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Asymptotic analysis of a nonlinear stochastic

eco-epidemiological system with feedback control

ZHANG Sheng-qiang1,2 MENG Xin-zhu1,∗

Abstract. This paper proposes a new stochastic eco-epidemiological model with nonlinear

incidence rate and feedback controls. First, we prove that the stochastic system has a unique

global positive solution. Second, by constructing a series of appropriate stochastic Lyapunov

functions, the asymptotic behaviors around the equilibria of deterministic model are obtained,

and we demonstrate that the stochastic system exists a stationary Markov process. Third, the

conditions for persistence in the mean and extinction of the stochastic system are established.

Finally, we carry out some numerical simulations with respect to different stochastic parameters

to verify our analytical results. The obtained results indicate that the stochastic perturbations

and feedback controls have crucial effects on the survivability of system.

§1 Introduction

In the last many decades, epidemic has been a leading cause of death. To prevent outbreak

and expansion of infectious diseases, people have implemented some suitable measures, where

epidemiological models [4, 13, 24–27, 30, 32, 40] have given important insights to analyze the

spreading and control of epidemic. In general, we assume that the population comprises two

subgroups: susceptible individuals (S) and the already infected individuals (I). In [6], the SI

model is given by: 
dS(t)

dt
= S(t)

(
a− bS(t)− cI(t)

)
,

dI(t)

dt
= I(t)

(
dS(t)− e− fI(t)

)
,

(1)

where a, b, c, d, e and f are positive constants. a denotes the recruitment birth rate, b and

f stand for the density restriction coefficients of S(t) and I(t), respectively. c is the contact
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rate, d is the rate of transmission, e is the diseased death rate. There are some scholars who

have discussed several different SI models, the readers can refer to [16,23,31,41] and references

therein.

However, the infectious rate is a crucial factor in SI models, and there are some different

communication forms of infectious diseases according to principle of mass action. Bilinear

and standard incidences have been extensively applied in disease analysis [2, 22]. In 1973, [5]

introduced a saturated incidence (see e.g. [23, 25])

g(I)S =
kI

1 + αI
S

into epidemic model, where kI denotes infection force, 1
1+αI represents the inhibition action.

When α = 0, we notice that the saturated incidence turns into a bilinear incidence (g(I)S =

kIS). According to the crowding effect of I(t) or some protection measures to S(t), the number

of effective contacts may saturate at a high level because the saturated incidence rate includes

the behavioral change and crowding action of infective individuals.

In the real world, ecosystems are continuously disrupted by unpredictable forces [12]. Most

often, the disturbance functions are called as control variables. In the last decades, many

scholars prefer to study ecosystem with the help of feedback controls (see [11, 12, 28]). For

instance, Gopalsamy and Weng [11] considered a feedback control variables into the logistic

model with delay, and obtained the sufficient conditions for the global asymptotic dynamics

of solutions, where control variables satisfy properties of certain differential equations. [28]

proposed feedback control variables in SI model with the bilinear incidence to explore the

global stability of the model. Specifically, Tripathi and Abbas [28] proposed the SI model

which is described by:

dS(t)

dt
= S(t)

(
a− bS(t)− cI(t)

1 + kI(t)
− pu(t)

)
,

dI(t)

dt
= I(t)

(
− d− eI(t) +

cS(t)

1 + kI(t)
− qv(t)

)
,

du(t)

dt
= −p1u(t) + q1S(t),

dv(t)

dt
= −p2v(t) + q2I(t),

(2)

with initial condition

S(0) > 0, I(0) > 0, u(0) > 0 and v(0) > 0, (3)

where u(t) and v(t) denote feedback control variables. k is inhibitory effect, and p1, p2, q1 and q2

denote the feedback control coefficients. The else parameters have the similar meanings as for

system (1). According to biological considerations, all parameters k, p, q, p1, p2, q1 and q2 are

positive constants. We know that the solution of (2) with (3) is positive when t ≥ 0 in [21]. In

(2), the basic reproduction number R0 = Qkc
2kd+P+Qc2 controls whether or not the disease persists,

here P = p2e+qq2
p2

and Q = p1

bp1+pq1
. If d = Qac, R0 < 1 and (2kd + P + Qc2)a = kd, then

E0(S0, 0, u0, 0) is globally asymptotically stable. If R0 > 1 and ckI∗ < min{2b, 2(e + ckS∗)},
then E∗(S∗, I∗, u∗, v∗) is globally asymptotically stable.

On the other hand, many scholars only considered the deterministic models that ignore the
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effects of environmental fluctuations. However, in the real world, environmental noise is one

of the vital elements in ecosystems. And almost all practical observations showed that the

stochastic fluctuations in biological growth process are obvious, and the probability of random

fluctuations is not small. Since the fluctuations exist, a real ecosystem can not maintain at

a steady state, and environmental perturbation will break this equilibrium either by directly

affecting the density or by indirectly changing the values of parameters. Therefore, in many

cases, it is imprecise to use deterministic models to analyze and predict changes in ecosystem

behavior. In order to adapt to different practical needs, it is necessary to use the stochastic

biological mathematical models to describe the ecosystem, so that the objective reality can be

more comprehensive understanding. Inspired by these ideas, many authors (see [1, 3, 7–10, 14,

15,17–19,21,29,33–39,42]) showed that it is more precise to reflect how the environmental noise

influences the population dynamics. [10] formulated a stochastic eco-epidemiological model with

a nonlinear functional response. By making use of the technique of inequalities and Lyapunov

methods, the authors showed that the larger environmental interference destroys the persistence

of the eco-epidemiology model. [36] proposed stochastic SIR and SEIR models with nonlinear

incidence rate, and proved that under some conditions, the solution exists a unique stationary

distribution and is ergodic. Hence making use of the model with stochastic fluctuations can

more accurately predict the dynamic behavior of the system. In what follows, we suppose that

environmental perturbations are directly proportional to S(t) and I(t) and are affected on the
dS(t)
dt and dI(t)

dt in model (2), respectively.

For all we know, there are no investigators to consider the global dynamics of stochastic epi-

demic models with feedback control yet. Therefore, this paper discusses the global asymptotic

behaviors of a stochastic SI model with nonlinear incidence rate and feedback controls and

investigates the effect of environmental noise on the survivability of the model. Corresponding

to system (2), we take into account the stochastic system as follows:

dS(t) = S(t)

(
a− bS(t)− cI(t)

1 + kI(t)
− pu(t)

)
dt+ σ1S(t)dB1(t),

dI(t) = I(t)

(
−d− eI(t) +

cS(t)

1 + kI(t)
− qv(t)

)
dt+ σ2I(t)dB2(t),

du(t) = (−p1u(t) + q1S(t)) dt,

dv(t) = (−p2v(t) + q2I(t)) dt,

(4)

where σ2
1 and σ2

2 denote the noise intensity, B1(t) and B2(t) are mutually independent standard

Brownian motions defined in the complete probability space (Ω,F , {Ft}t≥0,P) with a filtration

{Ft}t≥0 satisfying the usual conditions.

Next, we mainly investigate the global dynamics of the new stochastic eco-epidemiological

model with nonlinear incidence rate and feedback controls. In view of feedback control, the

energy of the stochastic eco-epidemiological model is not conserved, which causes difficulties for

the model analysis. One of the main contributions of this paper is to solve the corresponding

difficulties.

This study is organized as follows. In the next section, the unique nonnegative solution of

(4) is proved. Section 3 discusses the global asymptotic behaviors of (4) around the equilibria
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of the corresponding deterministic system (2). And we validate that (4) exists a stationary

Markov process under certain conditions. In Section 4, the conditions for the persistence in

mean and extinction of (4) are obtained, we further present a number of simulations to illustrate

the main results and summarize our main results in Section 5.

§2 Existence and uniqueness of the global positive solution

Ecologically, S(t), I(t), u(t) and v(t) in (4) are nonnegative for all t ≥ 0. Next, we verify

that the global positive solution is existent and unique.

Theorem 2.1. Model (4) with initial data (3) admits a unique positive solution (S(t), I(t), u(t),

v(t)) ∈ R4
+ with probability 1 for t > 0.

Proof. Since the coefficients of (4) are local Lipschitz continuous, then there has a unique local

solution (S(t), I(t), u(t), v(t)) on t ∈ [0, τe), where τe denotes explosion time. Next, we prove

τe = +∞ almost surely (a.s.), which shows that (S(t), I(t), u(t), v(t)) is global. Set k0 ≥ 1 large

enough such that S(0), I(0), u(0) and v(0) lie in [ 1
k0
, k0]. For any k > k0, define the following

stopping time:

τk = inf
{
t ∈ [0, τe) : min{(S(t), I(t), u(t), v(t))} ≤ 1

k
or max{(S(t), I(t), u(t), v(t))} ≥ k

}
.

Specifically, we let inf ∅ = ∞. Clearly τk denotes a monotonically increasing function as k →
+∞. Let τ∞ = limk→+∞ τk, whence τ∞ ≤ τe a.s. If τ∞ = +∞ a.s., so τe = +∞ a.s., for ∀t ≥ 0.

By contradiction, there are constants T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T} > ε. Thus,

for some k1 ≥ k0, it holds

P{τk ≤ T} ≥ ε, ∀k ≥ k1. (5)

Next, one constructs a C2-function V : R4
+ → R+:

V (S, I, u, v) = q1q2(S − 1− lnS) + q1q2(I − 1− ln I) +
pq2
2

u2 +
qq1
2

v2

+q2(u− 1− lnu) + q1(v − 1− ln v)

:= V1(S, I, u, v) + V2(u, v),

here

V1(S, I, u, v) = q1q2(S − 1− lnS) + q1q2(I − 1− ln I) +
pq2
2

u2 +
qq1
2

v2,

V2(u, v) = q2(u− 1− lnu) + q1(v − 1− ln v).

Using Itô’s formula yields

dV (S, I, u, v) = LV dt+ q1q2(S − 1)σ1dB1(t) + q1q2(I − 1)σ2dB2(t),

where LV = LV1 + LV2 :

LV1 = q1q2

(
(S − 1)(a− bS − cI

1 + kI
− pu) +

σ2
1

2

)
+q1q2

(
(I − 1)(−d− eI +

cS

1 + kI
− qv) +

σ2
2

2

)
+pq2(−p1u

2 + q1uS) + qq1(−p2v
2 + q2vI)
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= q1q2

(
aS − bS2 − a+ bS +

cI

1 + kI
+ pu+

σ2
1

2

)
− p1pq2u

2

+q1q2

(
−dI − eI2 + d+ eI − cS

1 + kI
+ qv +

σ2
2

2

)
− q1qp2v

2

= q1q2

(
−bS2 + (a+ b− c

1 + kI
)S

)
+ q1q2

(
−eI2 + (e− d+

c

1 + kI
)I

)
+q2(−p1pu

2 + q1pu) + q1(−qp2v
2 + q2qv) + q1q2

(
d− a+

σ2
1

2
+

σ2
2

2

)
,

LV2 = q2

(
1− 1

u

)(
− p1u(t) + q1S(t)

)
+ q1

(
1− 1

v

)(
− p2v(t) + q2I(t)

)
= q1q2S(t) + p1q2 − p1q2u(t)−

q1q2S(t)

u(t)
+ q1q2I(t) + q1p2 − q1p2v(t)−

q1q2I(t)

v(t)
.

LV = q1q2

(
−bS2 + (a+ b− c

1 + kI
)S

)
+ q1q2

(
−eI2 + (e− d+

c

1 + kI
)I

)
+q2(−p1pu

2 + q1pu) + q1(−qp2v
2 + q2qv) + q1q2

(
d− a+

σ2
1

2
+

σ2
2

2

)
+q1q2S(t) + p1q2 − p1q2u(t)−

q1q2S(t)

u(t)
+ q1q2I(t) + q1p2 − q1p2v(t)−

q1q2I(t)

v(t)

= q1q2

(
−bS2 + (a+ b+ 1− c

1 + kI
)S

)
+ q1q2

(
−eI2 + (e− d+ 1 +

c

1 + kI
)I

)
+q2(−p1pu

2 + (q1p− p1)u) + q1(−qp2v
2 + (q2q − p2)v) + q1q2

(
d− a+

σ2
1

2
+

σ2
2

2

)
+p1q2 + q1p2 −

q1q2S(t)

u(t)
− q1q2I(t)

v(t)

≤ max

{
q1q2

(
−bS2 +

(
a+ b+ 1− c

1 + kI

)
S

)}
+max

{
q1q2

[
−eI2 +

(
e− d+ 1 +

c

1 + kI

)
I

]}
+max

{
q2
(
− p1pu

2 + (q1p− p1)u
)}

+max
{
q1
(
− qp2v

2 + (q2q − p2)v
)}

+ q1q2

(
d− a+

σ2
1

2
+

σ2
2

2

)
+ p1q2 + q1p2

≤ K

for some constant K > 0. Therefore

dV (S, I, u, v) ≤ Kdt+ q1q2(S − 1)σ1dB1(t) + q1q2(I − 1)σ2dB2(t). (6)

Integrating (6) from 0 to T ∧ τk = min{T, τk}, further taking expectation, we have

EV (S(T ∧ τk), I(T ∧ τk), u(T ∧ τk), v(T ∧ τk)) ≤ V (S(0), I(0), u(0), v(0)) +KE(T ∧ τk).

Therefore, we yield

EV (S(T ∧ τk), I(T ∧ τk), u(T ∧ τk), v(T ∧ τk)) ≤ V (S(0), I(0), u(0), v(0)) +KT. (7)

Let Ωk = {τk ≤ T} for all k ≥ k1, according to the inequality (5), we know that P (Ωk) ≥ ε.

Hence for any ω ∈ Ωk, there exists at least one of S(τk, ω), I(τk, ω), u(τk, ω) or v(τk, ω) which
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equals either 1
k or k. As a result, we have

V (S(τk, ω), I(τk, ω), u(τk, ω), v(τk, ω)) ≥ min

{
k − 1− ln k,

1

k
− 1 + ln k

}
.

Then

V (S(T ∧ τk), I(T ∧ τk), u(T ∧ τk), v(T ∧ τk)) ≥ (k − 1− ln k) ∧
(
1

k
− 1 + ln k

)
. (8)

Then combining equations (7) and (8), we yield

V (S(0), I(0), u(0), v(0)) +KT ≥ E
[
χΩk

(ω)V (S(τk, ω), I(τk, ω), u(τk, ω), v(τk, ω))
]

≥ ε(k − 1− ln k) ∧
(
1

k
− 1 + ln k

)
,

where χΩk
is the indicator function of Ωk. When k → +∞, we get

+∞ > V (S(0), I(0), u(0), v(0)) +KT = +∞,

which is a contradiction. Thus, we prove that τ∞ = +∞ a.s.

§3 Asymptotic behaviors

In [28], the authors have obtained two equilibria E0(S0, 0, u0, 0) and E∗(S∗, I∗, u∗, v∗) for

model (2), and under certain conditions, they are globally asymptotically stable, respectively.

However, for corresponding stochastic system (4), the two equilibrium points are not existent.

In the part, we study the asymptotic behaviors of (4) around E0 and E∗ of (2), respectively.

3.1 Asymptotic behaviors around E0 of (2)

If d = Qac, R0 < 1 and (2kd + P + Qc2)a = kd, then E0(S0, 0, u0, 0) of (2) is globally

asymptotically stable. However (4) does not exist any equilibrium. Hence we investigate the

asymptotic behaviors of (4) around E0(S0, 0, u0, 0).

Theorem 3.1. Assume that (S(t), I(t), u(t), v(t)) is the solution of (4) with the positive initial

data (3). When d = Qac, R0 < 1 and (2kd+ P +Qc2)a = kd, then

lim sup
t→+∞

1

t
E
∫ t

0

[(
S(θ)− S0

)2

+ I(θ)2 +
(
u(θ)− u0

)2

+ v(θ)2
]
dθ ≤ S0σ

2
1

2L
,

where L = min
{
b, e, p1p

q1
, p2q

q2

}
.

Proof. Since E0(S0, 0, u0, 0) is the disease-free equilibrium of (2), then we get

bS0 + pu0 = a, −p1u0 + q1S0 = 0, S0 =
ap1

pq1 + bp1
, u0 =

aq1
pq1 + bp1

.

Define

V (S, I, u, v) = q1q2

(
S − S0 − S0 ln

S

S0

)
+ q1q2I + pq2

(u− u0)
2

2
+ qq1

v2

2
.

Then

dV (S, I, u, v) = LV dt+ q1q2(S − S0)σ1dB1(t) + q1q2Iσ2dB2(t), (9)
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where

LV = q1q2

[
(S − S0)

(
a− bS − cI

1 + kI
− pu

)
+

S0σ
2
1

2

]
+q1q2I

(
− d− eI +

cS

1 + kI
− qv

)
+pq2(u− u0)(−p1u+ q1S) + qq1v(−p2v + q2I)

= q1q2

{
(S − S0)

[
− b(S − S0)− p(u− u0)−

cI

1 + kI

]
+

S0σ
2
1

2

}
+q1q2

(
− dI − eI2 +

c

1 + kI
(S − S0)I +

cS0

1 + kI
I − qIv

)
+pq2(u− u0)

(
− p1(u− u0)− p1u0 + q1(S − S0) + q1S0

)
+qq1(−p2v

2 + q2Iv)

= −q1q2b(S − S0)
2 − q1q2eI

2 − p1pq2(u− u0)
2 − p2qq1v

2

−q1q2dI +
q1q2cS0

1 + kI
I +

q1q2S0

2
σ2
1

= −q1q2b(S − S0)
2 − q1q2eI

2 − p1pq2(u− u0)
2 − p2qq1v

2

+
acp1q1q2
pq1 + bp1

I(
1

1 + kI
− 1) +

q1q2S0

2
σ2
1

≤ −q1q2b(S − S0)
2 − q1q2eI

2 − p1pq2(u− u0)
2 − p2qq1v

2 +
q1q2S0

2
σ2
1 .

Integrating (9) from 0 to t, and taking expectation, we have

EV (t)− EV (0) ≤ −q1q2bE
∫ t

0

(
S(θ)− S0

)2

dθ − q1q2eE
∫ t

0

I(θ)2dθ

−p1pq2E
∫ t

0

(
u(θ)− u0

)2

dθ − p2qq1E
∫ t

0

v(θ)2dθ

+
q1q2S0

2
σ2
1t. (10)

Hence, dividing inequality (10) by t and taking the limit superior yield

lim sup
t→+∞

1

t
E
∫ t

0

[
q1q2b

(
S(θ)− S0

)2
+ q1q2eI(θ)

2 + p1pq2(u(θ)− u0)
2 + p2qq1v(θ)

2
]
dθ

≤ q1q2S0σ
2
1

2
.

Dividing both sides of the above equation by q1q2, we get

lim sup
t→+∞

1

t
E
∫ t

0

[
b(S(θ)− S0)

2 + eI(θ)2 +
p1p(u(θ)− u0)

2

q1
+

p2qv(θ)
2

q2

]
dθ ≤ S0σ

2
1

2
,

i.e.

lim sup
t→+∞

1

t
E
∫ t

0

[(
S(θ)− S0

)2

+ I(θ)2 +
(
u(θ)− u0

)2

+ v(θ)2
]
dθ ≤ S0σ

2
1

2L
,

where L = min
{
b, e, p1p

q1
, p2q

q2

}
.

Corollary 3.1. Taking into account Theorem 3.1, when σ1 = 0, then

LV ≤ −q1q2b(S − S0)
2 − q1q2eI

2 − p1pq2(u− u0)
2 − p2qq1v

2 ≤ 0,
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hence, if d = Qac, R0 < 1 and (2kd + P + Qc2)a = kd hold, then E0(S0, 0, u0, 0) of (2) is

globally asymptotically stable.

Remark 3.1. To Theorem 3.1, when the environmental fluctuation is small enough, the

solution (S(t), I(t), u(t), v(t)) of (4) fluctuates around E0(S0, 0, u0, 0), and the noise intensity

is dependent on σ2
1 .

3.2 Asymptotic behaviors around E∗ of (2)

If R0 > 1, ckI∗ < min{2(e + ckS∗), 2b}, system (2) has an equilibrium E∗(S∗, I∗, u∗, v∗).

However, (4) does not have stead-state. Next, we prove the asymptotic behaviors of (4) around

E∗(S∗, I∗, u∗, v∗) under certain conditions.

Theorem 3.2 Assume that (S(t), I(t), u(t), v(t)) is the solution of (4) obtained in Theorem 2.

When R0 > 1, ckI∗ < min{2b, 2(e+ ckS∗)}, we derive

lim sup
t→+∞

1

t
E
∫ t

0

[
(S(θ)− S∗)

2 + (I(θ)− I∗)
2 + (u(θ)− u∗)

2 + (v(θ)− v∗)
2
]
dθ ≤ W

m
,

where

m = min

{
q1q2b,

q1q2e

1 + kI∗
, p1pq2,

p2qq1
1 + kI∗

}
, W =

q1q2S∗

2
σ2
1 +

q1q2I∗
2(1 + kI∗)

σ2
2 ,

simultaneously (4) exists a stationary Markov process.

Proof. It follows from E∗(S∗, I∗, u∗, v∗) of (2) that

a− bS∗ −
cI∗

1 + kI∗
− pu∗ = 0,

−d− eI∗ +
cS∗

1 + kI∗
− qv∗ = 0,

−p1u∗ + q1S∗ = 0,

−p2v∗ + q2I∗ = 0.

Define

V (S, I, u, v) = q1q2

(
S − S∗ − S∗ ln

S

S∗

)
+

q1q2
1 + kI∗

(
I − I∗ − I∗ ln

I

I∗

)
+pq2

(u− u∗)
2

2
+

qq1
1 + kI∗

(v − v∗)
2

2

:= q1q2V1 +
q1q2

1 + kI∗
V2 + pq2V3 +

qq1
1 + kI∗

V4.

With help of Itô’s formula, we have

dV1 = LV1dt+ (S − S∗)σ1dB1(t),

with

LV1 = (S − S∗)

[
a− bS − cI

1 + kI
− pu

]
+

S∗σ
2
1

2

= (S − S∗)

[
bS∗ +

cI∗
1 + kI∗

+ pu∗ − bS − cI

1 + kI
− pu

]
+

S∗σ
2
1

2

= (S − S∗)

[
−b(S − S∗)− p(u− u∗)−

c(I − I∗)

(1 + kI)(1 + kI∗)

]
+

S∗σ
2
1

2
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= −b(S − S∗)
2 − p(S − S∗)(u− u∗)−

c(S − S∗)(I − I∗)

(1 + kI)(1 + kI∗)
+

S∗σ
2
1

2
.

Similarly, we have

dV2 = LV2dt+ (I − I∗)σ2dB2(t),

LV2 = (I − I∗)

[
−d− eI +

cS

1 + kI
− qv

]
+

I∗σ
2
2

2

= (I − I∗)

[
eI∗ −

cS∗

1 + kI∗
+ qv∗ − eI +

cS

1 + kI
− qv

]
+

I∗σ
2
2

2

= (I − I∗)

−e(I − I∗)− q(v − v∗) +
c
(
(S − S∗)− k(S∗I − SI∗)

)
(1 + kI)(1 + kI∗)

+
I∗σ

2
2

2

= −e(I − I∗)
2 − q(I − I∗)(v − v∗) +

c(S − S∗)(I − I∗)

1 + kI
− ckS∗(I − I∗)

2

(1 + kI)(1 + kI∗)
+

I∗σ
2
2

2
.

Also, we get

dV3 = (u− u∗)(−p1u+ q1S)dt

= (u− u∗)
[
− p1(u− u∗)− p1u∗ + q1(S − S∗) + q1S∗

]
dt

=
[
− p1(u− u∗)

2 + q1(S − S∗)(u− u∗)
]
dt

dV4 = (v − v∗)(−p2v + q2I)dt

= (v − v∗)
[
− p2(v − v∗)− p2v∗ + q2(I − I∗) + q2I∗

]
dt

=
[
− p2(v − v∗)

2 + q2(I − I∗)(v − v∗)
]
dt.

Thus, we have

dV = LV dt+ q1q2(S − S∗)σ1dB1(t) +
q1q2(I − I∗)σ2

1 + kI∗
dB2(t), (11)

LV = q1q2LV1 +
q1q2

1 + kI∗
LV2 + pq2dV3 +

qq1
1 + kI∗

dV4

= −q1q2b(S − S∗)
2 − q1q2p(S − S∗)(u− u∗)−

q1q2c(S − S∗)(I − I∗)

(1 + kI)(1 + kI∗)

+
q1q2S∗σ

2
1

2
− q1q2e(I − I∗)

2

1 + kI∗
− q1q2ckS∗(I − I∗)

2

(1 + kI)(1 + kI∗)2
− q1q2q(I − I∗)(v − v∗)

1 + kI∗

+
q1q2c(S − S∗)(I − I∗)

(1 + kI)(1 + kI∗)
+

q1q2I∗σ
2
2

2(1 + kI∗)
− p1pq2(u− u∗)

2

+q1q2p(S − S∗)(u− u∗)−
p2q1q

1 + kI∗
(v − v∗)

2 +
q1q2q

1 + kI∗
(I − I∗)(v − v∗)

≤ −q1q2b(S − S∗)
2 − q1q2e

1 + kI∗
(I − I∗)

2 − p1pq2(u− u∗)
2

− p2q1q

1 + kI∗
(v − v∗)

2 +
q1q2S∗

2
σ2
1 +

q1q2I∗
2(1 + kI∗)

σ2
2 .

Obviously, we note that if

q1q2S∗

2
σ2
1 +

q1q2I∗
2(1 + kI∗)

σ2
2 < min

{
q1q2bS

2
∗ ,

q1q2e

1 + kI∗
I2∗ , p1pq2u

2
∗,

p2q1q

1 + kI∗
v2∗

}
,
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then the domain

−q1q2b(S − S∗)
2 − q1q2e

1 + kI∗
(I − I∗)

2 − p1pq2(u− u∗)
2

− p2q1q

1 + kI∗
(v − v∗)

2 +
q1q2S∗

2
σ2
1 +

q1q2I∗
2(1 + kI∗)

σ2
2 < 0

lies entirely in R4
+. With the help of [9, Lemma 3.1], let U be any neighborhood of the domain

with U ⊆ R4
+, thus for every (S, I, u, v) ∈ R4

+ \ U , we get LV ≤ −C (C represents a positive

constant). Therefore, the system (4) has a stationary Markov process.

Further, integrating (11) from 0 to t, then taking expectation, we yield

EV (t)− EV (0) ≤ −q1q2bE
∫ t

0

(S(θ)− S∗)
2dθ − p1pq2E

∫ t

0

(u(θ)− u∗)
2dθ

− q1q2e

1 + kI∗
E
∫ t

0

(I(θ)− I∗)
2dθ − p2q1q

1 + kI∗
E
∫ t

0

(v(θ)− v∗)
2dθ

+
q1q2S∗

2
σ2
1t+

q1q2I∗
2(1 + kI∗)

σ2
2t.

By simple calculation can get

lim sup
t→+∞

1

t
E
∫ t

0

[
q1q2b(S(θ)− S∗)

2 +
q1q2e(I(θ)− I∗)

2

1 + kI∗
+ p1pq2(u(θ)− u∗)

2

+
p2q1q(v(θ)− v∗)

2

1 + kI∗

]
dθ ≤ q1q2S∗

2
σ2
1 +

q1q2I∗
2(1 + kI∗)

σ2
2 ,

clearly

lim sup
t→+∞

E
∫ t

0

[
(S(θ)− S∗)

2 + (I(θ)− I∗)
2 + (u(θ)− u∗)

2 + (v(θ)− v∗)
2
]
dθ

t
≤ W

m
, (12)

where

m = min

{
q1q2b,

q1q2e

1 + kI∗
, p1pq2,

p2qq1
1 + kI∗

}
and W =

q1q2S∗

2
σ2
1 +

q1q2I∗
2(1 + kI∗)

σ2
2 .

Corollary 3.2. Taking into account Theorem 3.2, when σ1 = σ2 = 0, we yield

LV ≤ −q1q2b(S − S∗)
2 − q1q2e

1 + kI∗
(I − I∗)

2 − p1pq2(u− u∗)
2 − p2q1q

1 + kI∗
(v − v∗)

2 ≤ 0.

Therefore, if R0 > 1, ckI∗ < min{2(e + ckS∗), 2b}, then E∗(S∗, I∗, u∗, v∗) of (2) is globally

asymptotically stable.

Remark 3.2. It follows from Theorem 3.2 that if the environmental fluctuation is small

enough, then solution of (4) fluctuates around E∗(S∗, I∗, u∗, v∗). In addition, the noies intensity

is positively correlated with σ2
1 and σ2

2 .

§4 Survivability analysis

In random sense, we know that (4) does not exist equilibria, though we have learned the

stability of the equilibrium points for (2), it can not illustrate the persistence of (4). Based on

this, in the following, we study the persistence in mean and extinction of (4), because these two

properties are vary important in a ecosystem.
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Definition 4.1. ( [23]) Extinction and persistence in mean are defined as follows.

1. We call the population X(t) extinct if

lim
t→+∞

X(t) = 0 a.s.

2. We call the population X(t) persistent in mean if

lim inf
t→+∞

1

t
E
∫ t

0

X(θ)dθ > 0 a.s.

4.1 Persistence in mean

Theorem 4.1. Assume that (S(t), I(t), u(t), v(t)) is the solution of (4) with (3). When R0 > 1,

ckI∗ < min{2b, 2(e+ ckS∗)} and

α = max{σ1, σ2} < min
{
S∗

√
m

W0
, I∗

√
m

W0
, u∗

√
m

W0
, v∗

√
m

W0

}
hold, then we get 

lim inf
t→+∞

1

t
E
∫ t

0

S(θ)dθ > 0,

lim inf
t→+∞

1

t
E
∫ t

0

I(θ)dθ > 0,

lim inf
t→+∞

1

t
E
∫ t

0

u(θ)dθ > 0,

lim inf
t→+∞

1

t
E
∫ t

0

v(θ)dθ > 0,

where

W0 =
q1q2S∗

2
+

q1q2I∗
2(1 + kI∗)

,

and m is defined in Theorem 3.2.

Proof. Taking into account inequality (12) in Theorem 3.2, we yield

lim sup
t→+∞

1

t
E
∫ t

0

(S(θ)− S∗)
2dθ ≤ W

m
,

lim sup
t→+∞

1

t
E
∫ t

0

(I(θ)− I∗)
2dθ ≤ W

m
,

lim sup
t→+∞

1

t
E
∫ t

0

(u(θ)− u∗)
2dθ ≤ W

m
,

lim sup
t→+∞

1

t
E
∫ t

0

(v(θ)− v∗)
2dθ ≤ W

m
.

(13)

When S(t) ≥ 0 and S∗ > 0, applying the inequality 2S(t)S∗ ≥ S2
∗ − (S(t)− S∗)

2, we get

S(t) ≥ S∗

2
− (S(t)− S∗)

2

2S∗
.

Moreover

W =
q1q2S∗

2
σ2
1 +

q1q2I∗
2(1 + kI∗)

σ2
2 ≤ α2

[
q1q2S∗

2
+

q1q2I∗
2(1 + kI∗)

]
= α2W0.
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If α < S∗
√

m
W0

, we yield

lim inf
t→+∞

1

t
E
∫ t

0

S(θ)dθ ≥ S∗

2
− lim sup

t→+∞

1

t
E
∫ t

0

(S(θ)− S∗)
2

2S∗
dθ

≥ S∗

2
− W

2S∗m
≥ S∗

2
− α2W0

2S∗m
> 0.

Similarly, if α < I∗
√

m
W0

, we have

lim inf
t→+∞

1

t
E
∫ t

0

I(θ)dθ ≥ I∗
2

− lim sup
t→+∞

1

t
E
∫ t

0

(I(θ)− I∗)
2

2I∗
dθ

≥ I∗
2

− W

2I∗m
≥ I∗

2
− α2W0

2I∗m
> 0.

If α < u∗
√

m
W0

, we have

lim inf
t→+∞

1

t
E
∫ t

0

u(θ)dθ ≥ u∗

2
− lim sup

t→+∞

1

t
E
∫ t

0

(u(θ)− u∗)
2

2u∗
dθ

≥ u∗

2
− W

2u∗m
≥ u∗

2
− α2W0

2u∗m
> 0.

If α < v∗
√

m
W0

, we have

lim inf
t→+∞

1

t
E
∫ t

0

v(θ)dθ ≥ v∗
2

− lim sup
t→+∞

1

t
E
∫ t

0

(v(θ)− v∗)
2

2v∗
dθ

≥ v∗
2

− W

2v∗m
≥ v∗

2
− α2W0

2v∗m
> 0,

completing the proof.

Remark 4.1. Theorem 4.1 indicates that if R0 > 1, ckI∗ < min{2b, 2(e + ckS∗)} and the

noise is sufficiently small, system (4) will be persistent in mean. And it also illustrates that the

population can resist a sufficiently small intensity of random disturbance from environmental

to keep persistence.

4.2 Extinction

Extinction is also an important property in biological mathematical system. In the subsec-

tion, we give a lemma which is used for the proof of population extinction.

Lemma 4.1. ( [20]) Suppose X(t) ∈ C[Ω×R+, R
0
+], here R0

+ := {a|a > 0, a ∈ R}.

1. If ∃λ, βi and constants λ0 > 0, T > 0, when t ≥ T , satisfying

lnX(t) ≤ λt− λ0

∫ t

0

X(θ)dθ +
n∑

i=1

βiBi(t) a.s.,
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then 
lim

t→+∞
X(t) = 0 a.s., if λ < 0;

lim sup
t→+∞

1

t

∫ t

0

X(θ)dθ ≤ λ

λ0
a.s., if λ ≥ 0.

2. If ∃βi and constants λ > 0, λ0 > 0, T > 0, when t ≥ T , satisfying

lnX(t) ≥ λt− λ0

∫ t

0

X(θ)dθ +

n∑
i=1

βiBi(t) a.s.,

then lim inf
t→+∞

1

t

∫ t

0

X(θ)dθ ≥ λ

λ0
a.s.

Theorem 4.2. Assume that (S(t), I(t), u(t), v(t)) is the solution of (4) with (3). If σ2
1 >

2a, then

lim
t→+∞

S(t) = 0 a.s., lim
t→+∞

I(t) = 0 a.s., lim
t→+∞

u(t) = 0 a.s., lim
t→+∞

v(t) = 0 a.s.

Proof. By Itô’s formula to (4) implies that

d lnS(t) =

(
a− bS(t)− cI(t)

1 + kI(t)
− pu(t)− σ2

1

2

)
dt+ σ1dB1(t)

≤
(
a− σ2

1

2
− bS(t)

)
dt+ σ1dB1(t), (14)

then by direct calculations, we yield

1

t
ln

S(t)

S(0)
≤

(
a− σ2

1

2

)
− b

t

∫ t

0

S(θ)dθ +
1

t

∫ t

0

σ1dB1(θ). (15)

Since σ2
1 > 2a, from Lemma 4.2, it holds

lim
t→+∞

S(t) = 0 a.s.

Similarly, we have

d ln I(t) =

(
−d− eI(t) +

cS(t)

1 + kI(t)
− qv(t)− σ2

2

2

)
dt+ σ2dB2(t).

According to limt→+∞ S(t) = 0 a.s., when t > T , there exists a constant ϵ > 0 small enough

satisfying S(t) ≤ ϵ
c , therefore

d ln I(t) ≤
(
ϵ− d− eI(t)− σ2

2

2

)
dt+ σ2dB2(t). (16)

then
1

t
ln

I(t)

I(0)
≤

(
ϵ− d− σ2

2

2

)
− e

t

∫ t

0

I(θ)dθ +
1

t

∫ t

0

σ2dB2(θ).

Combined Lemma 4.2 with the arbitrariness of ϵ, it yields

lim
t→+∞

I(t) = 0 a.s.

Thus, from (4), one has

lim
t→+∞

u(t) = 0 a.s., lim
t→+∞

v(t) = 0 a.s.
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Remark 4.2. Theorem 4.2 indicates that when environmental noise is large enough, the

populations will be extinct.

Theorem 4.3. Assume that (S(t), I(t), u(t), v(t)) is the solution of (4) with (3). When bσ2
2 + cσ2

1 > 2(ac− bd),

σ2
1 < 2a and

pq1
bp1

< 1

hold, then we obtain

a− 1
2σ

2
1

b
≥ lim sup

t→+∞

∫ t

0
S(θ)dθ

t
≥ lim inf

t→+∞

∫ t

0
S(θ)dθ

t
≥

(
a− σ2

1

2

)(
1− pq1

bp1

)
b

> 0 a.s.,

lim
t→+∞

I(t) = 0 a.s.,

q1(a− 1
2σ

2
1)

bp1
≥ lim sup

t→+∞
u(t) ≥ lim inf

t→+∞
u(t) ≥

q1

(
a− σ2

1

2

)(
1− pq1

bp1

)
bp1

> 0 a.s.,

lim
t→+∞

v(t) = 0 a.s.

Proof. Since the solution of (4) with (3) is nonnegative, and from (4), it yields

dS(t) ≤ S(t)[a− bS(t)]dt+ σ1S(t)dB1. (17)

We therefore have (15) by simple calculation (17). When σ2
1 ≤ 2a, in other words, a− σ2

1

2 ≥ 0,

by Lemma 4.2, we find that

lim sup
t→+∞

1

t

∫ t

0

S(θ)dθ ≤
a− 1

2σ
2
1

b
a.s. (18)

Next, we investigate the second equation of (4). Making use of (18), we yield

dI(t) ≤ I(t)

[
−d− eI(t) +

c(a− 1
2σ

2
1)

b

]
dt+ σ2I(t)dB2(t). (19)

Using Itô’s formula to (19), we can obtain

d ln I(t) ≤
(
−d− eI(t) +

c(a− 1
2σ

2
1)

b
− σ2

2

2

)
dt+ σ2dB2(t). (20)

Simple calculations shows that

1

t
ln

I(t)

I(0)
≤

(
−d− σ2

2

2
+

c(a− 1
2σ

2
1)

b

)
− e

t

∫ t

0

I(θ)dθ +
1

t

∫ t

0

σ2dB2(θ).

If bσ2
2 + cσ2

1 > 2(ac − bd) hold, that is to say, −d − σ2
2

2 +
c(a− 1

2σ
2
1)

b < 0 hold, making use of

Lemma 4.2, we know

lim
t→+∞

I(t) = 0 a.s. (21)

By (4), when equation (21) is satisfied, we easily get

lim
t→+∞

v(t) = 0 a.s.

Taking account of the third equation of system (4), when equation (18) holds, we get

du(t) ≤
(
−p1u(t) +

q1(a− 1
2σ

2
1)

b

)
dt,

x(t) =
q1(a− 1

2σ
2
1)

bp1
+ c̃ exp(−p1t)
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is the solution of the following equation:

dx(t) =

(
−p1x(t) +

q1(a− 1
2σ

2
1)

b

)
dt.

According to comparison theorem u(t) ≤ x(t), we yield

u(t) ≤
q1(a− 1

2σ
2
1)

bp1
+ c̃ exp(−p1t),

then

lim sup
t→+∞

u(t) ≤
q1(a− 1

2σ
2
1)

bp1
a.s., (22)

where c̃ is some constant.

Next, we consider the first equation of (4) again, when equation (21) and equation (22)

hold, we yield

dS(t) ≥ S(t)

[
a− bS(t)−

q1(a− 1
2σ

2
1)

bp1

]
dt+ σ1S(t)dB1. (23)

Similarly, by Itô’s formula to (23), we get

1

t
ln

S(t)

S(0)
≥

(
a− σ2

1

2

)(
1− pq1

bp1

)
− b

t

∫ t

0

S(θ)dθ +
1

t

∫ t

0

σ1dB1(θ). (24)

If a− σ2
1

2 > 0 and pq1
bp1

< 1 hold, that is to say,
(
a− σ2

1

2

)(
1− pq1

bp1

)
> 0 holds, by Lemma 4.2, it

yields

lim inf
t→+∞

1

t

∫ t

0

S(θ)dθ ≥

(
a− σ2

1

2

)(
1− pq1

bp1

)
b

> 0 a.s. (25)

Finally, we consider the fourth equation of (4) again, when (25) holds, we have

du(t) ≥

−p1u(t) +
q1

(
a− σ2

1

2

)(
1− pq1

bp1

)
b

 dt,

by computation, we find that

lim inf
t→+∞

u(t) ≥
q1

(
a− σ2

1

2

)(
1− pq1

bp1

)
bp1

> 0 a.s.

Based on the above work, when bσ2
2 + cσ2

1 > 2(ac− bd),

σ2
1 < 2a and

pq1
bp1

< 1

are satisfied, we get

a− 1
2σ

2
1

b
≥ lim sup

t→+∞

∫ t

0
S(θ)dθ

t
≥ lim inf

t→+∞

∫ t

0
S(θ)dθ

t
≥

(
a− σ2

1

2

)(
1− pq1

bp1

)
b

> 0 a.s.,

lim
t→+∞

I(t) = 0 a.s.,

q1(a− 1
2σ

2
1)

bp1
≥ lim sup

t→+∞
u(t) ≥ lim inf

t→+∞
u(t) ≥

q1

(
a− σ2

1

2

)(
1− pq1

bp1

)
bp1

> 0 a.s.,

lim
t→+∞

v(t) = 0 a.s.
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Remark 4.3. By Theorem 4.2, we can give these biological significance as follows:

1. The condition bσ2
2 + cσ2

1 > 2(ac − bd) shows that when the intensity σ2
1 and σ2

2 of envi-

ronmental fluctuations are bigger, the infected individuals I(t) is extinct;

2. The conditions σ2
1 < 2a and pq1

bp1
< 1 implies that when σ2

1 is smaller and the feedback con-

trols have also less harmful to the susceptible individuals, then the susceptible individuals

S(t) is persistence in mean.

Therefore, we can obtain that making use of the environmental fluctuations reasonably and

decreasing the perniciousness of the feedback controls to the susceptible individuals S(t) which

are advantageous to control the development of infectious diseases.

§5 Simulations and Conclusions

Next, we present some numerical simulations. We investigate the discrete equations as

follows: 

Sn+1 = Sn + Sn

(
a− bSn − cIn

1 + kIn
− pun

)
∆t+ σ1Sn∆W1k,

In+1 = In + In

(
−d− eIn +

cSn

1 + kIn
− qvn

)
∆t+ σ2In∆W2k,

un+1 = un + (−p1un + q1Sn)∆t,

vn+1 = vn + (−p2vn + q2In)∆t,

where ∆t = 0.01, ∆Wik = Wi(tk+1)−Wi(tk) (i = 1, 2) is the Gaussian distribution N(0,∆t).

In Figure 1, we set S(0) = 0.12, I(0) = 0.12, u(0) = 0.12, v(0) = 0.12, a = 0.35, b = 2,

c = 3, d = 0.21, e = 1, p = 1.5, q = 1, p1 = 1, p2 = 2, q1 = 2, q2 = 1, k = 0.1, σ1 = σ2 = 0.02,

and ∆t = 0.01.

By computation, we get that

E0 = (S0, I0, u0, v0) = (0.07, 0, 0.14, 0), R0 = 0.018 < 1.

The result of Figure 1 shows that it satisfies the result of Theorem 3.1.
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Fig 1. (a) The deterministic model (2) with σ1 = σ2 = 0; (b) The stochastic system (4) with
σ1 = σ2 = 0.02; (c) Phase portrait: the red line describes (2), and the blue orbit expresses (4).

In Figure 2, we set S(0) = 0.12, I(0) = 0.12, u(0) = 0.12, v(0) = 0.12, a = 0.3, b = 2, c = 3,
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d = 0.15, e = 1, p = 0.2, q = 0.01, p1 = 1, p2 = 8, q1 = 1.5, q2 = 2, k = 8, σ1 = σ2 = 0.02, and

∆t = 0.01.
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Fig 2. (a) The deterministic model (2) with σ1 = σ2 = 0; (b) The stochastic system (4) with
σ1 = σ2 = 0.02; (c) Phase portrait: the red line describes (2), and the blue orbit expresses (4).

Then, we get that
E∗ = (S∗, I∗, u∗, v∗) = (0.0878, 0.0443, 0.1317, 0.011),

R0 = 1.4263 > 1, 2b = 4 > ckI∗ = 1.0632,

2(e+ ckS∗) = 6.2144 > ckI∗ = 1.0632.

The result of Figure 2 proves that it satisfies our conclusion in Theorem 3.2.

In Figure 3, we choose σ1 = σ2 = 0.01, other parameters are all same with Figure 2. Figure

3 indicates that the solution for the stochastic system (4) fluctuates in a sufficiently small

domain. Considering Figure 3 (b) and (c), one can know that there exists a stationary Markov

process. The result of Figure 3 shows that our conclusions are true.
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Fig 3. (a) Time series diagram of (4); (b) The density functions of S(t); (c) The density
functions of I(t).

In Figure 4, one can choose the parameters of (2) as follows:

S(0) = 0.12, I(0) = 0.12, u(0) = 0.12, v(0) = 0.12, a = 0.2, b = 2, c = 3, d = 0.1, e = 1,

p = 0.5, q = 0.1, p1 = 1, p2 = 6, q1 = 1.5, q2 = 2, k = 6, and ∆t = 0.01.

Under this condition, we obtain that
E∗ = (S∗, I∗, u∗, v∗) = (0.04856, 0.0255, 0.0728, 0.0085),

R0 = 1.1888 > 1, 2b = 4 > ckI∗ = 0.459,

2(e+ ckS∗) = 3.74816 > ckI∗ = 0.459.
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Fig 4. (a) The deterministic model (2) with σ1 = σ2 = 0; (b) Persistence in mean of stochastic
system (4) with σ1 = σ2 = 0.05; (c) The extinction of stochastic system (4) with σ1 = 0.66,
σ2 = 0.01.

In Figure 4 (b), we let σ1 = σ2 = 0.05. Then, we have

α = max{σ1, σ2} = 0.05 < min

{
S∗

√
m

W0
, I∗

√
m

W0
, u∗

√
m

W0
, v∗

√
m

W0

}
= 0.4613.

Therefore, Theorem 4.1 holds. Figure 4 (b) illustrates that if the noise perturbations are small

enough, the solution is are persistent in mean.

In Figure 4 (c), we set σ1 = 0.66, σ2 = 0.01. Then we get σ2
1 = 0.4356 > 2a = 0.4, which

satisfies Theorem 4.2. Figure 4 (c) shows that if the noise perturbation σ1 is large enough, the

solution is extinct.

In Figure 5, we choose the parameters of (2) as follows:

S(0) = 0.03, I(0) = 0.03, u(0) = 0.03, v(0) = 0.03, a = 0.1, b = 1, c = 0.3, d = 0.02, e = 0.1,

p = 0.1, q = 0.01, p1 = 1, p2 = 6, q1 = 1.5, q2 = 3, k = 6, and ∆t = 0.01.

Then, we obtain that
E∗ = (S∗, I∗, u∗, v∗) = (0.0823, 0.0198, 0.1235, 0.0099),

R0 = 3.698 > 1, 2b = 2 > ckI∗ = 0.0356,

2(e+ ckS∗) = 0.3481 > ckI∗ = 0.0356.

In Figure 5 (b), we let σ1 = 0.2, σ2 = 0.2. Then, we have bσ2
2 + cσ2

1 = 0.052 > 0.02 = 2(ac− bd),

σ2
1 = 0.04 < 0.2 = 2a and

pq1
bp1

= 0.15 < 1.

Therefore, the all conditions of Theorem 4.2 are satisfied. Figure 5 (b) illustrates that if the

feedback controls have less effects on the susceptible individuals, then the healthy individuals

are persistent in mean.

In Figure 6, we choose the parameters of (2) as follows:

S(0) = 0.03, I(0) = 0.03, u(0) = 0.03, v(0) = 0.03, a = 0.11, b = 1, c = 0.5, d = 0.026, e = 0.1,

p = 0.5, q = 0.01, p1 = 0.99, p2 = 6, q1 = 2, q2 = 3, k = 6, and ∆t = 0.01.

Hence, we obtain that
E∗ = (S∗, I∗, u∗, v∗) = (0.05386, 0.00354, 0.10881, 0.00177),

R0 = 2.7568 > 1, 2b = 2 > ckI∗ = 0.0106,

2(e+ ckS∗) = 0.5232 > ckI∗ = 0.0106.
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Fig 5. (a) The deterministic model (2) with σ1 = σ2 = 0; (b) Persistence in mean of stochastic
system (4) with σ1 = σ2 = 0.2.

In Figure 6 (b), we let σ1 = 0.2, σ2 = 0.2. Then, we have bσ2
2 + cσ2

1 = 0.06 > 0.058 = 2(ac− bd),

σ2
1 = 0.04 < 0.22 = 2a and

pq1
bp1

= 1.0101 > 1.

It follows from Figure 6 (b) that if the feedback controls have great effects on the susceptible

individuals, then the susceptible population goes extinct. Comparing Figure 5 (b) with Figure

6 (b) shows that the feedback controls have significant effect on persistence and extinction of

the susceptible population.
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Fig 6. (a) The deterministic model (2) with σ1 = σ2 = 0; (b) The extinction of stochastic
system (4) with σ1 = σ2 = 0.2.

Based on a deterministic SI epidemic model derived by Tripathi and Abbas [28], we propose

a stochastic model with saturated incidence rate and feedback controls. Firstly, the existence

and uniqueness of the global positive solution of (4) is proved. Then, by stochastic Lyapunov

functions with feedback controls u(t) and v(t) and inequality techniques, we obtain the asymp-

totic dynamics around the equilibria of (2) and prove that the solution of (4) is a stationary

Markov process, which implies that the solution of (4) can fluctuate around the equilibria of (2).

Moreover, the fluctuation range is dependent on σ1 and σ2. Lastly, we investigate the survival

of (4). These results show that the stability of the population system can resist on the exter-

nal noise disturbance is restricted. When the noise perturbation is small enough, the stability

of the system has little effect; however, when the perturbation is bigger, it can result in the
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extinction of population. At the same time, we show that feedback controls are advantageous

to the control of the infectious disease. [10] and [36] only consider the effect of environment

interference on the epidemiological model. By comparison, the feedback control in this paper

has a realistic significance for the extinction of the disease. Therefore, we should take accoun-

t of the environmental distribution reasonably and decrease the harmfulness of the feedback

controls to the susceptible individuals which have important guiding significance for controlling

disease. Without stochastic effects, our results are completely consistent with that given in [28].

Consequently, we really extend and develop some results and methods of deterministic models

with feedback controls.

Therefore, we summarize the main results as follows:

• Asymptotic behaviors:

1. When d = Qac, R0 < 1 and (2kd + P + Qc2)a = kd, the solution of (4) fluctuates

around E0 of (2). Furthermore, the extent of fluctuation is dependent on σ2
1 ;

2. When R0 > 1 and ckI∗ < min{2b, 2(e+ckS∗)}, the solution of (4) fluctuates around

E∗ of (2). There is a positive correlation between the extent of fluctuation and the

intensity of environmental disturbance σ2
1 and σ2

2 . Furthermore, when σ2
1 and σ2

2

small enough, the solution of (4) has a stationary Markov process.

• Survivability analysis

1. When R0 > 1, ckI∗ < min{2b, 2(e+ ckS∗)} and

α = max{σ1, σ2} < min

{
S∗

√
m

W0
, I∗

√
m

W0
, u∗

√
m

W0
, v∗

√
m

W0

}
hold, the solution of the stochastic model (4) is persistent in mean;

2. When σ2
1 > 2a, the populations of system (4) is extinct;

3. When  bσ2
2 + cσ2

1 > 2(ac− bd),

σ2
1 < 2a and

pq1
bp1

< 1

hold, then we get

a− 1
2σ

2
1

b
≥ lim sup

t→+∞

∫ t

0
S(θ)dθ

t
≥ lim inf

t→+∞

∫ t

0
S(θ)dθ

t
≥

(a− σ2
1

2 )(1− pq1
bp1

)

b
> 0 a.s.,

lim
t→+∞

I(t) = 0 a.s.,

q1(a− 1
2σ

2
1)

bp1
≥ lim sup

t→+∞
u(t) ≥ lim inf

t→+∞
u(t) ≥

q1

(
a− σ2

1

2

)(
1− pq1

bp1

)
bp1

> 0 a.s.,

lim
t→+∞

v(t) = 0 a.s.,

that is, I(t) and v(t) are extinct, S(t) and u(t) are persistent in mean.

• Stochastic distribution and feedback controls have important effects on the dynamics

behaviors of the epidemic model.
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Some amusing topics deserve further study. One can consider some realistic and complex

issues, for example, a stochastic feedback control model with impulsive effects or a stochastic

feedback control model with delays.
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