variable. Then the entropy

of ξ is defined by

H[ξ] =

∫ ∞

−∞
T (Φ(x))dx,

where T (s) = −s ln s− (1− s) ln(1− s), and Φ(x) is chance distribution of ξ.”

Since, investors benefit from the values of uncertain random variables which are greater than

mean. Thus, we should consider entropy for the values that lower than mean. Furthermore,

we should minimize this quantity in portfolio selection. Therefor, we introduce the concept of

semi entropy as follows:

Definition 10. Suppose that ξ is an uncertain random variable with expected value µ and

chance distribution Φ(x). Semi entropy of uncertain random variable ξ is

SH[ξ] =

∫
R
T
(
Φ(x)−

)
dx,

Φ(x)− =


Φ(x), if x ≤ µ,

0, if x > µ.

and T (s) = −s ln s− (1− s) ln(1− s).

In many situations, we want to measure the indeterminacy of uncertain random variables

corresponds to uncertain variables. For this purpose, by inception of Ahmadzade et al. [3], we

propose the concept of partial semi entropy for uncertain random variables.

Definition 11. Suppose that η1, η2, · · · , ηm are random variables and τ1, τ2, · · · , τm are uncer-

tain variables, also ξ = f(η1, η2, · · · , ηm, τ1, τ2, · · · , τm) is an uncertain random variable with

expected value µ. Partial semi entropy of uncertain random variable ξ is defined as following

PSH[ξ] =

∫
Rm

∫ ∞

−∞
T (F (x, y1, · · · , ym)−)dxdΨ(y1, · · · , ym)

where

F (x, y1, · · · , ym)− =


F (x, y1, · · · , ym), if x ≤ µ,

0, if x > µ,

and T (s) = −s ln s− (1−s) ln(1−s) and F (x, y1, · · · , ym) is the uncertainty distribution of un-

certain variable f(y1, · · · , ym, τ1, · · · , τm) for any real numbers y1, · · · , ym. Also, Ψ(y1, · · · , ym)

is the joint probability distribution of η1, η2, · · · , ηm for any y1, · · · , ym.

Remark 1. If uncertain random variables reduce to uncertain ones, we can use above definition

for uncertain variables.

Theorem 7. Let η1, η2, · · · , ηn be independent random variables with probability distributions

Ψ1,Ψ2, · · · ,Ψn, and τ1, τ2, · · · , τn be independent uncertain variables with uncertainty distribu-

tions Υ1,Υ2, · · · ,Υm, respectively, and let f be a measurable function. Then

ξ = f(η1, η2, · · · , ηn, τ1, τ2, · · · , τm)

has partial semi entropy
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PSH[ξ] =



∫
Rn

∫ F (µ,y1,··· ,yn)

0

(F−1(β, y1, · · · , yn)− µ) ln
β

1− β
dβdΨ1(y1) · · ·Ψn(yn),

if µ < 0,

∫
Rn

∫ F (µ,y1,··· ,yn)

0

F−1(β, y1, · · · , yn) ln
β

1− β
dβdΨ1(y1) · · ·Ψn(yn)

+µ

∫ 1

F (µ,y1,··· ,ym)

ln
β

1− β
dβdΨ1(y1) · · ·Ψn(yn), if µ > 0,

Proof. By using Definition 11 and Fubini’s theorem, for µ < 0, we have

PSH[ξ] =

∫
Rn

∫ µ

−∞
T
(
F (x, y1, · · · , yn)

)
dxdΨ1(y1) · · ·dΨn(yn)

=

∫
Rn

∫ µ

−∞

∫ F (x,y1,··· ,yn)

0

T ′(β)dβdxdΨ1(y1) · · ·dΨn(yn)

=

∫
Rn

∫ F (µ,y1,··· ,yn)

0

∫ µ

F−1(β,y1,··· ,yn)

T ′(β)dxdβdΨ1(y1) · · · dΨn(yn)

=

∫
Rn

∫ F (µ,y1,··· ,ym)

0

(F−1(β, y1, · · · , yn)− µ) ln
β

1− β
dβdΨ1(y1) · · ·dΨn(yn).

Similarly, for µ > 0, we have

PSH[ξ] =

∫
Rn

∫ µ

−∞
T
(
F (x, y1, · · · , ym)

)
dxdΨ1(y1)dΨn(yn)

=

∫
Rn

∫ 0

−∞

∫ F (x,y1,··· ,yn)

0

T ′(β)dβdxdΨ1(y1) · · · dΨn(yn)

+

∫
Rn

∫ µ

0

∫
F (x,y1,··· ,yn)

−T ′(β)dβdxdΨ1(y1) · · ·dΨn(yn)

=

∫
Rn

∫ F (0,y1,··· ,yn)

0

∫ 0

F−1(β,y1,··· ,yn)

T ′(β)dxdβdΨ1(y1) · · · dΨn(yn)

+

∫
Rn

∫ F (µ,y1,··· ,yn)

F (0,y1,··· ,yn)

∫ F−1(β,y1,··· ,yn)

0

−T ′(β)dxdβdΨ1(y1) · · · dΨn(yn)

+

∫
Rn

∫
F (µ,y1,··· ,yn)

∫ µ

0

−T ′(β)dxdβdΨ1(y1) · · · dΨn(yn)

=

∫
Rn

∫ F (µ,y1,··· ,yn)

0

F−1(β, y1, · · · , yn) ln
β

1− β
dβdΨ1(y1) · · ·dΨn(yn)

+ µ

∫
Rn

∫ 1

F (µ,y1,··· ,yn)

ln
β

1− β
dβdΨ1(y1) · · · dΨn(yn).



GAO Jin-wu, et al. Semi entropy of uncertain random variables and its application... 389

§4 Monte Carlo Simulation for Partial Semi Entropy

By invoking Theorem 7, we can write partial semi entropy of an uncertain random variable

via expectation of a function of random variables as follows:

PSH[ξ] =



E

[(
F−1(U, η1, · · · , ηn)− µ

)
ln
( U

1− U

)
I(0,F (µ,η1,··· ,ηn)(U)

]
, if µ < 0,

E

[
F−1(U, η1, · · · , ηn) ln

( U

1− U

)
I(0,F (µ,η1,··· ,ηn))(U)

]

+µE

[
ln
( U

1− U

)
I(F (µ,η1,··· ,ηn),1)(U)

]
, if µ > 0,

where, U, η1, · · · , ηm are random variables with standard uniform distribution, Ψ1(y1), · · · ,
Ψm(ym), respectively. Thus, we can use Monte Carlo simulation for partial semi entropy via

the following steps. Consider ξ = f(η, τ) as an uncertain random variable.

Step 1. Randomly generate u1, u2, · · · , uN and y1, y2, · · · , yM from standard uniform distribu-

tion and probability distribution Ψ(y) corresponding to the random variable η, respectively.

Step 2. If µ < 0, compute
(
F−1(ui, yj) − µ

)
ln

(
ui

1−ui

)
I(0,F (µ,yj))(ui) for i = 1, 2, · · · , N and

j = 1, 2, · · · ,M .

otherwise, compute

[
F−1(ui, yj) ln

(
ui

1−ui

)
I(0,F (µ,yj))(ui) + µ ln

(
ui

1−ui

)
I(F (µ,yj),1)(ui)

]
Step 3. Consider



1

NM

N∑
i=1

M∑
j=1

(
F−1(ui, yj)− µ

)
ln

( ui

1− ui

)
I(0,F (µ,yj))(ui), if µ < 0,

1

NM

N∑
i=1

M∑
j=1

[
F−1(ui, yj) ln

( ui

1− ui

)
I(0,F (µ,yj))(ui) + µ ln

( ui

1− ui

)
I(F (µ,yj),1)(ui)

]
if µ > 0,

as an approximation for partial-semi-entropy PSH.

Example 1. Suppose η is a random variable such that η ∼ Exp( 15 ). Also, let τ is an uncertain

variable with uncertainty distribution N (3, 5). Consider ξ = η + τ as an uncertain random

variable. We want to calculate partial semi entropy of ξ. Since µ = E[ξ] = E[τ ] + E[η] =

5 + 3 = 8 is greater than zero, we use the following formula for computing the partial semi

entropy:

PSH[ξ] = E

[
F−1(U, η) ln

( U

1− U

)
I(0,F (µ,η)(U)

]
+ µE

[
ln
( U

1− U

)
I(F (µ,η),1)(U)

]
,
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Figure 1. Statistical Plots of The Random Sample in Example 1.

in fact, partial semi entropy of ξ is

PSH[ξ] =

∫ ∞

0

∫ (
1+exp(

π(y−5)

5
√

3
)
)−1

0

(
y + 3 +

5
√
3

π
ln

β

1− β

)
ln

β

1− β

1

5
exp(−y

5
)dβdy

+ 8

∫ ∞

0

∫ 1(
1+exp(

π(y−5)

5
√

3
)
)−1

ln
β

1− β

1

5
exp(−y

5
)dβdy = 1.646667.

The value of above integral is obtained via Monte Carlo simulation, i.e. the integral is mean of

the random sample. Other statistical properties of the random sample such as density function,

box plot, histogram and scatter plot are displayed in Figure 1.

Example 2. Let η be a random variable such that η ∼ N (5, 4). Also, let τ is an uncertain

variable with uncertainty distribution N (3, 5). Consider ξ = η + τ as an uncertain random

variable. We want to calculate partial semi entropy of ξ. Since µ = E[ξ] = E[τ ] + E[η] =

5 + 3 = 8 is greater than zero, we use the following formula for computing the partial semi

entropy:

PSH[ξ] = E

[
F−1(U, η) ln

( U

1− U

)
I(0,F (µ,η)(U)

]
+ µE

[
ln
( U

1− U

)
I(F (µ,η),1)(U)

]
,
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Figure 2. Statistical Plots of The Random Sample in Example 2.

in fact, partial semi entropy of ξ is

PSH[ξ] =

∫ ∞

0

∫ (
1+exp(

π(y−5)

5
√

3
)
)−1

0

(
y + 3 +

5
√
3

π
ln

β

1− β

)
ln

β

1− β
dβdΨ(y)

+ 8

∫ ∞

0

∫ 1(
1+exp(

π(y−5)

5
√

3
)
)−1

ln
β

1− β
dβdΨ(y) = 1.436056,

where, dΨ(y) = 1√
2π×4

exp
(
− (y−5)2

2×4

)
dy. The value of above integral is obtained via Monte Carlo

simulation, i.e. the integral is mean of the random sample. Other statistical properties of the

random sample such as density function, box plot, histogram and scatter plot are displayed in

Figure 2.

§5 Portfolio Optimization of Uncertain Random Returns

In many situations, we deal with several securities involving historical and new markets. We

can consider historical and new markets as random and uncertain variables, respectively. In

the case of new markets, we have not enough data to predict probability distributions. Thus,

we invite experts to derive belief degree or uncertain distribution of return for new markets.

Besides, the values of uncertain random variables are greater than mean, conclude interest in

finance, we should minimize entropy for values which lower than mean. Therefore, in order to

solve the portfolio selection problems with uncertain random returns, we propose two mean-

semi-entropy models via partial semi entropy.

Assume we have n securities with uncertain random returns ξ1, ξ2, · · · , ξn, respectively.

Also, consider xi’s as investment proportions in security i, i = 1, 2, ..., n. In portfolio selection,
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we want to obtain a large return. In fact, we want to derive a large amount of x1ξ1+ · · ·+xnξn.

Since, ξ1, · · · , ξn are uncertain random variables, it is reasonable to obtain a large amount of

E[x1ξ1 + · · ·+ xnξn].

Based on the investor’s view, we introduce the following portfolio selection models. When

upper bound of partial semi entropy of returns is known, the investor will prefer a portfolio

with large expectation.

max
xi

E[x1ξ1 + x2ξ2 + · · ·+ xnξn]

subject to :

PSH[x1ξ1 + x2ξ2 + · · ·+ xnξn] ≤ λ

x1 + x2 + ...+ xn = 1, xi ≥ 0, i = 1, 2, ..., n,

where, λ is predetermined parameters.

When upper bound of expectation of returns is known, the investor will prefer a portfolio

with small partial semi entropy.

min
xi

PSH[x1ξ1 + x2ξ2 + · · ·+ xnξn]

subject to :

E[x1ξ1 + x2ξ2 + · · ·+ xnξn] ≥ δ

x1 + x2 + ...+ xn = 1, xi ≥ 0, i = 1, 2, ..., n,

where, δ is predetermined parameters.

Sometimes the investor want to maximize expectation and minimize partial semi entropy of

returns. This major can be modeled as follows.

max
xi

E[x1ξ1 + x2ξ2 + · · ·+ xnξn]

min
xi

PSH[x1ξ1 + x2ξ2 + · · ·+ xnξn]

subject to :

x1 + x2 + ...+ xn = 1, xi ≥ 0, i = 1, 2, ..., n,

Example 3. Consider we have four securities with uncertain random returns shown in Table

1, with ξi = τi + ηi, i = 1, 2, · · · , n.

Table 1.

No Uncertain Term Random Term

1 τ1 ∼ N (0.042, 0.18) η1 ∼ N (0.02, 0.09)

2 τ2 ∼ N (0.039, 0.21) η2 ∼ N (0.01, 0.16)

3 τ3 ∼ N (0.031, 0.16) η3 ∼ N (0.01, 0.05)

4 τ4 ∼ N (0.02, 0.26) η4 ∼ N (0.02, 0.06)
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We want to maximize the mean of total returns with constrained semi-entropy.

max
xi

0.062x1 + 0.049x2 + 0.041x3 + 0.04x4

subject to :

PSH[x1ξ1 + x2ξ2 + x3ξ3 + x4ξ4] < 0.01

x1 + x2 + x3 + x4 = 1, xi ≥ 0, i = 1, 2, 3, 4.

PSH[x1ξ1 + x2ξ2 + x3ξ3 + x4ξ4]

=

∫
R4

∫ (
1+exp(

π(x1y1+x2y2+x3y3+x4y4−0.02x1−0.01x2−0.01x3−0.02x4)

(0.18x1+0.21x2+0.16x3+0.26x4)
√

3
)
)−1

0[(
x1y1 + x2y2 + x3y3 + x4y4 + 0.042x1 + 0.039x2 + 0.031x3 + 0.02x4

)
+

(
(0.18x1 + 0.21x2 + 0.16x3 + 0.26x4)

√
3

π
ln

β

1− β

)
ln

β

1− β

]
dβdΨ1(y1)dΨ2(y2)dΨ3(y3)dΨ4(y4)

+ (0.042x1 + 0.039x2 + 0.031x3 + 0.02x4)∫
R4

∫ 1(
1+exp(

π(x1y1+x2y2+x3y3+x4y4−0.02x1−0.01x2−0.01x3−0.02x4)

(0.18x1+0.21x2+0.16x3+0.26x4)
√

3
)
)−1

ln
β

1− β

dβdΨ1(y1)dΨ2(y2)dΨ3(y3)dΨ4(y4),

where Ψ1,Ψ2,Ψ3 and Ψ4 are probability distribution functions of N (0.02, 0.09), N (0.01, 0.16),

N (0.01, 0.05) and N (0.02, 0.06), respectively. Now, by solving the crisp optimization problem,

we obtain the optimal solutions as Table 2. Also, the expected value of the total returns is

0.046200.

Table 2.

No 1 2 3 4

Proportion of Portfolio 0.24 0.02 0.74 0

Now, We want to minimize the semi-entropy of total returns with constrained mean.

min
xi

PSH[x1ξ1 + x2ξ2 + x3ξ3 + x4ξ4]

subject to :

0.062x1 + 0.049x2 + 0.041x3 + 0.04x4 > 0.055

x1 + x2 + x3 + x4 = 1, xi ≥ 0, i = 1, 2, 3, 4.

Now, by solving the crisp optimization problem, we obtain the optimal solutions as Table 3.

Also, the semi-entropy of the total returns is 0.056852.



394 Appl. Math. J. Chinese Univ. Vol. 37, No. 3

Table 3.

No 1 2 3 4

Proportion of Portfolio 0.68 0 0.32 0

Now, we want to optimize the portfolio selection problem via multi-objective model.

max
xi

0.062x1 + 0.049x2 + 0.041x3 + 0.04x4

min
xi

PSH[x1ξ1 + x2ξ2 + x3ξ3 + x4ξ4]

subject to :

x1 + x2 + x3 + x4 = 1, xi ≥ 0, i = 1, 2, 3, 4.

Now, by solving the crisp optimization problem, we obtain the optimal solutions as Table 4.

Also, the mean and semi-entropy of the total returns are 0.043320 and 0.000234, respectively.

Table 4.

No 1 2 3 4

Proportion of Portfolio 0.08 0.08 0.84 0

§6 Conclusions

This paper presented the concept of partial semi entropy of uncertain random variables as
a risk measure. Also, some properties of this concept are studied. Furthermore, for computing
partial semi entropy for uncertain random variables, Monte-Carlo approach was provided. As
an application in finance, portfolio selection problems were optimized by mean-semi entropy.
For better understanding of main results, some examples and figures were obtained.
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