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Convergence analysis for delay Volterra integral equation

ZHENG Wei-shan

Abstract. In this article we use Chebyshev spectral collocation method to deal with the
Volterra integral equation which has two kinds of delay items. We use linear transforma-
tion to make the interval into a fixed interval [−1, 1]. Then we use the Gauss quadrature
formula to approximate the solution. With the help of lemmas, we get the result that
the numerical error decay exponentially in the infinity norm and the Chebyshev weighted
Hilbert space norm. Some numerical experiments are given to confirm our theoretical
prediction.

§1 Introduction

As we know, integral equations have been widely applied in many aspects of natural science,
especially with the development of electronic computer technology, see, e.g., Corduneanu [1] and
references therein. Volterra integral equation is a type of integral equation that appears in the
question of physics or others, such as the problem of celestial particle motion, potential theory,
Dirichlet question, electrostatic question, the problem of thermal radiation shielding, and so on.
Therefore, it is of great significance to study its numerical solution. There are many methods for
solving Volterra integral equations. Detailed introduction can be found in [2]. Here we just list
some latest methods: Legendre spectral-collocation method [3, 4], Jacobi spectral-collocation
method [5, 6], spectral Galerkin method [7, 8], Chebyshev spectral-collocation method [2, 9]
and so on. In this paper, as in [2, 3], we focus on Volterra integral equation. The same as in
[2], we use Chebyshev spectral-collocation method to deal with the Volterra integral equation,
but in [2] there is no delay. In [3], there is vanishing delay in the Volterra integral equation,
but the authors use Legendre spectral-method while in this article we use Chebyshev spectral-
collocation method. Another difference is not only the integral interval with vanishing delay,
but also the integrand.

The Volterra integral equation we consider in this paper is as follows:

y(τ) = f(τ) +

∫ τ

0

R1(τ, ξ)y(ξ)dξ +

∫ ϕ(τ)

0

R2(τ, η)y(qη)dη, τ ∈ [0, T ], (1)
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where y(τ) is an unknown function on [0, T ], T <∞, and ϕ(τ) satisfies the following conditions:

ϕ(0) = 0,

0 < ϕ(τ) ≤ τ, 0 < τ ≤ T,

0 ≤ ϕ′(τ), 0 ≤ τ ≤ T,

ϕ ∈ Cm([0, T ]), m ≥ 1.

Other given functions satisfy

f(τ) ∈ Cm([0, T ]), R1(τ, ξ) ∈ Cm(Ω1), R2(τ, η) ∈ Cm(Ω2),m ≥ 1,

where
Ω1 := {(τ, ξ) : 0 ≤ ξ ≤ τ ≤ T},Ω2 := {(τ, η) : 0 ≤ η ≤ ϕ(τ) ≤ τ ≤ T}.

There are two parts of delay items in the above function. One is y(qη), called pantograph
delay, where q is a given constant and 0 < q < 1. Another one is the generalized delay function
ϕ(τ).

This paper is organized as follows. In section 2, we introduce the spectral approach for
the equation. Some useful lemmas are provided in section 3, which are important for the
convergence analysis. In section 4, we provide the convergence analysis in both L∞ and L2

ωc

spaces. At last, numerical experiments are carried out to confirm the theoretical results.

Throughout the paper, C denotes a generic positive constant that is independent of N , but
depends on T and the given data.

§2 Chebyshev spectral collocation method

For ease of analysis, equation (1) can be transformed to the fixed interval [−1, 1] with the
following variable substitution:

τ =
T

2
(1 + x), x =

2

T
τ − 1,

ξ =
T

2
(1 + s), s =

2

T
ξ − 1,

η =
T

2
(1 + t), t =

2

T
η − 1.

Then equation (1) can be rewritten as

y
(T
2
(1 + x)

)
= f

(T
2
(1 + x)

)
+

∫ x

−1

T

2
R1

(T
2
(1 + x),

T

2
(1 + s)

)
y
(T
2
(1 + s)

)
ds (2)

+

∫ 2
T ϕ

(
T
2 (1+x)

)
−1

−1

T

2
R2

(T
2
(1 + x),

T

2
(1 + t)

)
y
(
q
T

2
(1 + t)

)
dt.

Let

u(x) := y
(T
2
(1 + x)

)
, g(x) := f

(T
2
(1 + x)

)
,

K̃1(x, s) :=
T

2
R1

(T
2
(1 + x),

T

2
(1 + s)

)
,

K̃2(x, t) :=
T

2
R2

(T
2
(1 + x),

T

2
(1 + t)

)
,

φ(x) :=
2

T
ϕ
(T
2
(1 + x)

)
− 1,

and we have

y
(
q
T

2
(1 + t)

)
= y

(T
2
(q + qt)

)
= y

(T
2
(1 + qt+ q − 1)

)
= u(qt+ q − 1).
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Now we can rewrite (2) as follows:

u(x) = g(x) +

∫ x

−1

K̃1(x, s)u(s)ds+

∫ φ(x)

−1

K̃2(x, t)u(qt+ q − 1)dt, x ∈ [−1, 1]. (3)

Note that {xi}Ni=0 are the N + 1-point Chebyshev Gauss, or Chebyshev Gauss-Radau, or
Chebyshev Gauss-Lobatto points (see, e.g., [10]) and equation (3) holds at xi:

u(xi) = g(xi) +

∫ xi

−1

K̃1(xi, s)u(s)ds+

∫ φ(xi)

−1

K̃2(xi, t)u(qt+ q − 1)dt, i = 0, 1, 2, ..., N. (4)

In order to get higher accuracy for equation (4), we will transform the interval [−1, xi],
[−1, φ(xi)] into a fixed interval [−1, 1] by two simple linear transformation:

sx(z) =
x+ 1

2
z +

x− 1

2
, z ∈ [−1, 1],

tx(v) =
φ(x) + 1

2
v +

φ(x)− 1

2
, v ∈ [−1, 1].

Equation (4) is equivalent to

u(xi) = g(xi) +

∫ 1

−1

K1(xi, z)u(sxi(z))dz +

∫ 1

−1

K2(xi, v)u(qtxi(v) + q − 1)dv, (5)

where

K1(x, z) :=
x+ 1

2
K̃1(x, sx(z)), K2(x, v) :=

φ(x) + 1

2
K̃2(x, tx(v)).

With N + 1- point of Gauss quadrature formula, we have

u(xi) ≈ g(xi) +

N∑
k=0

K1(xi, zk)u(sxi(zk))ωk +

N∑
k=0

K2(xi, vk)u(qtxi(vk) + q − 1)ωk,

i = 0, 1, 2, ..., N , where zk = vk are the N + 1-Legendre Gauss, or Legendre Gauss-Radau, or
Legendre Gauss-Lobatto points, the corresponding weight function ωk, k = 0, 1, ..., N . We use
ui to approximate u(xi) and use

uN (x) :=

N∑
j=0

ujFj(x)

to approximate u(x). Fj(x) is the j − th Lagrange basic function with {xi}Ni=0, so if x = xi,
then uN (xi) = ui. Let

uN (x) = g(x) +
N∑

k=0

K1(x, zk)u
N (sx(zk))ωk +

N∑
k=0

K2(x, vk)u
N (qtx(vk) + q − 1)ωk.

The Chebyshev spectral-collocation method is to seek uN (x) such that {ui}Ni=0 satisfy the
following equations for i = 0, 1, 2, ..., N ,

ui = g(xi) +
N∑

k=0

K1(xi, zk)u
N (sxi(zk))ωk +

N∑
k=0

K2(xi, vk)u
N (qtxi(vk) + q − 1)ωk. (6)

§3 Some useful lemmas

In this section, we will provide some fundamental lemmas, which are important for the
following error estimation. In order to discuss clearly, we first introduce some spaces.

Let ωα,β(x) = (1 − x)α(1 + x)β be a weight function in the usual sense, for α, β > −1.
The set of Jacobi polynomials {Jα,β

n (x)}∞n=0 forms a complete L2
ωα,β (−1, 1) orthogonal system,
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where L2
ωα,β (−1, 1) is a weighted space defined by

L2
ωα,β (−1, 1) := {v: v is measurable and ∥v∥ωα,β <∞},

equipped with the norm ∥v∥ωα,β =
( ∫ 1

−1
|v(x)|2ωα,β(x)dx

) 1
2

, and the inner product

(u, v)ωα,β =

∫ 1

−1

u(x)v(x)ωα,β(x)dx, ∀u, v ∈ L2
ωα,β (−1, 1).

We denote
(

∂kv
∂xk

)
(x) by ∂kxv, 0 ≤ k ≤ m. For non-negative integer m, define

Hm
ωα,β (−1, 1) := {v : ∂kxv ∈ L2

ωα,β (−1, 1), 0 6 k 6 m},
equipped with the norm

∥v∥Hm

ωα,β (−1,1) :=
( m∑

k=0

∥∂kxv∥2L2

ωα,β (−1,1)

) 1
2

.

For a nonnegative integer N , the semi-norm is defined as:

|v|Hm:N

ωα,β (−1,1) :=
( m∑

k=min(m,N+1)

∥∂kxv∥2L2

ωα,β (−1,1)

) 1
2

.

When α = β = 0, we denote Hm;N
ω0,0 (−1, 1) by Hm;N (−1, 1). When α = β = − 1

2 , we denote

ω− 1
2 ,−

1
2 by ωc.

The space L∞(−1, 1) is the Banach space of the measurable functions u : (−1, 1) → R that
are bounded outside a set of measure zero, equipped with the norm

∥u∥L∞(−1,1) := ess sup
x∈(−1,1)

|u(x)|.

Lemma 3.1 [10, 11] Assume that u ∈ Hm
ωc(−1, 1), m > 1. Then the following estimates

hold
∥u− INu∥L2

ωc (−1,1) 6 CN−m|u|Hm;N
ωc (−1,1), (7)

∥u− INu∥L∞(−1,1) ≤ CN
1
2−m|u|Hm;N

ωc (−1,1), (8)

where IN is the interpolation operator associated with the N + 1-point Chebyshev Gauss, or
Chebyshev Gauss-Radau, or Chebyshev Gauss-Lobatto points {xj}Nj=0, promptly

INv(x) :=

N∑
j=0

v(xj)Fj(x), v ∈ C([−1, 1]).

Lemma 3.2 [10, 11] Suppose u ∈ Hm
ωc(−1, 1), v ∈ Hm(−1, 1) for some m > 1 and ψ ∈ PN ,

which denotes the space of all polynomials of degree not exceeding N . Then there exists a
constant C independent of N such that∣∣∣ ∫ 1

−1

u(x)ψ(x)ωc(x)dx−
N∑
j=0

u(xj)ψ(xj)ω
c
j

∣∣∣ 6 CN−m|u|Hm;N
ωc (−1,1)∥ψ∥L2

ωc (−1,1),

and ∣∣∣ ∫ 1

−1

v(x)ψ(x)dx−
N∑
j=0

v(zj)ψ(zj)ωj

∣∣∣ 6 CN−m|v|Hm;N (−1,1)∥ψ∥L2(−1,1),

where xj is the N+1-point Chebyshev Gauss, or Chebyshev Gauss-Radau, or Chebyshev Gauss-
Lobatto point, corresponding weight ωc

j , j = 0, 1, ...N and zj is the N+1-point Legendre Gauss,
or Legendre Gauss-Radau, or Legendre Gauss-Lobatto point, corresponding weight ωj , j =
0, 1, ...N .

Lemma 3.3 [6, 12] Let Fj(x), j = 0, 1, ...N be the j−th Lagrange interpolation polynomials
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associated with N + 1-point Chebyshev Gauss, or Chebyshev Gauss-Radau, or Chebyshev
Gauss-Lobatto points {xj}Nj=0. Then

∥IN∥L∞(−1,1) := max
x∈[−1,1]

N∑
j=0

|Fj(x)| = O(logN).

Lemma 3.4 (Gronwall inequality) [4, 13] Assume that u(x) is a nonnegative, locally inte-
grable function defined on [−1, 1] satisfying

u(x) 6 v(x) + L

∫ x

−1

u(τ)dτ,

where L ≥ 0 is a constant, v(x) is an integrable function. Then there exists a constant C such
that

u(x) 6 v(x) + C

∫ x

−1

v(τ)dτ,

and
∥u(x)∥L∞(−1,1) 6 C∥v(x)∥L∞(−1,1).

Lemma 3.5 Suppose 0 6M1,M2 6 +∞. If a nonnegative integrable function e(x) satisfies

e(x) 6 v(x) +M1

∫ x

−1

e(t)dt+M2

∫ φ(x)

−1

e(qθ + q − 1)dθ,

where v(x) is also a nonnegative integrable function, then

e(x) 6 v(x) + C

∫ x

−1

v(τ)dτ,

and
∥e(x)∥L∞(−1,1) 6 C∥v(x)∥L∞(−1,1),

where C is a constant.

Proof: With

φ(x) :=
2

T
ϕ
( 2

T
(1 + x)

)
− 1 ≤ 2

T

(T
2

)
(1 + x)− 1 = x,

we get

e(x) ≤ v(x) +M1

∫ x

−1

e(t)dt+M2

∫ x

−1

e(qθ + q − 1)dθ.

Let
ρ = qθ + q − 1,

then

θ =
ρ

q
+

1− q

q
,

and ∫ x

−1

e(qθ + q − 1)dθ =
1

q

∫ qx+q−1

−1

e(ρ)dρ <
1

q

∫ x

−1

e(θ)dθ.

for 0 < q < 1, qx+ q − 1 = q(x+ 1)− 1 < x+ 1− 1 = x, x ∈ [0, 1].

So

e(x) ≤ v(x) + (M1 +M2)

∫ x

−1

e(θ)dθ.

According to lemma 3.4, we have

e(x) ≤ v(x) + C

∫ x

−1

v(τ)dτ,

and
∥e(x)∥L∞(−1,1) ≤ C∥v(x)∥L∞(−1,1).
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Lemma 3.6 [14] For all measurable function f ≥ 0, the following general Hardy inequality

(

∫ b

a

|(Tf)(x)|qω1(x)dx)
1
q ≤ C

(∫ b

a

|f(x)|pω2(x)dx
) 1

p

holds if and only if

sup
a<x<b

(∫ b

x

ω1(t)dt
) 1

q
(∫ x

a

ω2(t)
1−p′

dt
) 1

p′
<∞, p′ =

p

p− 1
,

for the case of 1 < p ≤ q <∞, where T is the form of the following function

(Tf)(x) =

∫ x

a

k(x, t)f(t)dt,

with the condition that the function k(x, t) is a given kernel function, ω1, ω2 is the weight
functions and −∞ ≤ a < b ≤ +∞.

Lemma 3.7 [6, 15] For all bounded function v(x), there exists a constant C independent
of v such that

sup
N

∥INv∥L2
ωc (−1,1) 6 C∥v∥L∞(−1,1).

§4 Convergence analysis

This section is devoted to providing convergence analysis for the Volterra integral equation.
Our goal is to show that the rate of convergence is exponential and the spectral accuracy can
be obtained in L∞ and L2

ωc spaces by using Chebyshev spectral-collocation method.

Theorem 4.1 Assume that u(x) is the exact solution of equation (3) and uN (x) is the
approximate solution of the spectrum collocation method for equation (6). For N that is large
enough, there is

∥u(x)− uN (x)∥L∞(−1,1) ≤ CN
1
2−m

(
|u|Hm;N

ωc (−1,1) + (K∗
1 +K∗

2 )∥u∥L∞(−1,1)

)
, (9)

K∗
i := max

−1≤x≤1
|Ki(x, z)|Hm;N (−1,1), i = 1, 2.

Proof: Note that e(x) = u(x)− uN (x), subtract (5) from (6) and we have

e(xi) =

∫ 1

−1

K1(xi, z)e(sxi(z))dz +

∫ 1

−1

K2(xi, v)e(qtxi(v) + q − 1)dv + J1(xi) + J2(xi), (10)

i = 0, 1..., N,
where

J1(x) :=

∫ 1

−1

K1(x, z)u
N (sx(z))dz −

N∑
k=0

K1(x, zk)u
N (sx(zk))ωk,

J2(x) :=

∫ 1

−1

K2(x, v)u
N (qtx(v) + q − 1)dv −

N∑
k=0

K2(x, vk)u
N (qtx(vk) + q − 1)ωk.

Using lemma 3.2, we have

|J1(x)| ≤ CN−m|K1(x, ·)|Hm;N (−1,1)∥uN (sx(z))∥L2(−1,1),

|J2(x)| ≤ CN−m|K2(x, ·)|Hm;N (−1,1)∥uN (qtx(v) + q − 1)∥L2(−1,1).
(11)

Timing Fi(x) on both sides of the equation (10) and summing up from i = 0 to N get

INu(x)− uN (x)

= IN

∫ 1

−1

K1(x, z)e(sx(z))dz + IN

∫ 1

−1

K2(x, v)e(qtx(v) + q − 1)dv + INJ1(x) + INJ2(x).
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So,

e(x) (12)

=

∫ 1

−1

K1(x, z)e(sx(z))dz +

∫ 1

−1

K2(x, v)e(qtx(v) + q − 1)dv +
∑

j=0,3,4

Jj(x) +
2∑

j=1

INJj(x),

where
J0(x) := u(x)− INu(x),

J3(x) := IN

∫ 1

−1

K1(x, z)e(sx(z))dz −
∫ 1

−1

K1(x, z)e(sx(z))dz,

J4(x) := IN

∫ 1

−1

K2(x, v)e(qtx(v) + q − 1)dv −
∫ 1

−1

K2(x, v)e(qtx(v) + q − 1)dv.

We rewrite equation (12) as

e(x) (13)

=

∫ x

−1

K̃1(x, s)e(s)ds+

∫ φ(x)

−1

K̃2(x, t)e(qt+ q − 1)dt+
∑

j=0,3,4

Jj(x) +
2∑

j=1

INJj(x).

According to lemma 3.5,

∥e∥L∞(−1,1) (14)

≤ C(∥J0∥L∞(−1,1) + ∥INJ1∥L∞(−1,1) + ∥INJ2∥L∞(−1,1) + ∥J3∥L∞(−1,1) + ∥J4∥L∞(−1,1)).

Now we estimate the above inequality term by term. Applying the inequality (8) to J0(x),
we get

∥J0(x)∥L∞(−1,1) = ∥u− INu∥L∞(−1,1) ≤ CN
1
2−m|u|Hm;N

ωc (−1,1). (15)

Next, using the inequality (11) for J1(x), we have

max
−1≤x≤1

|J1(x)| (16)

≤ CN−mK∗
1 max
−1≤x≤1

∥uN (sx(z))∥L2(−1,1)

≤ CN−mK∗
1∥uN∥L∞(−1,1)

≤ CN−mK∗
1

(
∥e∥L∞(−1,1) + ∥u∥L∞(−1,1)

)
.

According to lemma 3.3,

∥INJ1(x)∥L∞(−1,1) (17)

≤ ∥IN∥L∞(−1,1)∥J1(x)∥L∞(−1,1)

≤ CN−m(logN)K∗
1

(
∥e∥L∞(−1,1) + ∥u∥L∞(−1,1)

)
.

Similarly,

∥INJ2(x)∥L∞(−1,1) ≤ CN−m(logN)K∗
2

(
∥e∥L∞(−1,1) + ∥u∥L∞(−1,1)

)
. (18)
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Now we estimate ∥J3∥L∞(−1,1) and ∥J4∥L∞(−1,1). Use the inequality (8) and let m = 1,

∥J3∥L∞(−1,1) (19)

≤ CN− 1
2

∣∣∣ ∫ 1

−1

K1(x, z)e(sx(z))dz
∣∣∣
H1;N

ωc (−1,1)

= CN− 1
2

∣∣∣ ∫ x

−1

K̃1(x, s)e(s)ds
∣∣∣
H1;N

ωc (−1,1)

= CN− 1
2

∥∥∥K̃1(x, x)e(x) +

∫ x

−1

e(x)
∂

∂x
K̃1(x, s)ds

∥∥∥
L2

ωc (−1,1)

≤ CN− 1
2 ∥e∥L∞(−1,1).

In the same way, there is

∥J4∥L∞(−1,1) (20)

= CN− 1
2

∣∣∣ ∫ φ(x)

−1

K̃2(x, t)e(qt+ q − 1)dt
∣∣∣
H1;N

ωc (−1,1)

= CN− 1
2

∣∣∣ ∫ x

−1

K̃2(x, φ(t))e(qφ(t) + q − 1)φ
′
(t)dt

∣∣∣
H1;N

ωc (−1,1)

= CN− 1
2

∣∣∣K̃2(x, φ(x))e(qφ(x) + q − 1)φ
′
(x)|L2

ωc (−1,1)

+|
∫ x

−1

e(qφ(t) + q − 1)φ
′
(t)

∂

∂x
K̃2(x, φ(t))dt

∣∣∣
L2

ωc (−1,1)

≤ CN− 1
2 ∥e∥L∞(−1,1).

Jointing (14), (15), (17)− (20), we have

∥e∥L∞(−1,1) ≤ CN
1
2−m|u|Hm;N

ωc (−1,1) + CN−m(logN)(K∗
1 +K∗

2 )∥u∥L∞(−1,1).

And because

lim
N→∞

N−mlogN

N
1
2−m

= lim
N→∞

logN

N
1
2

= 0,

when N is large enough,

N−mlogN < N
1
2−m.

So we finish the proof of the conclusion:

∥e∥L∞(−1,1) ≤ CN
1
2−m

(
|u|Hm,N

ωc (−1,1) + (K∗
1 +K∗

2 )∥u∥L∞(−1,1)

)
.

Theorem 4.2 The exact solution of equation (3) is u(x) and uN (x) is the approximate
solution of the spectrum collocation method for equation (6). Let us assume that N is very
large, then

∥u(x)−uN (x)∥L2
ωc (−1,1) ≤ CN−m

(
K∗

1 +K∗
2 +1

)(
|u|Hm;N

ωc (−1,1) + ∥u
′
∥L2(−1,1) + ∥u∥L∞(−1,1)

)
.

Proof: As the same procedure in the deduction from (10) to (13) in theorem 4.1, and with
the help of the first conclusion from lemma 3.5 we can derive (13) to the following inequality

|e(x)| ≤ C

∫ x

−1

∣∣∣ ∑
j=0,3,4

Jj(t) +

2∑
j=1

INJj(t)
∣∣∣dt+ ∣∣∣ ∑

j=0,3,4

Jj(t) +

2∑
j=1

INJj(t)
∣∣∣.

Using lemma 3.6, we have

∥e∥L2
ωc (−1,1) (21)

≤ C
(
∥J0∥L2

ωc (−1,1) + ∥INJ1∥L2
ωc (−1,1) + ∥INJ2∥L2

ωc (−1,1) + ∥J3∥L2
ωc (−1,1) + ∥J4∥L2

ωc (−1,1)

)
.
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Now we estimate each item from left to right for the above inequality. For J0(x), the first
conclusion in lemma 3.1 shows that

∥J0(x)∥L2
ωc (−1,1) = ∥u− INu∥L2

ωc (−1,1) ≤ CN−m|u|Hm;N
ωc (−1,1). (22)

For the estimation of ∥INJ1∥L2
ωc (−1,1), using lemma 3.7 and the inequality (16), we obtain

∥INJ1(x)∥L2
ωc (−1,1) ≤ C max

−1≤x≤1
|J1(x)| ≤ CN−mK∗

1

(
∥e∥L∞(−1,1) + ∥u∥L∞(−1,1)

)
, (23)

then let m = 1 in the conclusion of theorem 4.1 and we have

∥e∥L∞(−1,1) ≤ C
(
∥u

′
∥L2

ωc (−1,1) + (K∗
1 +K∗

2 )∥u∥L∞(−1,1)

)
,

in the end (23) turns to

∥INJ1(x)∥L2
ωc (−1,1) ≤ CN−mK∗

1

(
∥u

′
∥L2

ωc (−1,1) + (K∗
1 +K∗

2 + 1)∥u∥L∞(−1,1)

)
. (24)

In the same way,

∥INJ2(x)∥L2
ωc (−1,1) ≤ CN−mK∗

2

(
∥u

′
∥L2

ωc (−1,1) + (K∗
1 +K∗

1 + 1)∥u∥L∞(−1,1)

)
. (25)

Now we turn to the estimation of ∥J3(x)∥L2
ωc (−1,1). With the help of (7) from lemma 3.1,

let m = 1, like the analysis of inequality (19) and we have

∥J3∥L2
ωc (−1,1) ≤ CN−1∥e∥L2

ωc (−1,1) ≤ CN−1∥e∥L∞(−1,1).

Due to the conclusion in theorem 4.1, we get

∥J3∥L2
ωc (−1,1) ≤ CN− 1

2−m
(
|u|Hm;N

ωc (−1,1) + (K∗
1 +K∗

2 )∥u∥L∞(−1,1)

)
. (26)

The similar result for ∥J4(x)∥L2
ωc (−1,1) is:

∥J4∥L2
ωc (−1,1) ≤ CN− 1

2−m
(
∥u∥Hm;N

ωc (−1,1) + (K∗
1 +K∗

1 )∥u∥L∞(−1,1)

)
. (27)

Jointing (21), (22), (24)− (27), we can get the desired estimation as follows:

∥e∥L2
ωc (−1,1) ≤ CN−m(K∗

1 +K∗
2 + 1)

(
|u|Hm;N

ωc (−1,1) + ∥u
′
∥L2

ωc (−1,1) + ∥u∥L∞(−1,1)

)
.

§5 Numerical experiments

5.1 Example 1

In order to compare our method with Legendre spectral collocation method used in [4], for
(3), we let the second kernel be zero. Details are

K̃1(x, s) = exs,

K̃2(x, t) = 0,

g(x) = e3x − 1

x+ 3

(
− ex+3 + ex(x+3)

)
,

q =
1

2
.

The exact solution of the above problem is

u(x) = e3x, x ∈ [−1, 1].

The left figure plots the errors for 6 6 N 6 24 in both L∞ and L2
ωc norms. The approximate

solution (N = 24) and the exact solution are displayed in the right figure. Moreover, the
corresponding errors versus several values of N are displayed in Table 1. As expected, the
errors decay exponentially which confirmed our theoretical predictions. Further, if we compare
the errors in Table 1 with the errors in Table 5.1 in [4], we can find that the accuracy obtained
by our method is higher than the Legendre spectral collocation method.
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Table 1. The errors u− uN versus the number of collocation points in L∞ and L2
ωc norms.

N 6 8 10 12 14
L∞ − error 0.0049198 9.1148e-005 1.299e-006 1.4454e-008 1.2208e-010
L2
ωc − error 0.0050825 0.00010295 1.4986e-006 1.6964e-008 1.5054e-010

N 16 18 20 22 24
L∞ − error 8.6686e-013 1.0658e-014 1.0658e-014 1.4211e-014 2.4869e-014
L2
ωc − error 1.0669e-012 2.4242e-014 3.3694e-014 2.9712-014 3.7506e-014

Figure 1. The left figure shows the errors u − uN versus the number of collocation points in
L∞ and L2

ωc norms. The right figure shows the comparison between approximate solution uN

and the exact solution u.

5.2 Example 2

Without losing of generality, we give a general example to verify our theoretical prediction.
For (1), let

R1(τ, ξ) = −(τ − ξ),
R2(τ, η) = −(τ + η),

T = 2,

q =
1

2
,

ϕ(τ) = τ2,

f(τ) = 2τ(τ + 1) sin
1

2
τ2 + 4 cos

1

2
τ2 − 3.

Figure 2. The left figure shows the errors u − uN versus the number of collocation points in
L∞ and L2

ωc norms. The right figure shows the comparison between approximate solution uN

and the exact solution u.

The corresponding exact solution is y(τ) = cos τ , τ ∈ [0, 2].
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Table 2. The errors u− uN versus the number of collocation points in L∞ and L2
ωc norms.

N 2 4 6 8 10
L∞ − error 0.094571 0.0006152 7.9180e-005 2.0942e-007 4.7323e-010
L2
ωc − error 0.090112 0.0005386 7.2256e-005 1.6176e-007 3.6854e-010

N 12 14 16 18 20
L∞ − error 1.5138e-013 1.1768e-014 8.8818e-015 2.7200e-015 2.9976e-015
L2
ωc − error 1.0371e-013 7.8362e-015 6.6881e-015 3.8413e-015 3.7273e-015

In Figure 2, the left figure plots the errors for 2 6 N 6 20 in both L∞ and L2
ωc norms.

The approximate solution (N = 20) and the exact solution are displayed in the right figure.
Moreover, the corresponding errors versus several values of N are displayed in Table 2. As
expected, the errors decay exponentially which confirmed our theoretical predictions.
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