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Convergence analysis for delay Volterra integral equation

ZHENG Wei-shan

Abstract. In this article we use Chebyshev spectral collocation method to deal with the
Volterra integral equation which has two kinds of delay items. We use linear transforma-
tion to make the interval into a fixed interval [—1,1]. Then we use the Gauss quadrature
formula to approximate the solution. With the help of lemmas, we get the result that
the numerical error decay exponentially in the infinity norm and the Chebyshev weighted
Hilbert space norm. Some numerical experiments are given to confirm our theoretical
prediction.

81 Introduction

As we know, integral equations have been widely applied in many aspects of natural science,
especially with the development of electronic computer technology, see, e.g., Corduneanu [1] and
references therein. Volterra integral equation is a type of integral equation that appears in the
question of physics or others, such as the problem of celestial particle motion, potential theory,
Dirichlet question, electrostatic question, the problem of thermal radiation shielding, and so on.
Therefore, it is of great significance to study its numerical solution. There are many methods for
solving Volterra integral equations. Detailed introduction can be found in [2]. Here we just list
some latest methods: Legendre spectral-collocation method [3, 4], Jacobi spectral-collocation
method [5, 6], spectral Galerkin method [7, 8], Chebyshev spectral-collocation method [2, 9]
and so on. In this paper, as in [2, 3], we focus on Volterra integral equation. The same as in
[2], we use Chebyshev spectral-collocation method to deal with the Volterra integral equation,
but in [2] there is no delay. In [3], there is vanishing delay in the Volterra integral equation,
but the authors use Legendre spectral-method while in this article we use Chebyshev spectral-
collocation method. Another difference is not only the integral interval with vanishing delay,
but also the integrand.

The Volterra integral equation we consider in this paper is as follows:

T ()
y(r) = F(r) + / Ry (m, €)y(€)de + / Ro(r,my(gnydn, 7€ [0,T), (1)
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where y(7) is an unknown function on [0, 7], T' < oo, and ¢(7) satisfies the following conditions:
$(0) =0,
0<o(r) <7, 0<7<T,
0<¢'(r), 0<T<T,
¢ € C™([0,T]), m > 1.

Other given functions satisfy
f(r) € C™([0,T]), Ri(7,€) € C™(E), Ra(7,m) € C™(Q2),m > 1,
where
D ={(r,0):0<E<7<T}HQ:={(r,n): 0<n< (1) <7< T}

There are two parts of delay items in the above function. One is y(gn), called pantograph
delay, where ¢ is a given constant and 0 < ¢ < 1. Another one is the generalized delay function
(7).

This paper is organized as follows. In section 2, we introduce the spectral approach for
the equation. Some useful lemmas are provided in section 3, which are important for the
convergence analysis. In section 4, we provide the convergence analysis in both L> and L2.
spaces. At last, numerical experiments are carried out to confirm the theoretical results.

Throughout the paper, C' denotes a generic positive constant that is independent of N, but
depends on T and the given data.

82 Chebyshev spectral collocation method

For ease of analysis, equation (1) can be transformed to the fixed interval [—1,1] with the
following variable substitution:

_z( +) _z 1
T=3 @), &= 57— 1,
T 2
f:g(1+3)782g§—17

n=51+1), 7

Then equation (1) can be rewritten as

y(0+2) =7 (50+)+ /1 SR (50 +a), 20 +9))y(50+9)ds (@)

+/f¢(€(1+x))1 §R2 (g(l + ), %(1 + t))y(qg(l + t))dt.

Let
u(x) = y(%(l +x)>7 g(x) == f(%(l +x)),
Ki(z,58) = gRl(g(l + ), %(1 + s)),
Ka(z,t) :%RQ(g(lm),%(Ht)),
plz) = %d)(g(l +a)) -1,

and we have
y(q%(l—l—t)) = y(%(q+qt)) = y(%(1+qt+q— 1)) = u(gt +q—1).
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Now we can rewrite (2) as follows:

w(z) _
/ K (z, s)u(s)ds +/ Ky(z, t)u(gt +q—1)dt, ze[-1,1]. (3)

1

Note that {z;}, are the N + 1-point Chebyshev Gauss, or Chebyshev Gauss-Radau, or
Chebyshev Gauss- Lobatto points (see, e.g., [10]) and equation (3) holds at z;:

p(xi)
u(z;) = g(z;) / Ki (%5, )d8+/ Ko(zi, t)yu(gt + g — 1)dt, i =0,1,2,...,N. (4)

-1
In order to get higher accuracy for equation (4), we will transform the interval [—1, z;],
[—1,¢(x;)] into a fixed interval [—1,1] by two simple linear transformation:

1 -1
su(2) = %H = zel-11,
1 -1
t(v) = W;* vt W; Lvel-1,1].
Equation (4) is equivalent to
1 1
u(z;) = g(@i) + / Ky (@, 2)u(sq, (2))dz + / Ka(i, v)u(qte, (v) + ¢ — 1)dv, (5)
—1 —1

where

Ki(z,2) = %Kl(x 52(2)), Kolz,0) = %E(x,tz(v)).

With N + 1- point of Gauss quadrature formula, we have
N N

u(wi) m g(w:) + > Ki(@i, ze)u(sa, (z))wr + > Ko (@i, vp)u(gta, (vr) + ¢ — 1wy,
k=0 k=0
1 =0,1,2,..., N, where z; = v are the N 4 1-Legendre Gauss, or Legendre Gauss-Radau, or
Legendre Gauss-Lobatto points, the corresponding weight function wg, k = 0,1,..., N. We use
u; to approximate u(x;) and use

N
= ZquJ (z)
§=0

to approximate u(x). Fj(z) is the j — th Lagrange basic function with {z;}¥, so if x = x;,
then u™ (z;) = u;. Let
N
) + Z K (2, 2 )u™ (2(20) Jwn + Z Ko(z, v )u™ (gt (vr) + g — D,
k=0
The Chebyshev spectral-collocation method is to seek u'¥(x) such that {u;}X, satisfy the
following equations for ¢ = 0,1,2,..., N,
N N
u; = g(z;) + Z K1 (4, z)u™ (50, (21))wr + Z Ko(zs, ve)u® (qte, (vr) + ¢ — 1)wg. (6)
k=0 k=0

83 Some useful lemmas

In this section, we will provide some fundamental lemmas, which are important for the
following error estimation. In order to discuss clearly, we first introduce some spaces.

Let w®?(x) = (1 — 2)*(1 + 2)” be a weight function in the usual sense, for a, 8 > —1.
The set of Jacobi polynomials {J2%(2)}32, forms a complete L, ,(—1,1) orthogonal system,
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where L2, ;(—1,1) is a weighted space defined by

L2, :(—=1,1) := {v: v is measurable and ||v||ya.s < o0},

1
equipped with the norm ||v||,e.s = (f_ll |v(x)|2w>? (sc)dx) *, and the inner product
1
(u,v) o8 = / u(x)v(x)w? (2)de, Yu,v € L2, s(—1,1).
—1
We denote ( o k)(x) by 0kv,0 < k < m. For non-negative integer m, define
moo(—1,1) == {v: 0% € L2, 5(~1,1),0 <k <m},
equipped with the norm

mmmﬂln—(gmawpﬁ<ng

k=0

For a nonnegative integer N, the semi-norm is defined as:
m

L k.12
|U|H;”(;f\,§(—1x1) = ( Z ||azv||Lia,B(_l’1)>

k=min(m,N+1)

Nl=

N

When a = 8 = 0, we denote Hgf,{f)v(—l, 1) by H™N(—1,1). When o = 8 = —1, we denote
w22 by w*®.
The space L>°(—1,1) is the Banach space of the measurable functions u : (—1,1) — R that
are bounded outside a set of measure zero, equipped with the norm
|ul| o (—1,1) :=ess  sup |u(x)|.
ze(—1,1)
Lemma 3.1 [10, 11] Assume that v € H%(—1,1), m > 1. Then the following estimates
hold
Ju— INUHLE)C(—Ll) < CN_m|U‘H;"gN(_171)7 (7)
lu = Inullpoe(~1,1) € CN =" ful gy 3, (8)
where I is the interpolation operator associated with the N + 1-point Chebyshev Gauss, or
Chebyshev Gauss-Radau, or Chebyshev Gauss-Lobatto points {x; }évzo, promptly
N
Inv(z) =Y _v(x;)Fj(z), ve C([-1,1]).
j=0
Lemma 3.2 [10, 11] Suppose u € H:(—1,1), v € H™(—1,1) for some m > 1 and ¢ € Py,
which denotes the space of all polynomials of degree not exceedmg N. Then there exists a

constant C independent of N such that
N

[ w0 @ — 3 e )as)ef] < ON Ml s,
7=0
and

N
‘/ v(z)y dfov zj) z])wj‘ CN™"v|gm~ —1,0) 1] L2(=1,1)5

where x; is the N +1-point Chebyshev Gauss, or Chebyshev Gauss-Radau, or Chebyshev Gauss-
Lobatto point, corresponding weight w7, j = 0,1,...N and z; is the N + 1-point Legendre Gauss,
or Legendre Gauss-Radau, or Legendre Gauss-Lobatto point, corresponding weight w;,j =
0,1,...N.

Lemma 3.3 [6, 12] Let F;(z), j = 0,1, ...N be the j—th Lagrange interpolation polynomials
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associated with N + 1-point Chebyshev Gauss, or Chebyshev Gauss-Radau, or Chebyshev
Gauss-Lobatto points {z;}_,. Then

I o = F O(logN
Nl o (- ,hax Z| (logN).

Lemma 3.4 (Gronwall inequality) [4, 13] Assume that u(z) is a nonnegative, locally inte-
grable function defined on [—1, 1] satisfying

x

u(z) <wv(z) + L/ u(T)dr,

—1
where L > 0 is a constant, v(z) is an integrable function. Then there exists a constant C' such

that .
u(z) <o(z) + C’/_l v(T)dr

[u(@)]|Loe(—1,1) < Cllv(@)l|zoe(—1,1)-
Lemma 3.5 Suppose 0 < M7, Ms < +oo. If a nonnegative integrable function e(z) satisfies

()
e(z) < v(z) + M, / e(t)dt + Mz/ e(qf + q—1)do,
-1

-1
where v(x) is also a nonnegative integrable function, then

6(%)<U($)+C/iUTdT

le(x )||L°°( 1,1) & < Cllv(x )||L°°(—1,1)7

and

xT

and

where C' is a constant.

Proof: With
2 2 2 /T
= — — — < —(—= - -
ola) = zo(z0+0) ~1< = (5)1+a) - 1=x,
we get i i
e(z) <wv(z)+ M, / e(t)dt + Mg/ e(qf + q— 1)do.
-1 -1
Let
p=q0+q—1,
then 1
0= B + ;C]’
q q
and

x 1 [azta—1 1
/ e(q9+q71)d0:f/ dp<f/ e(0
-1 q.J-1 q.J-1

for0<g¢g<lygr+q—1=qxz+1)-1<z+1-1=z2€]0,1].
So

xX

e(z) <wv(x) + (M + Mg)/ e(6)do.

-1
According to lemma 3.4, we have

e(r) <wv(x)+ C/i v(T)dr

lle(z) oo (=1,1) < Cllv(@)]|Loo (=1,1)-

and
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Lemma 3.6 [14] For all measurable function f > 0, the following general Hardy inequality

/‘Tf 9w (2) da?%S /|f ) Pws (x dw)

holds if and only if
1

aiiab(/fwﬂﬂdt)é(/fwﬂ ) <oy =

for the case of 1 < p < ¢ < oo, where T is the form of the following function

/kxt t)dt,

with the condition that the function k(x t) is a given kernel function, wy,ws is the weight
functions and —oo < a < b < +o0.
Lemma 3.7 [6, 15] For all bounded function v(x), there exists a constant C' independent
of v such that
Sup Hnvllzz, (~1,1) < Cllvllpee(1,1)-

84 Convergence analysis

This section is devoted to providing convergence analysis for the Volterra integral equation.
Our goal is to show that the rate of convergence is exponential and the spectral accuracy can
be obtained in L> and L2. spaces by using Chebyshev spectral-collocation method.

Theorem 4.1 Assume that u(z) is the exact solution of equation (3) and u™(z) is the
approximate solution of the spectrum collocation method for equation (6). For N that is large
enough, there is

1_ * *
||’LL((E) — UN(ZC)”Lx(fl,l) < CN2 m<|u‘Hm:N( 1 1) + (Kl + KQ)HUHLoo(,Ll)), (9)

K} = {Iian‘K (z,2)

Proof: Note that e(z) = u(z) — u¥ (), subtract (5) from (6) and we have

H™N (= 11),1—1 2.

1 1
e(z;) = [1 Ki(x;, 2)e(ss,(2))dz + /71 Ko(zi,v)e(qty, (v) + ¢ — 1)dv + Ji(z;) + J2(z;), (10)

i=0,1.,N
where
1 N
x) = / Ky (z, 2)u® (s4(2))dz — Z Ky (2, z)u™ (50 (21) )wi,
Ja( / Ky(z,v)u (qt()+q—1dv—ZK2muk) N(gte(vg) + ¢ — Dwy,

k=0
Using lemma 3.2, we have

[T ()] < ONT™ K (@, ) i (-1, [0 (50 (2)) |22 (-1,),
| J2()] < ONT™Ka(x, )| gmiv (-1, llu™ (gte(v) + ¢ = D2 -1,)-
Timing F;(z) on both sides of the equation (10) and summing up from ¢ = 0 to N get
Iyu(z) — u (z)

(11)

=1y /_1 Ki(z,2)e(sz(2))dz + In /_1 Ky(z,v)e(qty(v) + g — Ddv + InJi(x) + InJa(z).
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So,
e(z) (12)

1 1 2
:/_1Kl(x,z)e(sx(z))dz—l—/_lKg(xw)e(qtm(v)+q—l)dv+ S Til@)+ Y Indi(w),

§=0,3,4 j=1
where
) Jo(x) :=u(x) — INU(?,
J5(x) = In /_1 Ky (z,2)e(sz(2))dz — /_1 Ki(z, 2)e(sy(2))dz,
1

1
Ju(z) = In [1 Ky (z,v)e(qty(v) +q— 1)dv — [1 Ks(x,v)e(gt,(v) + g — 1)dv.

We rewrite equation (12) as
e(z) (13)
plz) __

r 2
:/ R (x, s)e(s)ds + Ealw De(gt+g—Ddt + S Ji@) + Y InJj(a).
-1 -1 §=0,3,4 j=1

According to lemma 3.5,
||€||L°°(71,1) (14)
< O Jollzee(=1,1) + UNTill oo (—1,1) + N J2llpoe(—1,1) + 1S3l noe (—1,1) + [[JallLoe(=1,1))-

Now we estimate the above inequality term by term. Applying the inequality (8) to Jo(z),
we get
im
[ Jo(@)llLoe -1,y = llw = Inufl e (-1, S ONZT"uf g g 35 (15)

Next, using the inequality (11) for J;(z), we have

_max |J1(z)] (16)

—m T N
< ON™"K} max [[u® (s0(2) 2210
S CNimKik”uN”Loo(_l’l)
< ON K (llello 1,1 + lullo 1) ).

According to lemma 3.3,
[N J1 ()| Loo(~1,1) (17)
SN Nz 1 11 (@) e (<1,1)

< CN_m(ZOQN)Kf(||€||Loo(—1,1) + ||U||Loo(—1,1))~

Similarly,
I Ja(@)ll e (1,1 < ON " (10gN)K; (lell o (—1,1) + lull (1) )- (18)
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Now we estimate ||.J3||zo(—1,1) and [|J4 po(—1,1). Use the inequality (8) and let m = 1,

3l Lo (~1.1) (19)
< CN~2 / Kq(z,2)e(s,(z ))dZ’HiLN(—l,l)
_1 >
=CN™ 2 [1 Kl(x’s)e(s)dS’HigN(an
1 || =~ z 0 —
=CN 2 ‘Kl(x,w)e(m) + Lle(x)a—xKl(x,s)ds‘ £ (1)
< ON 7 lefl g (-1
In the same way, there is
| Jall oo (=1,1) (20)
. w(z)
—CON~? Ka(z,t)e(gt +q— 1) dt‘
1 -1,1)
—on | [ Ratep®)elaplt) +a - 1y <t>dt\
—1 Huyc (_171)
= CN~2|Ks(2, 9())e(qp(x) + g = D (@)]2, (-1,1)

4 [ elapt) +a- 06 (05 Kale p(0)at

< N2 el L1
Jointing (14), (15), (17) — (20), we have
lellLoe(—1,1) < Cfom\U|H;ﬂL;N(71,1) + CN""(logN) (K71 + K3)lul[ Lo (~1,1)-

L2.(~1,1)

And because

. N ™logN . logN
lim ————— = lim

1 1 =0,
N—oo Nz~ ™ N—oo N2

when N is large enough,
N™MogN < Nz=™
So we finish the proof of the conclusion:

lellzoe1,n) < ON™ (Jul gy 1y + (K7 + K3l -1, )-

Theorem 4.2 The exact solution of equation (3) is u(x) and u™(z) is the approximate
solution of the spectrum collocation method for equation (6). Let us assume that N is very

large, then
(@) = ¥ @)z, 1.0 < ONT (KL + K5+ 1) (Julyrn g g+ 0 ez + lulle o )-

Proof: As the same procedure in the deduction from (10) to (13) in theorem 4.1, and with
the help of the first conclusion from lemma 3.5 we can derive (13) to the following inequality

\<c/ ST i —|—ZINJ ’dt+] > I +ZINJ (
j=0,3,4 j=0,3,4
Using lemma 3.6, we have

lellzz, (—11) (21)

< C<||J0||Lic(71,1) T NIz, (—10) + 1IN T2llrz, (—10) + 1 3ll2, (c10) + HJ4||L3)C(71,1))'
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Now we estimate each item from left to right for the above inequality. For Jy(z), the first
conclusion in lemma 3.1 shows that

||J0($)HLZC(—1,1) = |lu— INU”LiC(—m) < CN_m|U|HZgN(_171)~ (22)

For the estimation of |[IxJ1][12_(_1,1), using lemma 3.7 and the inequality (16), we obtain

N @)z, 1 <€ max )] < ON K (fellimonn +lulimrn), (23)
then let m = 1 in the conclusion of theorem 4.1 and we have
lellzee 1.1y < C (I ez, 1.0y + (K + K3 ull )
in the end (23) turns to
N J1(@)l| L2, (—1,1) < CN_mKik(”u/HLic(—l,l) + (K7 + K3 + 1)||UHL°°(—1,1))- (24)
In the same way,
HInJ2(@)] 2, (—1,1) < CN?mK;(HUIHLfJC(fl,l) + (K7 + K7 + 1)||UHL°°(—1,1))~ (25)
Now we turn to the estimation of |[J3(x) 12, (—1,1)- With the help of (7) from lemma 3.1,
let m = 1, like the analysis of inequality (19) and we have
Wsllzz. 1) < ON"Hlellze 11y < ON el (11

Due to the conclusion in theorem 4.1, we get

130122, 1,1y < ONE (Julymn g gy + (KG + K3 ulloe 1,1 ) (26)
The similar result for [|Ja(z)|| 2, (1,1 is:
—_1_m * *
il oy < ONTF (ull s oy + (7 + KDlule o). (20)

Jointing (21), (22), (24) — (27), we can get the desired estimation as follows:
H€||L§u(—1,1) <CN ™(Ki+ K3+ 1)(|U|H;@N(,1,1) + [lu HLZC(—l,l) + HU||L°°(7171))-

85 Numerical experiments

5.1 Example 1

In order to compare our method with Legendre spectral collocation method used in [4], for
(3), we let the second kernel be zero. Details are

Ri(s,8) = e,
Ky (x,t) = 0,
1
_ 3T _ _ z+3 w(w+3)>
o=t (e )
_1
(]—2.

The exact solution of the above problem is
u(z) = 3, x € [-1,1].

The left figure plots the errors for 6 < N < 24 in both L> and L2. norms. The approximate
solution (N = 24) and the exact solution are displayed in the right figure. Moreover, the
corresponding errors versus several values of N are displayed in Table 1. As expected, the
errors decay exponentially which confirmed our theoretical predictions. Further, if we compare
the errors in Table 1 with the errors in Table 5.1 in [4], we can find that the accuracy obtained
by our method is higher than the Legendre spectral collocation method.
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Table 1. The errors u — u” versus the number of collocation points in L> and L2. norms.
N 6 8 10 12 14
L —error | 0.0049198 | 9.1148e-005 | 1.299e-006 | 1.4454e-008 | 1.2208e-010
L2. —error | 0.0050825 | 0.00010295 | 1.4986e-006 | 1.6964e-008 | 1.5054e-010
N 16 18 20 22 24
L —error | 8.6686e-013 | 1.0658e-014 | 1.0658e-014 | 1.4211e-014 | 2.4869e-014
L2. —error | 1.0669e-012 | 2.4242e-014 | 3.3694e-014 | 2.9712-014 | 3.7506e-014

Figure 1. The left figure shows the errors u — u
L* and L?2. norms. The right figure shows the comparison between approximate solution u

and the exact solution wu.

5.2 Example 2

B

N

versus the number of collocation points in

N

Without losing of generality, we give a general example to verify our theoretical prediction.

For (1), let

Figure 2. The left figure shows the errors u — u
L and L?. norms. The right figure shows the comparison between approximate solution u

Rl(Ta f) = _(T - §)7
R2(Ta77) = _(T+77)’

T=2,

1

q= ia

o(r) =72,
f(r)y=27(r+1)sin ~72 + 4 cos %7’2 - 3.
,.‘_,7*_\\

]
2¢N<20

and the exact solution wu.

The corresponding exact solution is y(7) = cos7, 7 € [0, 2].

4 1@ 18 3

N

versus the number of collocation points in

N
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Table 2. The errors u — u

Appl. Math. J. Chinese Univ. Vol. 37, No. 2

N versus the number of collocation points in L and L?. norms.

N 2 4 6 8 10

L*° — error 0.094571 0.0006152 | 7.9180e-005 | 2.0942e-007 | 4.7323e-010

L2. —error 0.090112 0.0005386 | 7.2256e-005 | 1.6176e-007 | 3.6854e-010

N 12 14 16 18 20

L> —error | 1.5138e-013 | 1.1768e-014 | 8.8818e-015 | 2.7200e-015 | 2.9976e-015

L2. —error | 1.0371e-013 | 7.8362e-015 | 6.6881e-015 | 3.8413e-015 | 3.7273e-015

In Figure 2, the left figure plots the errors for 2 < N < 20 in both L> and L2. norms.
The approximate solution (N = 20) and the exact solution are displayed in the right figure.
Moreover, the corresponding errors versus several values of N are displayed in Table 2. As
expected, the errors decay exponentially which confirmed our theoretical predictions.
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