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The convergence rate and necessary-and-sufficient

condition for the consistency of isogeometric collocation

method
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Abstract. Although the isogeometric collocation (IGA-C) method has been successfully uti-

lized in practical applications due to its simplicity and efficiency, only a little theoretical results

have been established on the numerical analysis of the IGA-C method. In this paper, we deduce

the convergence rate of the consistency of the IGA-C method. Moreover, based on the formula

of the convergence rate, the necessary and sufficient condition for the consistency of the IGA-C

method is developed. These results advance the numerical analysis of the IGA-C method.

§1 Introduction

For the integration of CAD and CAE, Hughes et. al. [22] developed the isogeometric anal-

ysis (IGA) method. Since it is based on non-linear NURBS basis functions, the IGA method

can directly process the CAD models represented by NURBS, and avoid the tedious mesh

transformation procedure.

Because the degree of the non-linear NURBS basis function is relatively high, it is possible

to seek a numerical solution, i.e., a NURBS function, by applying the collocation method on

the strong form of a differential equation. In this way, the isogeometric collocation (IGA-C)

method was proposed [2]. Then unknown coefficients of the NURBS function can be determined

by solving a linear system of equations, which is constructed by holding the strong form of the

differential equation at some discrete points, called collocation points.

The IGA-C method is a simple and efficient method for solving the unknown coefficients

of the NURBS function. A comprehensive study [31] revealed its superior behavior over the

Galerkin method in terms of accuracy-to-computational-time ratio. Due to these merits, the

IGA-C method has been successfully applied in some practical applications. However, the

thorough numerical analysis for the IGA-C method is far from being established. Auricchio

et. al. developed numerical analysis of the IGA-C method in one-dimensional case [2]. In the
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generic case, only some sufficient conditions were presented for the consistency and convergence

of the IGA-C method [27].

In this paper, we first develop the convergence rate of the consistency of the IGA-C method,

and then present the necessary and sufficient condition for the consistency of the IGA-C method,

specifically, for a given boundary (or initial) problem with DT = f (refer to Eq. (1)), where

D is its differential operator. Suppose Tr is its numerical solution, represented by a NURBS

function, and I is an interpolation operator such that If = DTr. The IGA-C method is

consistency, if and only if D and I are both uniformly bounded when the knot grid size tends

to 0.

The structure of this paper is as follows. In Section 1.1, some related work is briefly reviewed.

After introducing some preliminaries in Section 2, an introductory example is presented in

Section 3. Moreover, the convergence rate of the consistency of the IGA-C method is deduced

in Section 4, and the necessary and sufficient condition is developed in Section 5. In addition,

some numerical examples are presented in Section 6. Finally, Section 7 concludes the paper.

1.1 Related work

As stated above, the IGA method [22] was proposed to advance the seamless integration of

CAD and CAE, by avoiding mesh transformation. Moreover, since it has much less freedom

than the traditional finite element method, the IGA method can not only save lots of compu-

tation, but also greatly improve the computational precision. Additionally, owing to the knot

insertion property of the NURBS function, the shape of the computational domain represented

by NURBS can be exactly kept in the mesh refinement. Due to these merits, the IGA method

draws great interests in both practical applications and theoretical studies. On the one hand,

the IGA method has been successfully applied in lots of simulation problems, such as elastic-

ity [1, 17], structure [13, 23, 33], and fluid [8, 9, 11], etc. On the other hand, some research on

the computational aspect of the IGA method has been developed to improve the accuracy and

efficiency by using reparameterization and refinement, etc. [5,7,12,24,36,37]. Recently, an op-

timal and totally robust multi-iterative method was developed for solving IgA Galerkin linear

system [15]. For more details on the IGA method, please refer to Ref. [18] and the references

therein.

Since a NURBS function has a relatively high degree, its unknown coefficients can be de-

termined by making the strong form of the PDE hold at some collocation points, which leads

to the IGA-C method [2]. Schillinger et. al. presented a comprehensive comparison between

the IGA-C method and the Galerkin method, revealing that the IGA-C method is superior to

the Galerkin method in terms of accuracy-to-computational-time ratio [31]. Lin et. al. devel-

oped some sufficient conditions for the consistency and convergence of the IGA-C method [27].

Moreover, Lorenzis et. al. proposed the IGA-C method for solving the boundary problem with

Neumann boundary condition [16].

Besides the traditional collocation schemes, such as Greville points and Demko points [2],

some new collocation schemes were developed recently. Based on the orthogonal collocation

and superconvergence theory, the superconvergent point scheme was proposed, which converges

in the first derivative norms at rates similar to that of the Galerkin solution [6]. Furthermore, a

subset of superconvergent points is chosen to reach optimal convergence rate for odd degrees [29].

In Ref. [21], it is shown that the collocation sites that produce the Galerkin solution exactly

exist, and the variational collocation scheme is designed. Moreover, Cauchy-Galerkin point
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scheme was presented so that collocation performed at these points can reproduce the Galerkin

solution of various boundary value problems exactly [20]. Recently, Wang et al. developed the

superconvergent isogeometric collocation scheme with Greville points [34].

The IGA-C method has been successfully applied in some practical applications. For in-

stance, the IGA-C method was employed in solving Timoshenko beam problem [10] and spatial

Timoshenko rod problem [4], showing that mixed collocation schemes are locking-free indepen-

dently of the choice of the polynomial degrees for unknown fields. Moreover, the IGA-C method

was extended to multi-patch NURBS configurations, various boundary and patch interface con-

ditions, and explicit dynamic analysis [3]. Recently, the IGA-C method was exploited to settle

the Bernoulli-Euler beam problem [30], the Reissner-Mindlin plate problem [25], Kirchhoff–

Love plates and shell problem [28], Reissner–Mindlin shell problem [26], Cosserat rods and rod

structure problem [35], and structural dynamics [19]. However, only very limited theoretical

results for the IGA-C method were developed [2, 27] currently, and the numerical analysis for

the IGA-C method is still far from being established.

§2 Preliminaries

Suppose the IGA-C method is employed to solve the following boundary problem,{
DT = f, in Ω ⊂ Rd,

GT = g, on ∂Ω,
(1)

where Ω ⊂ Rd is a physical domain of d dimension, D : V → W is a bounded differential

operator, where V and W are two Hilbert spaces, GT is a boundary condition, and f : Ω → R,
g : ∂Ω → R are two given continuous functions defined on their domains. Suppose the analytical

solution T ∈ Cm(Ω), where m is larger than or equal to the maximum order of derivatives

appearing in the operator D.

In the IGA method, the physical domain Ω is represented by a NURBS mapping,

F : Ωp → Ω, (2)

where Ωp is a parameter domain. Replacing the control points of F by unknown control coeffi-

cients, we get the representation of the numerical solution to the boundary problem (Eq. (1)),

denoted as Tr(η),η ∈ Ωp. Meanwhile, by the inverse mapping F−1, the physical domain Ω can

be mapped into the parameter domain Ωp, and then, the numerical solution Tr is still defined

on the physical domain Ω through the mapping F−1. Additionally, by the mapping F , the

function f can be defined on Ωp, and G on ∂Ωp.

In isogeometric analysis, while the physical domain of the boundary problem (Eq. (1)) is Ω,

the computational domain is the parameter domain Ωp (Eq. (2)). Although the operators D
and G in Eq. (1) are performed on the variables in the physical domain, the generated formulae

will be transformed into the parameter domain Ωp for computation. Therefore, the functions in

the function approximation problem in the IGA-C method should be considered to be defined

on the parameter domain Ωp.

Definition 1 (Stable operator [32]). Let V, W be Hilbert spaces and D : V → W be a differential

operator. If there exists a constant CS > 0 such that

∥Dv∥W ≥ CS ∥v∥V , for all v ∈ D(D),

where D(D) represents the domain of D, then the differential operator D is called a stable

operator.
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[Remark 1:] In this paper, we suppose that the L∞ norm ∥·∥L∞ is equivalent to the norm

∥·∥W in W and the norm ∥·∥V in V. In other words, there exists nonnegative constants cv, Cv,

and cw, Cw satisfying,

cv ∥·∥V ≤ ∥·∥L∞ ≤ Cv ∥·∥V
cw ∥·∥W ≤ ∥·∥L∞ ≤ Cw ∥·∥W

Suppose Tr(η) is an unknown NURBS function defined on the knot grid T ρ ∈ Rd, d = 1, 2, 3.

Specifically, T ρ is a knot sequence in 1D case, a rectangular grid in 2D case, and a hexahedral

grid in 3D case, where ρ is the knot grid size defined as the following definition.

Definition 2. Given a set Φ ⊂ Rd, its diameter diam(Φ) is defined by

diam(Φ) = sup{d(x,y),x,y ∈ Φ},
where d(x,y) denotes the Euclidean distance between x and y. And we call ρ as the knot grid

size of T ρ, which is defined as the maximum of the diameters of the knot intervals of T ρ.

That is, ρ = maxi{diam([ui, ui+1))} in 1D case, ρ = maxij{diam([ui, ui+1) × [vj , vj+1))} in

2D case, and ρ = maxijk{diam([ui, ui+1)× [vj , vj+1)× [wk, wk+1))} in 3D case.

Definition 3. Let T : Ωp → R, T ∈ C0(Ωp) be a continuous function on the parameter domain

Ωp, where C
0(Ωp) is the space of continuous functions on Ωp. The modulus of continuity [14]

of the function T , denoted as ω(T, h), is defined by

ω(T, h) = max{|T (x)− T (y)|}, (3)

where, d(x,y) < h, x,y ∈ Ωp, h ∈ R.

The modulus of continuity ω(T, h) satisfies the property [14],

ω(T, h+ k) ≤ ω(T, h) + ω(T, k), h, k ∈ R,
and then

ω(T,Kρ) ≤ Kω(T, ρ), K ∈ Z. (4)

Definition 4. Let Iρ be an interpolation operator, and Iρg be a spline interplant of a function

g defined on the knot grid T ρ. Suppose P is a spline space composed of the splines with the same

knot grid and degree as those of Iρg. The distance of the function g to P, i.e., dist(g,P),
is defined by

dist(g,P) = min{∥g − p∥L∞ , p ∈ P}. (5)

§3 An introductory example

Consider the following one-dimensional boundary problem:{
T ′(x) = f(x), x ∈ [a, b],

T (a) = g1, T (b) = g2,
(6)

where f(x) ∈ C[a, b] is a continuous function, T (x) ∈ C1[a, b] is an analytical solution, and

g1, g2 ∈ R.
The physical domain [a, b] in Eq. (6) is modeled as,

x(t) =
N∑
i=0

(
a+

i

N
(b− a)

)
Bi,k(t), t ∈ [0, 1], (7)
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where Bi,k(t) is a B-spline basis function of order k (degree k−1), defined on the knot sequence,

G : 0, 0, · · · , 0︸ ︷︷ ︸
k

,
1

N
,
2

N
, · · · , N − 1

N
, 1, 1, · · · , 1︸ ︷︷ ︸

k

. (8)

Eq. (7) maps [0, 1] to [a, b], i.e.,

F1 : [0, 1] → [a, b]. (9)

Then, the numerical solution Tr(t) to the boundary problem (Eq. (6)) can be generated by

replacing the coefficients a + i
N (b − a) in x(t) (Eq. (7)) by the unknowns coefficients pi i =

0, 1, · · · , N , i.e.,

Tr(t) =

N∑
i=0

piBi,k(t). (10)

Note that, by the inverse mapping F−1
1 (Eq. (9)), Tr(t) is defined on the physical domain [a, b]

(Eq. (6)), i.e., Tr(t(x)), x ∈ [a, b].

Because,

dTr(t)

dt
= (k − 1)

N−1∑
i=0

pi+1 − pi
i+k−1

N − i
N

Bi,k−1(t) = N
N−1∑
i=0

(pi+1 − pi)Bi,k−1(t),

and,
dx(t)

dt
= b− a,

substituting Eq. (10) into Eq. (6) yields,{
dTr

dx = dTr

dt
dt
dx = dTr

dt
1
dx
dt

=
∑N−1

i=0
N

b−a (pi+1 − pi)Bi,k−1(t) = f(x(t)),

Tr(0) = p0 = g1, Tr(1) = pN = g2.

In order for solving the unknown coefficients in Eq. (10) using the IGA-C method, a linear

system is generated by sampling N − 1 points τ1, τ2, · · · , τN−1 in the interval (0, 1), i.e.,
dTr(τj)

dx =
∑N−1

i=0
N

b−a (pi+1 − pi)Bi,k−1(τj) = f(x(τj)), τj ∈ (0, 1), j = 1, 2, · · · , N − 1,

Tr(0) = p0 = g1,

Tr(1) = pN = g2.

(11)

When the knot grid size ρ = 1
N of the knot sequence G (Eq. (8)) tends to 0, it follows N → +∞.

If the control points
N

b− a
(pi+1 − pi) → ∞, (ρ → 0),

we have
dTr(τj)

dx
→ ∞, (ρ → 0), j = 1, 2, · · · , N − 1.

However, because f(x(t)) is continuous on the close interval [0, 1], f(x(τj)) is bounded. There-

fore, if the linear system (Eq. (11)) has a solution, there should exist Tr(t) so that the control

points N
b−a (pi+1 − pi) of dTr

dx are bounded when ρ = 1
N → 0. It results in that dTr

dx is also

bounded when ρ → 0. All of such B-spline functions Tr(t) constitute a B-spline subspace, and

the first order derivative operator in Eq. (6) should be bounded on the B-spline subspace when

ρ → 0.
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§4 The convergence rate

Suppose the NURBS function Tr(η), η ∈ Ωp ⊂ Rd defined on the knot grid T ρ has n

unknown control coefficients pi, i.e.,

Tr(η) =
∑
i

pi
wiBi(η)

W (η)
=

P (η)

W (η)
, η ∈ Ωp ⊂ Rd, (12)

where wi > 0 are known weights, Bi(η) are the B-spline basis functions, the weight function

W (η) is a known polynomial spline function, and P (η) is a polynomial spline function with

n unknown control coefficients pi. Moreover, the subscript i in Eq. (12) is an index vector,

i = (i1, i2, · · · , id). According to the IGA-C method, these unknown coefficients pi can be

determined by solving the following linear system of equations,{
DTr(ηk) = f(ηk), k = 1, 2, · · · , n1,

GTr(ηl) = g(ηl), l = n1 + 1, · · · , n,
(13)

where ηk(k = 1, 2, · · · , n1) are collocation points inside Ωp, and ηl(l = n1 + 1, · · · , n) are

collocation points on ∂Ωp. Note that, throughout this paper, the operators D and G are

performed on the variable in the physical domain Ω (Eq. (1)).

[Remark 2:] In this paper, we assume that the coefficient matrix of the above linear system

(Eq. (13)) is of full rank and then it has a unique solution. Otherwise, the IGA-C method is

invalid.

According to the result developed in Ref. [27], DTr can be represented by

DTr(η) =
∑
i

piD
wiBi(η)

W (η)
=

∑
i

pi
B̄i(η)

W̄ (η)
=

P̄ (η)

W̄ (η)
, (14)

where B̄i(η) is the result by applying the differential operator D to wiBi(η)
W (η) , W̄ (η) is the power

of W (η), and P̄ (η) is a polynomial B-spline function with n unknowns pi. By Ref. [27], P̄ (η)

and W̄ (η) both have the same break point sequence and the same knot intervals as Tr(η). To

determine these unknowns pi in P̄ (η), let DTr(η) interpolate DT (η) = f(η) at n1 collocation

points inside the domain Ωp (refer to Eq. (13)), i.e.,

DTr(ηk)− f(ηk) =
P̄ (ηk)

W̄ (ηk)
− f(ηk) =

P̄ (ηk)− W̄ (ηk)f(ηk)

W̄ (ηk)
= 0, k = 1, 2, · · · , n1. (15)

Note that W̄ (η) ̸= 0 is a known function, Eq. (15) is equivalent to

P̄ (ηk) =
∑
i

piB̄i(ηk) = W̄ (ηk)f(ηk), k = 1, 2, · · · , n1. (16)

Similarly, GTr(η) in Eq. (13) can be written as

GTr(η) =
∑
i

piG
wiBi(η)

W (η)
=

∑
i

pi
B̃i(η)

W̃ (η)
=

P̃ (η)

W̃ (η)
, (17)

where B̃i(η) are the result generated by applying the operator G to wiBi(η)
W (η) , W̃ (η) ̸= 0 is a

known B-spline function, and P̃ (η) is an unknown B-spline function with n unknowns pi. Then

the linear equations GTr(ηl) = g(ηl) in Eq. (13) are equivalent to

P̃ (ηl) =
∑
i

piB̃i(ηl) = W̃ (ηl)g(ηl), l = n1 + 1, n1 + 2, · · · , n, (18)

where ηl ∈ ∂Ωp, l = n1 + 1, · · · , n.
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Therefore, combining Eqs. (16) and (18), the linear system (Eq. (13)) becomes{
P̄ (ηk) =

∑
i piB̄i(ηk) = W̄ (ηk)f(ηk), k = 1, 2, · · · , n1,

P̃ (ηl) =
∑

i piB̃i(ηl) = W̃ (ηl)g(ηl), l = n1 + 1, n1 + 2, · · · , n.
(19)

Since the linear system of equations (Eq. (19)) is equivalent to Eq. (13), then the coefficient

matrix of Eq. (19) is of full rank, and it also has a unique solution.

[Remark 3:] In Eq. (13), let the functions f and g vary in Cm(Ωp) and Cm(∂Ωp), respec-

tively, and the differential operator D be fixed. In addition, let the weight function W (η) in

Tr (Eq. (12)) be fixed as well. Then, all the numerical solutions Tr(η) (Eq. (12)) generated by

the IGA-C method (Eq. (13)) constitute a linear spline space Sρ(Ωp), where ρ is the knot

grid size of Tr. It should be pointed out that, all the NURBS functions Tr in the linear space

Sρ(Ωp) have the same weight function W (η), the same knot grid with knot grid size ρ and the

same degree. In order for ρ → 0, the knot grid of the spline functions in Sρ(Ωp) is refined by

knot insertion, thus resulting in a series of spline spaces. Moreover, because all the numerical

solutions Tr(η) constitute the linear space Sρ(Ωp), all of DTr(η) compose a linear spline

space Sdρ,e(Ωp), where e is the continuity order of the splines in Sdρ,e(Ωp). As aforementioned,

DTr has the same break point sequence as that of Tr (Eq. (12)), so they have the same knot

grid size ρ.

The following Lemma 1 estimates the distance from a continuous function f ∈ C0(Ωp) to

the linear space Sdρ,e(Ωp), i.e., dist(f, Sdρ,e). In Ref. [14, pp.146], an inequality to estimate the

distance is proposed for univariate functions, and the inequality can be extended to our case.

Lemma 1. If DT = f ∈ C0(Ωp), and T ∈ Cm(Ωp) (Eq. (1)), then we have

dist(f,Sdρ,e) = dist(DT, Sdρ,e) ≤ ∥D∥Kω(T, ρ),

where K is an integer related to the degree of the NURBS functions in the spline space Sρ(Ωp).

Proof: As stated above, the NURBS functions approximating the analytical solution T

constitute the linear space Sρ(Ωp) defined on the knot grid T ρ. We select a special function

from the space Sρ(Ωp), i.e.,

Tr(η) =
∑
i

T (τi)
wiBi(η)

W (η)
,

and construct a spline function (Af)(η) to approximate the function f ∈ C0(Ωp), i.e.,

(Af)(η) = DTr(η) = D
∑
i

T (τi)
wiBi(η)

W (η)
=

∑
i

T (τi)D
wiBi(η)

W (η)
,

where T is the analytical solution of Eq. (1), and Af = DTr ∈ Sdρ,e(Ωp) (defined in Remark 3).

The point sequence {τi ∈ Ωp} is sampled in such a way that each knot interval of the knot grid

T ρ contains at least one point, and τi is in the non-zero region of Bi(η).

Suppose u(η), v(η) ∈ Cm(Ωp). The function u(η) is an arbitrary function in Cm(Ωp), and,

v(η) = T (η)− Tr(η) = T (η)−
∑
i

T (τi)
wiBi(η)

W (η)
, η ∈ Ωp. (20)

Note that |v(η)| is continuous in the close set Ωp, so |v(η)| can take its maximum value in Ωp.

Namely, there exists η∗ ∈ Ωp such that

|v(η∗)| = max
η

|v(η)| = ∥v∥L∞ , η ∈ Ωp.
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For an arbitrary value η̂ ∈ Ωp, it holds,

∥D∥ = max
u∈Cm(Ωp)

∥Du∥L∞

∥u∥L∞
≥

∥Dv∥L∞

∥v∥L∞
≥ |Dv(η̂)|

|v(η∗)|
,

which is equivalent to,

|Dv(η̂)| ≤ ∥D∥ |v(η∗)| . (21)

Suppose J is the index set satisfying Bi(η
∗) ̸= 0, i ∈ J . Because∑

i

wiBi(η
∗)

W (η∗)
=

∑
i∈J

wiBi(η
∗)

W (η∗)
= 1,

and then T (η∗) =
∑
i

T (η∗)
wiBi(η

∗)

W (η∗)
=

∑
i∈J

T (η∗)
wiBi(η

∗)

W (η∗)
,

together with Eq. (21), we have,

|f(η̂)− (Af)(η̂)| =

∣∣∣∣∣DT (η̂)−D
∑
i

T (τi)
wiBi(η̂)

W (η̂)

∣∣∣∣∣
= |Dv(η̂)| ≤ ∥D∥ |v(η∗)| (Eq. (21))

= ∥D∥

∣∣∣∣∣T (η∗)−
∑
i

T (τi)
wiBi(η

∗)

W (η∗)

∣∣∣∣∣ (Eq. (20))

= ∥D∥

∣∣∣∣∣∑
i

T (η∗)
wiBi(η

∗)

W (η∗)
−

∑
i

T (τi)
wiBi(η

∗)

W (η∗)

∣∣∣∣∣
= ∥D∥

∣∣∣∣∣∑
i∈J

(T (η∗)− T (τi))
wiBi(η

∗)

W (η∗)

∣∣∣∣∣
≤ ∥D∥

∑
i∈J

|T (η∗)− T (τi)|
wiBi(η

∗)

W (η∗)

≤ ∥D∥max
i∈J

|T (η∗)− T (τi)| (Definition 3)

≤ ∥D∥ω(T,Kρ),

where K is an integer related to the degree of Tr(η). Because J is the index set satisfying

Bi(η
∗) ̸= 0, i ∈ J , and the cardinality of J , i.e., the number of spline basis function Bi(η)

non-zero at a point, is related to the degree of the spline function Tr(η), together with that

τi is in the non-zero region of Bi(η), i ∈ J , there exists an integer K related to the degree

of Tr(η) such that d(η∗, τi) < Kρ. Therefore, the last step in the above formulae holds. By

Eq. (4), we get

|f(η̂)− (Af)(η̂)| ≤ ∥D∥Kω(T, ρ).

Because Af = DTr ∈ Sdρ,e(Ωp), and η̂ ∈ Ωp is an arbitrary value, it can be so chosen that

dist(f, Sdρ,e) = min{∥f − s∥L∞ , s ∈ Sdρ,e} ≤ |f(η̂)− (Af)(η̂)| ≤ ∥D∥Kω(T, ρ).

Then the Lemma is proved. �

Furthermore, we have

Lemma 2. If T (η) ∈ C1(Ωp), then it holds

ω(T, ρ) ≤ ρ max
η∈Ωp

∥∇T∥E ,

where ∇T is the gradient of T , and the norm ∥·∥E is defined as ∥η∥E = ∥(η1, η2, · · · , ηd)∥E =
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√
η21 + η22 + · · ·+ η2d.

Proof: Let x,y ∈ Ωp, d(x,y) = ∥x− y∥E ≤ ρ, and c ∈ (0, 1). According to the mean

value theorem, it follows that

|T (x)− T (y)| =
∣∣∇T |(1−c)x+cy · (x− y)

∣∣ ≤ ∥∥∇T |(1−c)x+cy

∥∥
E
· ∥x− y∥E

≤ ρ
∥∥∇T |(1−c)x+cy

∥∥
E
≤ ρ max

η∈Ωp

∥∇T∥E .

Then, by the definition of ω(T, ρ) (Eq. (3)), we have

ω(T, ρ) = max{|T (x)− T (y)|} ≤ ρ max
η∈Ωp

∥∇T∥E ,

where d(x,y) < ρ. �
Moreover, we denote by Iρ an interpolation operator, which maps a continuous function to

a spline function defined on the knot grid T ρ with knot grid size ρ. In other words, for the

continuous function f = DT ∈ C0(Ωp)(refer to Eqs. (1) and (13)), we have

Iρf = DTr ∈ Sdρ,e(Ωp). (22)

Specifically, given an arbitrary known NURBS function Tq(η) ∈ Sρ(Ωp) expressed as

Tq(η) =
Q(η)

W (η)
=

∑
i

qi
wiBi(η)

W (η)
,η ∈ Ωp, (23)

where the weight function W (η) and the weight wi are the same as those in Eq. (12), two

functions h(η) and hb(η) can be generated by performing the operators D and G on Tq (see

Eq. (1)), respectively, i.e.,

h(η) = DTq(η) =
∑
i

qiD
(
wiBi(η)

W (η)

)
, hb(η) = GTq(η) =

∑
i

qiG
(
wiBi(η)

W (η)

)
. (24)

The following lemma holds.

Lemma 3. Iρh = h, where h is defined in Eq. (24).

Proof: We construct an unknown NURBS function Tx(η) ∈ Sρ(Ωp) with n unknown control

coefficients xi, the same knot grid and degree with Tq (Eq. (23)), i.e.,

Tx(η) =
X(η)

W (η)
=

∑
i

xi
wiBi(η)

W (η)
, (25)

where the weight function W (η) and the weight wi are the same as those in Eqs. (12) and (23).

The n unknown coefficients xi in Tx(η) can be obtained by making DTx and GTx interpolate

h(η) and hb(η) at some sampling points, respectively, similar as Eq. (13), i.e.,{
DTx(ηk) = h(ηk), k = 1, 2, · · · , n1,

GTx(ηl) = hb(ηl), l = n1 + 1, · · · , n.
(26)

Therefore, Iρh = DTx.

The aforementioned linear system of equations (Eq. (26)) can be rewritten as
∑

i(xi − qi)D
(

wiBi(η)
W (η)

)∣∣∣
η=ηk

= 0, k = 1, 2, · · · , n1,∑
i(xi − qi)G

(
wiBi(η)
W (η)

)∣∣∣
η=ηl

= 0, l = n1 + 1, · · · , n.
(27)

Obviously, the coefficient matrix of Eq. (27) is the same as that of the linear system (Eq. (13)),

and is of full rank, too. Then the linear system of equations (Eq. (27)) has only zero solution,

i.e., xi = qi, meaning that

Iρh = DTx = DTq = h. (28)
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�
Based on Lemma 3, we can show the following lemma.

Lemma 4. Suppose DT = f ∈ C0(Ωp) (Eq. (1)), and Tr ∈ Sρ(Ωp) (Refer to Eq. (12) and

Remark 3) is the NURBS function approximating the analytical solution T . Then,

∥DTr −DT∥W ≤ (1 + ∥Iρ∥)dist(f, Sdρ,e), (29)

where Iρ is the interpolation operator defined by Eq. (22), and Sdρ,e is defined as in Remark 3.

Proof: Based on Lemma 3, together with Tq and h defined in Eqs. (23) and (24), respec-

tively, we have,

∥DTr −DT∥W = ∥Iρf − f∥W = ∥Iρf − Iρh+ h− f∥W = ∥Iρ(f − h)− (f − h)∥W (30)

≤ ∥f − h∥W + ∥Iρ∥ ∥f − h∥W = (1 + ∥Iρ∥) ∥f − h∥W
= (1 + ∥Iρ∥)dist(f, Sdρ,e). (explained in the following paragraph)

Because Tq(η) (Eq. (23)) is an arbitrary NURBS function in the spline space Sρ(Ωp), the

function h(η) = DTq (Eq. (24)) is also an arbitrary NURBS function in the linear space Sdρ,e(Ωp).

So in Eq.(30), the function h can be chosen from Sdρ,e(Ωp) to make ∥f − h∥W as small as possible,

that is, dist(f, Sdρ,e). �

Based on Lemma 1 and 4, it follows:

Lemma 5. Suppose DT = f ∈ C0(Ωp) (Eq. (1)), and Tr ∈ Sρ(Ωp) (Refer to Eq. (12) and

Remark 3) is the NURBS function approximating the analytical solution T . Then,

∥DTr −DT∥W ≤ K ∥D∥ (1 + ∥Iρ∥)ω(T, ρ),
where Iρ is the interpolation operator defined by Eq. (22), and K is an integer related to the

degree of the splines in the spline space Sρ(Ωp).

Moreover, due to Lemma 2 and 5, the convergence rate of DTr to DT when ρ → 0 is obtained

as follows.

Theorem 1. Suppose the analytical solution T ∈ C1(Ωp) (Eq. (1)). We have,

∥DTr −DT∥W ≤ ρK∥D∥(1 + ∥Iρ∥) max
η∈Ωp

∥∇T∥E .

Here, DT, Tr, Iρ, and K are delineated as in Lemma 5.

In addition, if D is a stable operator (Definition 1), we can get the convergence rate of Tr

to T when ρ → 0.

Corollary 1. Suppose the operator D in Eq. (1) is a stable differential operator, and T ∈
C1(Ωp). We have,

∥Tr − T∥V ≤ K

CS
∥D∥ (1 + ∥Iρ∥)ω(T, ρ) ≤ ρK

CS
∥D∥ (1 + ∥Iρ∥) max

η∈Ωp

∥∇T∥E ,

where CS is a positive constant, Tr, Iρ, and K are delineated as in Lemma 5.

4.1 One dimensional case

In the one dimensional case, the convergence rate can be improved. In this section, suppose

the operator D is a linear differential operator with constant coefficients.
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Lemma 6. [14, pp. 148] Let g ∈ Cm(Ωp) be a univariate function, and Sdρ,e(Ωp) be defined as

in Remark 3. It holds,

dist(g, Sdρ,e) ≤ γρ dist(g′, Sdρ,e−1), (31)

where γ is a number related to the degree of the splines in Sdρ,e(Ωp), and g′ is the first order

derivative of g.

Repeatedly using Lemma 6 leads to:

Lemma 7. Suppose f = DT ∈ Cm(Ωp) (Eq. (1)) is a univariate function, the linear spline

space Sdρ,e(Ωp) is defined as in Remark 3, the operator D is a linear differential operator with

constant coefficients, and ν = min(m, e) ≥ 1. We have,

dist(f, Sdρ,e) = dist(DT, Sdρ,e) ≤ Γ ∥D∥ ρν
∥∥∥T (ν)

∥∥∥
L∞

,

where Γ is a number related to ν and the degree of the splines in Sdρ,e(Ωp), and T (ν) is the νth

order derivative of T .

Proof: The proof is divided into two parts. On the one hand, when µ = 1, by Lemma 1

and 2, it follows,

dist(f, Sdρ,e) = dist(DT, Sdρ,e) ≤ Γ ∥D∥ω(T, ρ) ≤ Γ ∥D∥ ρ ∥T ′∥L∞ ,

where Γ is a number related to the degree of the splines in Sdρ,e(Ωp).

On the other hand, when µ ≥ 2, because f = DT ∈ Cm(Ωp) is a univariate function, and

D is a linear differential operator with constant coefficients, we have (DT )(k) = DT (k), k =

1, 2, · · · ,m. By using Lemma 6 repeatedly, and denoting ν = min(m, e), it follows,

dist(f, Sdρ,e) = dist(DT, Sdρ,e) ≤ γ1ρ dist((DT )′, Sdρ,e−1) ≤ γ1γ2ρ
2 dist((DT )′′, Sdρ,e−2)

≤ · · · ≤ γ1γ2 · · · γν−1ρ
ν−1 dist((DT )(ν−1), Sdρ,e−ν+1)

= γ1γ2 · · · γν−1ρ
ν−1 dist(DT (ν−1), Sdρ,e−ν+1)

≤ γ1 · · · γν−1ρ
ν−1Kν ∥D∥ω(T (ν−1), ρ), (Lemma 1)

where, γ1 is a number related to the degree of the splines in Sdρ,e (denoted as deg), γ2 is a number

related to the degree of the splines in Sdρ,e−1, i.e., deg−1, · · · , and so on; Kν is a number related

to the degree of the splines in Sdρ,e−ν+1, i.e., deg − ν + 1. In conclusion, γi, i = 1, 2, · · · , ν − 1,

and Kν are all related to deg and ν = min(m, e), and then we denote Γ = γ1γ2 · · · γν−1Kν .

Moreover, by Lemma 2, we have,

dist(f, Sdρ,e) ≤ Γρν−1 ∥D∥ω(T (ν−1), ρ) ≤ Γ ∥D∥ ρν
∥∥∥T (ν)

∥∥∥
L∞

,

where, ν = min(m, e), and Γ is a number related to ν and the degree of the splines in Sdρ,e(Ωp).

�

Based on Lemma 4 and 7, the convergence rate for the consistency of the IGA-C method in

the one-dimensional case is deduced.

Theorem 2. Suppose f = DT ∈ Cm(Ωp) (Eq. (1)) is a univariate function, the spline space

Sdρ,e(Ωp) is defined as in Remark 3, and the operator D is a linear differential operator with

constant coefficients. We have,

∥DTr −DT∥W ≤ Γ(1 + ∥Iρ∥) ∥D∥ ρν
∥∥∥T (ν)

∥∥∥
L∞

,

where ν = min(m, e), and Γ is a number related to ν and the degree of the splines in Sdρ,e(Ωp).

Moreover, if the operator D is also a stable operator (Definition 1), it holds:
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Corollary 2. Suppose f = DT ∈ Cm(Ωp) (Eq. (1)) is a univariate function, the spline space

Sdρ,e(Ω) is defined as in Remark 3, and the linear differential operator with constant coefficients

D is stable (refer to Definition 1). We have,

∥Tr − T∥V ≤ Γ

CS
(1 + ∥Iρ∥) ∥D∥ ρν

∥∥∥T (ν)
∥∥∥
L∞

,

where CS is a positive constant, ν = min(m, e), and Γ is a number related to ν and the degree

of the splines in Sdρ,e(Ωp).

§5 The necessary and sufficient condition

In this section, we will present the necessary and sufficient condition of the consistency of the

IGA-C method. Because DT = f ∈ C0(Ωp) and T is continuous (Eq. (1)), we have ω(T, ρ) → 0,

when ρ → 0. Based on Lemma 5, if ∥Iρ∥ and ∥D∥ are bounded, it follows ∥DTr −DT∥W → 0

when ρ → 0. That is, the IGA-C method is consistent. However, since Iρf = DTr ∈ Sdρ,e, and
Tr ∈ Sρ is defined on the knot grid T ρ with knot grid size ρ, the norms ∥Iρ∥ and ∥D∥ are both

related to the knot grid size ρ. Therefore, the sufficient condition for the consistency of the

IGA-C method is followed.

Lemma 8 (Sufficiency). If the interpolation operator Iρ (Eq. (22)) and differential operator

D (Eq. (1)) are both uniformly bounded when ρ → 0, then the IGA-C method applied on the

boundary problem (Eq. (1)) is consistent.

Furthermore, the following lemma presents the necessary condition for the consistency of

the IGA-C method.

Lemma 9 (Necessity). If the IGA-C method applied on the boundary problem (Eq. (1)) is

consistent, then the interpolation operator Iρ (Eq. (22)) and the differential operator D (Eq. (1))

are both uniformly bounded when ρ → 0.

Proof: We employ the method of proof by contradiction to show that DTr is bounded when

ρ → 0.

The consistency of the IGA-C method means that

DTr → DT = f, when ρ → 0. (32)

By contradiction, suppose DTr is not uniformly bounded when ρ → 0, i.e., ∥DTr∥W → ∞,

when ρ → 0. Because f is continuous, it is bounded on its domain Ωp ∪ ∂Ωp. However, DTr is

unbounded when ρ → 0. This violates the consistency condition (Eq. (32)). So the hypothesis

is not true, DTr is uniformly bounded when ρ → 0. That is, there exists a positive constant Cr

such that

∥DTr∥W ≤ Cr, when ρ → 0.

Therefore, we have

∥D∥ = sup
∥Tr∥V=1

{∥DTr∥W} ≤ Cr, when ρ → 0,

and (refer to Eq. (22))

∥Iρ∥ = sup
∥f∥L∞=1

{∥Iρf∥W} = sup
∥f∥L∞=1

{∥DTr∥W} ≤ Cr, when ρ → 0.

It means that the interpolation operator Iρ (Eq. (22)) and the differential operator D (Eq. (1))

are both uniformly bounded when ρ → 0. �
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Based on Lemmas 8 and 9, the necessary and sufficient condition for the consistency of the

IGA-C method is followed.

Theorem 3 (Necessity and Sufficiency). The IGA-C method applied on the boundary problem

(Eq. (1)) is consistent, if and only if the interpolation operator Iρ (Eq. (22)) and differential

operator D (Eq. (1)) are both uniformly bounded when ρ → 0.

§6 Numerical examples

In this section, two numerical examples are presented to illustrate the necessary and sufficient

condition of the consistency of the IGA-C method. In both examples, we take the Greville

collocation points [2].

Figure 1. Diagram of
∥DTr∥L∞
∥Tr∥L∞

v.s. lg ρk for the 1D problem. The ratio
∥DTr∥L∞
∥Tr∥L∞

is uniformly

bounded when the knot grid size sequence ρk → 0.

Figure 2. Diagram of
∥Iρf∥L∞
∥f∥L∞

v.s. lg ρk for the 1D problem. The ratio
∥Iρf∥L∞
∥f∥L∞

is uniformly

bounded when the knot grid size sequence ρk → 0.

Example 1: Consider the following one-dimensional source problem:{
−T ′′ + T = (1 + 4π2)sin(2πx), x ∈ Ω = [0, 1],

T (0) = 0, T (1) = 0.
(33)
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The analytical solution to the source problem is T (x) = sin(2πx). The physical domain is mod-

eled by a cubic B-spline curve with control points {0, 1
3 ,

2
3 , 1} and knot vector {0 0 0 0 1 1 1 1}.

So the initial knot grid size is ρ0 = 1. To reduce the knot grid size, we uniformly insert k (k =

1, 2, · · · ) knots in (0, 1). And then, the knot grid size sequence is ρk = 1
k+1 , k = 0, 1, 2, · · · .

In Fig. 1, the diagrams of
∥DTr∥L∞
∥Tr∥L∞

v.s. lg ρk are demonstrated, where the degrees of the

numerical solution Tr range from 2 to 7. It can be seen from the diagrams in Fig. 1 that, when

k → ∞ and ρk → 0, as an indicator of ∥D∥L∞ , the ratio
∥DTr∥L∞
∥Tr∥L∞

tends to∥∥(1 + 4π2)sin(2πx)
∥∥
L∞

∥sin(2πx)∥L∞
= 1 + 4π2.

Therefore, it is uniformly bounded as ρk → 0, (k → ∞), which validates Theorem 3.

Similarly, the diagrams of
∥Iρf∥L∞
∥f∥L∞

v.s. lg ρk are illustrated in Fig. 2. It can be seen that

the ratio
∥Iρf∥L∞
∥f∥L∞

, as an indicator of ∥Iρ∥, is also uniformly bounded as ρk → 0, (k → ∞).

Figure 3. Diagram of
∥DTr∥L∞
∥Tr∥L∞

v.s. lg ρk for the 2D problem. The ratio
∥DTr∥L∞
∥Tr∥L∞

is uniformly

bounded when the knot grid size sequence ρk → 0.

Figure 4. Diagram of
∥Iρf∥L∞
∥f∥L∞

v.s. lg ρk for the 2D problem. The ratio
∥Iρf∥L∞
∥f∥L∞

is uniformly

bounded when the knot grid size sequence ρk → 0.
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Example 2: The next example is a two-dimensional source problem:{
−∆T + T = f, (x, y) ∈ Ω

T |∂Ω = 0,
(34)

where,
f = (3x4 − 67x2 − 67y2 + 3y4 + 6x2y2 + 116) sin(x) sin(y)

+(68x− 8x3 − 8xy2) cos(x) sin(y)

+(68y − 8y3 − 8yx2) cos(y) sin(x).
And the analytical solution of the source problem (Eq. (34)) is

T = (x2 + y2 − 1)(x2 + y2 − 16) sin(x) sin(y).

The physical domain Ω in Eq. (34) is a quarter of an annulus, which is represented by a

cubic NURBS patch with 4 × 4 control points. The control points and weights of the cubic

NURBS patch are listed in Tables 1 and 2, respectively. The knot vectors of the cubic NURBS

patch along u− and v−direction are, respectively,

0 0 0 0 1 1 1 1,

0 0 0 0 1 1 1 1.

To make the knot grid size tend to 0, we uniformly insert knots in the interval (0, 1) along u−
and v−directions, respectively. So, the knot grid sizes are ρk = 1

k+1 , k = 0, 1, 2, · · · .

Fig. 3 shows the diagrams
∥DTr∥L∞
∥Tr∥L∞

v.s. lg ρk for the case of two-dimensional source problem

(Eq. (34)), where the degrees of the numerical solution Tr range from 2 to 7. Similar as the

case of one-dimensional problem,
∥DTr∥L∞
∥Tr∥L∞

tend to a limit when ρk → 0(k → ∞). So they are

all uniformly bounded when ρk → 0 (k → ∞).

Furthermore, from Fig. 4, where the diagrams
∥Iρf∥L∞
∥f∥L∞

v.s. lg ρk are demonstrated, we can

seen that the ratios
∥Iρf∥L∞
∥f∥L∞

are also uniformly bounded when ρk → 0 (k → ∞).

Table 1. Control points of the quarter of annulus.

i Pi,1 Pi,2 Pi,3 Pi,4

1 (1,0) (2,0) (3,0) (4,0)

2 (1,2-
√
2) (2, 4-2

√
2) (3,6-3

√
2) (4,8-4

√
2)

3 (2-
√
2,1) (4-2

√
2,2) (6-3

√
2,3) (8-4

√
2, 4)

4 (0,1) (0,2) (0,3) (0,4)

Table 2. Weights for the quarter of annulus.

i wi,1 wi,2 wi,3 wi,4

1 1 1 1 1

2 1+
√
2

3
1+

√
2

3
1+

√
2

3
1+

√
2

3

3 1+
√
2

3
1+

√
2

3
1+

√
2

3
1+

√
2

3
4 1 1 1 1
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§7 Conclusions

In this paper, we developed the convergence order for the consistency and convergence of the

IGA-C method, and then, deduced the necessary-and-sufficient condition for the consistency

of the IGA-C method. Specifically, suppose D is the differential operator of a boundary value

problem with DT = f (Eq. (1)), a NURBS function Tr is the numerical solution, and Iρ is an

interpolation operator such that Iρf = DTr. First, the formula of the convergence order for

the consistency of the IGA-C method is developed, which includes the norms of the operator D
and Iρ. Then, the necessary-and-sufficient condition for the consistency of the IGA-C method

is deduced. That is, the IGA-C method is consistent if and only if D and Iρ are both uniformly

bounded when ρ → 0. These results will advance the numerical analysis of the IGA-C method.
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