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Nearly nonstationary processes under infinite variance

GARCH noises

ZHANG Rong-mao1,2 LIU Qi-meng2,∗ SHI Jian-hua1

Abstract. Let Yt be an autoregressive process with order one, i.e., Yt = µ+ϕnYt−1+εt, where

{εt} is a heavy tailed general GARCH noise with tail index α. Let ϕ̂n be the least squares

estimator (LSE) of ϕn. For µ = 0 and α < 2, it is shown by Zhang and Ling (2015) that ϕ̂n is

inconsistent when Yt is stationary (i.e., ϕn ≡ ϕ < 1), however, Chan and Zhang (2010) showed

that ϕ̂n is still consistent with convergence rate n when Yt is a unit-root process (i.e., ϕn = 1)

and {εt} is a GARCH(1, 1) noise. There is a gap between the stationary and nonstationary

cases. In this paper, two important issues will be considered: (1) what about the nearly unit root

case? (2) When can ϕ be estimated consistently by the LSE? We show that when ϕn = 1− c/n,

then ϕ̂n converges to a functional of stable process with convergence rate n. Further, we show

that if limn→∞ kn(1−ϕn) = c for a positive constant c, then kn(ϕ̂n−ϕ) converges to a functional

of two stable variables with tail index α/2, which means that ϕn can be estimated consistently

only when kn → ∞.

§1 Introduction

Consider the following models

Yt = µ+ ϕnYt−1 + εt, (1.1)

where Y0 = 0 and εt follows a general first-order generalized autoregressive conditional het-

eroscedasticity model (GGARCH(1, 1)) defined by

εt = σtηt, σt ≥ 0 , (1.2)

σδ
t = g(ηt−1) + c(ηt−1)σ

δ
t−1, (1.3)

where δ > 0, P r{σδ
t > 0} = 1, c(0) < 1, c(·) and g(·) are non-negative functions, and {ηt} is

a sequence of i.i.d. symmetric white noises with unit variance. The general model (1.3) was

defined by He and Terasvirta (1999). It includes many models as special cases, for example,
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the GARCH(1,1) model of Bollerslev (1986), the absolute value GARCH (1,1) model of Taylor

(1986) and Schwert (1989), the nonlinear GARCH(1,1) model of Engle (1990), the volatility

switching GARCH (1,1) model of Fornari and Mele (1997), the threshold GARCH (1,1) model

of Zakoian (1994), and the generalized quadratic ARCH (1,1) model of Sentana (1995).

There is an extensive literature on unit-root estimation and testing for the case c(·) ≡ 0 and

g(·) ≡ σδ, i.e., {εt} are i.i.d. random variables. For a concise review on the recent developments

on this topic, see Chan (2008) and the references therein.

On the other hand, the unit-root problem for the case of non i.i.d errors has also been re-

ceiving considerable attention in the literature. Under these circumstances, the original testing

for unit-root in (1.1) is tantamount to testing for unit-root with GGARCH(1,1) errors. Mo-

tivated by this consideration, extensive research have been conducted. For example, Hall and

Yao (2003) considered QMLE and Peng and Yao (2003) studied the least absolute deviations

estimation (LAD) when Eε2t < ∞ and Eη4t = ∞. Ling and Li (1998) considered the distribution

of the maximum likelihood estimation for non-stationary autoregressive moving average time

series with GARCH errors for the case Eε4t < ∞. Ling and Li (2003), Ling, Li and McAleer

(2003) and Li and Li (2009) generalized the results to the case Eε2t < ∞ and obtained that the

limit distribution of the estimated unit-root as a functional of the Brownian motion. Chan and

Peng (2005) studied the least absolute deviations estimation for stationary AR(1) process with

heavy-tailed ARCH(1) noise, see also Zhu and Ling (2015). Chan and Zhang (2010) studied the

asymptotic distribution of Dickey-Fuller test for ϕn = 1 under an infinite-variance GARCH(1,

1) noise with tail index α, they showed that with convergence rate n, the asymptotic distribu-

tion of the LSE converges to a functional of a stable process when α < 2 and a functional of

the Brownian motion when α = 2. On the other hand, Zhang and Ling (2015) showed that the

LSE of a stationary AR(p) model is inconsistent when α < 2, see also Zhang and Chan (2021).

This means a big gap exists between the stationary and nonstationary cases when the noise is

an infinite variance GARCH noise.

To shed some intuitive insight into these phenomena, consider the following simple simu-

lation exercise. Let Yt be a unit-root model, i.e., Yt = Yt−1 + εt with εt =
√
ω + βε2t−1ηt, t =

1, 2, . . . , n, where {ηt} is a sequence of i.i.d. standard normal noise. Note that the tail index of

εt is given by the solution of

E(βη2t )
α/2 = 1,

see Kesten (1973). Thus, if β = 1, then the tail index α = 2; if β = π/2, then the tail index

α = 1. We simulate Yt = ϕYt−1 + εt with various ϕ and ARCH(1) noise with ω = 0.4 and

β = 0.5 for the finite variance case, β = 1, 1.5 for the finite mean but infinite variance case

(i.e., 1 < α < 2) and β = 2 for the infinite mean case (i.e., α < 1). For each setting, we

replicate the exercise 500 times and take n = 500, 1000, 1500. The empirical sampling bias

(Bias, ϕ̂n − ϕ) and standard deviation (SD) for the corresponding estimates (Est) ϕ̂ based on

the 500 repetitions are reported in Table 1. It can be seen from this table that for all ϕ, as β

increases, i.e., the tail index α decreases, the bias and SD for the autoregressive parameter ϕ

tend to increase. When β > 1, i.e., the noise has infinite variance, the autoregressive parameter

ϕ cannot be estimated well if ϕ < 1, but it can still be estimated consistently when ϕ = 1, and

the nearer the ϕ closes to 1, the smaller the bias and SD are. One natural question is when

ϕ = 1 − γ/n for some constant γ, does an Ornstein-Uhlenbeck (O-U) limit distribution still
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hold? We will show that the limit distribution of n(ϕ̂n−ϕ) converges to functional of fractional

Ornstein-Uhlenbeck (O-U) stable processes.

The second question is when ϕn can be estimated consistently by ϕ̂n. We will show that

if ϕn = 1 − c/kn for a positive constant c, then ϕ̂n − ϕn = O(1/kn), which implies ϕn can

be estimated consistently only when kn → ∞. This also gives a smoothing transition from

stationary process to nonstationary process similar to Phillips and Magdalinos (2007), who

showed that the convergence rate is
√
nkn when the noise εt is a sequence of i.i.d. variables

with finite variance.

Table 1. Bias and standard deviation for the LSE of ϕ.

β = 0.5 β = 1 β = 1.5 β = 2

Bias SD Bias SD Bias SD Bias SD

n = 500

-0.8 0.0062 0.0386 0.0213 0.0849 0.0600 0.1612 0.0730 0.1868

-0.6 0.0065 0.0527 0.0312 0.1280 0.0561 0.1952 0.0734 0.2413

0.6 -0.0114 0.0539 -0.0296 0.1276 -0.0624 0.2039 -0.0782 0.2429

0.8 -0.0101 0.0390 -0.0276 0.0921 -0.0643 0.1641 -0.0849 0.1962

0.95 -0.0093 0.0182 -0.0187 0.0409 -0.0400 0.0814 -0.0617 0.1195

0.99 -0.0091 0.0109 -0.0131 0.0261 -0.0213 0.0459 -0.0348 0.0837

1 -0.0110 0.0086 -0.0130 0.0211 -0.0200 0.0333 -0.0300 0.0714

n = 1000

-0.8 0.0021 0.0267 0.0134 0.0724 0.0638 0.1494 0.0761 0.1785

-0.6 0.0031 0.0441 0.0258 0.1179 0.0512 0.1898 0.0781 0.2462

0.6 -0.0027 0.0406 -0.0377 0.1176 -0.0526 0.1933 -0.0832 0.2270

0.8 -0.0052 0.0281 -0.0248 0.0867 -0.0569 0.1776 -0.0854 0.1816

0.95 -0.0051 0.0127 -0.0138 0.0352 -0.0381 0.0914 -0.0560 0.1317

0.99 -0.0045 0.0067 -0.0069 0.0114 -0.0147 0.0377 -0.0287 0.0760

1 -0.0055 0.0046 -0.0069 0.0143 -0.0158 0.0458 -0.0251 0.0801

n = 1500

-0.8 0.0022 0.0235 0.0274 0.0834 0.0582 0.1363 0.0860 0.1885

-0.6 0.0038 0.0358 0.0163 0.1060 0.0555 0.1828 0.0733 0.2234

0.6 -0.0033 0.0364 -0.0197 0.1085 -0.0636 0.1967 -0.0817 0.2425

0.8 -0.0028 0.0237 -0.0319 0.0918 -0.0530 0.1383 -0.0908 0.1916

0.95 -0.0034 0.0102 -0.0115 0.0335 -0.0437 0.0992 -0.0518 0.1223

0.99 -0.0028 0.0050 -0.0054 0.0145 -0.0125 0.0298 -0.0252 0.0600

1 -0.0034 0.0031 -0.0044 0.0064 -0.0081 0.0201 -0.0175 0.0606

Throughout the paper, o(1) (oP (1)) denotes a series of numbers (random numbers) con-

verging to zero (in probability); O(1) (OP (1)) denotes a series of numbers (random numbers)
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that are bounded (in probability); when two sequences an and bn are of the same order, we

denote an ∼ bn;
P−→ and

L−→ denote convergence in probability and in distribution, respec-

tively. And C denotes a positive bounded constant taking different values at different places.

The rest of the paper is organized as follows. The Dickey-Fuller test and asymptotic theory are

developed in Section 2. Section 3 concludes. All the technical proofs are relegated to Section 4.

§2 Tests and Asymptotic Distribution

2.1 Dickey-Fuller Test

Given Y0 and observations Y1, . . . Yn, the least squares estimator (LSE) of ϕ for model (1.1)

is given by

ϕ̂n =
( n∑

i=1

(Yi−1 − Y )2
)−1( n∑

i=1

(Yi−1 − Y )Yi

)
, (2.1)

where Y =
∑n

i=1 Yi−1/n. When ϕn = 1− γ/n for some constant γ, the Dickey-Fuller (DF) test

ϕ̂n for model (1.1) is defined by

n(ϕ̂n − ϕn) =
( 1

n

n∑
i=1

(Yi−1 − Y )2
)−1( n∑

i=1

(Yi−1 − Y )εi

)
. (2.2)

Throughout the paper, we impose the following conditions.

Condition 1.

(i) E log(c(ηt)) < 0.

(ii) There exists a k0 > 0 such that E(c(ηt))
k0 ≥ 1, E[(c(ηt))

k0 log+(c(ηt))] < ∞ and E(g(ηt)+

|ηt|δ)k0 < ∞, where log+(x) = max{0, log(x)}.

(iii) The density of η1 is positive in a neighborhood of zero.

Condition 1(i) is a necessary and sufficient condition for the existence of a stationary

solution of σ2
t (see Nelson (1990)). If Condition 1(ii) holds, then Condition 1(i) is equivalent to

is equivalent to E(c(η1))
µ < 1 for some µ > 0 (see Remark 2.9 of Basrak, Davis and Mikosch

(2002)). Conditions 1(i) and (iii) also imply that ht is not a constant and hence exclude the

i.i.d. case. By Lemma 2.1 of Zhang and Ling (2015), it follows that there exists a unique

α ∈ (0, k0] such that

E(c(ηt))
α/δ = 1. (2.3)

Further, if E|η1|α < ∞, then as x → ∞,

P (|ε1| > x) ∼ c
(α)
0 E|η1|αx−α,

where

c
(α)
0 =

E
([

g(η1) + c(η1)σ
δ
1

]α/δ − [
c(η1)σ

δ
1

]α/δ)
αE

(
c(η1)α/δ log

+(c(η1))
) .

Condition 1(iii) can be weakened as the distribution of F of η1 is a mixture of an absolutely continuous
component with respect to the Lebesgue measure λ on R and Dirac masses at some points µi ∈ R, i = 1, . . . , N .
See Francq and Zaköıan (2006).
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2.2 Asymptotic Distributions

We now derive the limit distributions of the LSE in (2.1). Our first result is about whether

the DF test given in (2.2) has power when εt is a heavy tailed GARCH noise with index α < 2.

Theorem 2.1. Let α be the tail index defined in (2.3). Suppose that α < 2 and Condition 1
holds.

(i) When ϕn ≡ ϕ ∈ (−1, 1),

ϕ̂n − ϕ
L−→ (Sα/2)

−1Zα/2, (2.4)

where both Sα/2 and Zα/2 are stable variables with index α/2.

(ii) When limn→∞ n(1− ϕn) = γ for some constant γ and µ = 0,

n(ϕ̂n − ϕ)
L−→

∫ 1

0
Zα,γ(t) dZα(t)− Zα(1)

∫ 1

0
Zα,γ(t) dt∫ 1

0
Z2
α,γ(t) dt− (

∫ 1

0
Zα,γ(t) dt)2

, (2.5)

where Zα(t) is a stable process with index α and Zα,γ(t) is an O-U stable process given by

Zα,γ(t) = Zα(t)− γ

∫ t

0

e−γ(t−s)Zα(s) ds, Zγ(0) = 0, t ∈ [0, 1].

Remark 2.1. It can be seen from the proof that the results also work for more general higher
order GARCH(p, q) cases.

Remark 2.2. ϕn ≡ 1 is a special case of Theorem 2.1(ii). When ϕn ≡ 1, γ = 0, hence
Zα,0(t) = Zα(t).

Remark 2.3. Theorem 2.1 shows that the asymptotic behaviors for a stationary AR model
derived by heavy-tailed GARCH noise are completely different from those derived by i.i.d. noise.
In fact, when {εt} is a sequence of i.i.d. random variables belonging to the attraction domain
of a stable law with index α ∈ (0, 2) and ϕn ≡ ϕ ∈ (−1, 1), then

an(ϕ̂n − ϕ)
L−→ (Sα/2)

−1Zα,

where Sα/2 is a stable variables with index α/2, and Zα is a stable variables with index α. How-
ever, when limn→∞ n(1− ϕn) = γ for some constant γ and µ = 0, the asymptotic distribution
is the same as Theorem 2.1(ii).

From (2.4) and (2.5), we see that the asymptotic behavior of ϕ̂n is totally different between

a stationary and a nearly nonstationary case. Note that ϕ̂n is not consistent when ϕn < 1 and

does not depend on n (i.e., Yt is a stationary process), while super consistent with convergence

rate n when ϕn = 1 − γ/n for a certain constant γ. An interesting question is when ϕ can

be consistently estimated? Does there exist a smoothing transition from a stationary to a

nonstationary case? To address this issue, we consider a moderate deviation from unity model

as in Phillips and Magdalinos (2007), i.e., Yt = µ + ϕnYt−1 + εt, with ϕn = 1 − c/kn, c > 0.

The next theorem is about the limit distribution of ϕ̂n under such setting.

Theorem 2.2. Suppose that µ = 0, α < 2, and Condition 1 holds. If there exists a kn = o(n)
such that limn→∞ kn(1− ϕn) = c > 0, then

kn(ϕ̂n − ϕ)
L−→ (S∗

α/2)
−1Z∗

α/2, (2.6)

where both S∗
α/2 and Z∗

α/2 are stable variables with index α/2.
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Remark 2.4. From Theorem 2.2, we have that when ϕn = 1 − c/n, i.e., kn = n, then the
convergence rate is n; when ϕn = 1 − c/kn ≡ ϕ ∈ (−1, 1), i.e., kn ≡ d for some d > c/2, then
Yt is stationary and the convergence rate reduces to O(1), which is consistent with Therem 2.1.
Thus, Theorem 2.2 also gives a smoothing transition from stationary to nonstationary cases
and show that ϕ̂n estimates ϕn consistently only when kn → ∞.

§3 Conclusions

In this paper, we discuss the limit behaviors of the Dickey-Fuller statistic for a unit-root

model with noises driven by heavy-tailed GARCH innovations. It is shown that when the tail

index α < 2 of the GARCH innovations, the autoregressive parameter ϕ cannot be consistently

estimated by the LSE. However, for such GARCH noise, when limn→∞ n(1 − ϕn) = γ ∈ R,

the LSE ϕ̂n is still a super consistent estimator and converges to a functional of O-U stable

processes. Further, we also develop an asymptotic theory of the LSE for an AR(1) process

with coefficient ϕ = 1 − c/kn, c > 0, which gives a smoothing transition from stationary to

nonstationary cases, explains why their convergence rates are so different, and shows that the

LSE is consistent only when ϕn → 1, i.e., kn → ∞. The results of this paper can be easily

extended to higher order heavy-tailed GARCH-type processes, like GARCH(p, q). Further,

using the same argument as in Chan and Zhang (2009), it is east to extend the results to the

case with nonzero µ. This paper also opens several interesting questions. First, if a robust

procedure instead of LSE is used, could one detect the unit-root more efficiently? Note that

Knight (1989) (see also Phillips (1991)) showed that L1 estimation has significant gains in this

framework for the infinite variance case. In view of this fact, one possible way to handle the

inconsistency and efficient testing issue is to adopt the L1 estimate. Second, since the limit

distribution of the DF test is complicated, their critical values are difficult to derive, how to

construct a new test to avoid deriving the critical values? These issues will be explored in a

future work.

§4 Technical Proofs

In this section, we prove the main results. For any given integers l and H, we define a

(H + 1)-dimensional random vector:

Zt,l,H = (ε2t−l, εt−lεt−l−1, · · · , εt−lεt−l−H). (4.1)

And denote an =
(
c
(α)
0 E|η1|αn

)1/α

.

Lemma 4.1. Suppose that Condition 1 holds and α < 2. Then, for any positive integer K and
H, as n → ∞,

[ns]∑
t=1

εt/an
S−→ Zα(s), (4.2)

1

a2n
(

n∑
t=1

Zt,0,H ,
n∑

t=1

Zt,1,H , . . . ,
n∑

t=1

Zt,K,H)
L−→ (Sα/2,Sα/2, . . . ,Sα/2)1×(K+1), (4.3)

where
S−→ denotes weak convergence under S-topology in D[0, 1], Zα/2(s) is a stable process

with index α, and Sα/2 is a H + 1-dimensional stable random vector with index α/2.
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Conclusion (4.3) can be found in Lemma 3.1 of Zhang and Ling (2015) and (4.2) can be

shown similarly to Theorem 2.2 of Chan and Zhang (2010), here we omit the details.

Proof of Theorem 2.1. Note that when ϕ < 1,

Yi =
µ

1− ϕ
+

∞∑
j=0

ϕjεi−j =:
µ

1− ϕ
+ ξi.

This implies that

ϕ̂n − ϕ =
( n∑

i=1

(Yi−1 − Y )2
)−1( n∑

i=1

(Yi−1 − Y )εi

)
=

( n∑
i=1

ξ2i−1 − nξ
2
)−1( n∑

i=1

ξi−1εi − ξ
n∑

i=1

εi

)
(4.4)

By (4.3), Zhang and Ling (2015) showed that there exist two stable variables Sα/2 and Zα/2

with tail index α/2 such that

1

a2n
(

n∑
i=1

ξ2i−1,
n∑

i=1

ξi−1εi)
L−→ (Sα/2, Zα/2). (4.5)

On the other hand, by (4.2) and a similar argument of Zhang, Sin and Ling (2015), we have

1

an

n∑
i=1

ξi
L−→ Zα(1)/(1− ϕ),

which implies that

nξ
2

a2n
= Op(1/n) and

ξ

a2n

n∑
i=1

εi = Op(1/n).

Thus, by (4.4) and (4.5), it follows that

ϕ̂n − ϕ =
( n∑

i=1

ξ2i−1

)−1 n∑
i=1

ξi−1εi + op(1)
L−→ S−1

α/2Zα/2, (4.6)

this gives (2.4) as desired.

Next, we show (2.5). Let S[nt] =
∑[nt]

i=1 εi. Then S0 = Y0 = 0 and

Y[nt] =

[nt]∑
i=1

ϕ[nt]−i
n (Si − Si−1)

= S[nt] −
[nt]∑
i=1

(ϕ[nt]−i
n − ϕ[nt]−(i−1)

n )Si−1

= S[nt] −
1

n

[nt]∑
i=1

ϕ[nt]−i
n (1− ϕn)nSi−1

= S[nt] −
γ

n

[nt]∑
i=1

e−γ(t−i/n)Si−1 +
1

n

[nt]∑
i=1

(γe−γ(t−i/n) − ϕ[nt]−i
n (1− ϕn)n)Si−1

= S[nt] − γ

∫ t

0

e−γ(t−s)S[ns]d s+Rn(t). (4.7)

Since γe−γ(t−i/n)−ϕ
[nt]−i
n (1−ϕn)n = o(1), it follows from (4.7), Lemma 4.1 and the continuous
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mapping that

Y[nt]/an
S−→ Zα,γ(t). (4.8)

Thus, by (2.2), Lemma 4.1 and the continuous mapping, we have (2.5) and complete the proof
of Theorem 2.1.

Lemma 4.2. Under conditions of Theorem 2.2, we have

c

knan

n∑
i=1

Yi
S−→ Zα(1) (4.9)

and

2c

kna2n

n∑
i=1

Y 2
i

S−→ Sα/2,0 + 2
∞∑
i=1

Sα/2,i, (4.10)

where Zα(1) is a stable variable with tail index α given in (4.2), and Sα/2,i−1 denotes the i-th
components of Sα/2 defined in (4.3).

Proof. Since Yt = ϕnYt−1 + εt, it follows that

Yi = ϕi
nY0 +

i∑
j=1

ϕi−j
n εj . (4.11)

Thus,
n∑

i=1

Yi =
n∑

i=1

ϕi
nY0 +

n∑
i=1

i∑
j=1

ϕi−j
n εj

=
ϕn(1− ϕn

n)

1− ϕn
Y0 +

n∑
j=1

n∑
i=j

ϕi−j
n εj

= c−1kn(1 + o(1))Y0 +
1

1− ϕn

n∑
j=1

(1− ϕn−j
n )εj

= c−1kn(1 + o(1))Y0 +
1

1− ϕn

n−[vn]∑
j=1

(1− ϕn−j
n )εj

+
1

1− ϕn

n∑
j=n−[vn]+1

(1− ϕn−j
n )εj

=: Sn1 + Sn2 + Sn3,

where vn is a constant sequence satisfying vn/kn → ∞ and vn/n → 0. Since Y0 is a given
random variable, it follows that

c

knan
Sn1 =

(1 + o(1))Y0

an
= op(1). (4.12)

By Lemma 4.1 and (1− c/kn)
j → 0 for all j > vn, we have

c

knan
Sn2 =

(1 + o(1))

an

n−[vn]∑
j=1

εj
L−→ Zα(1). (4.13)

For Sn3, we write εj = εjI(|σj | > an) + εjI(|σj | ≤ an) =: εj,1 + εj,2. Note that {εj,2/an} is a
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martingale difference sequence and Eη2t = 1. By Karamata’s theorem, it follows that

E
( 1

an

n∑
j=n−[vn]+1

(1− ϕn−j
n )εj,2

)2

=
vn
a2n

(1− ϕn−j
n )2E(ε2j,2) = O(vn/n) = o(1).

This implies that

1

an

n∑
j=n−[vn]+1

(1− ϕn−j
n )εj,2 = op(1).

As a result, we have

c

knan

( 1

1− ϕn

) n∑
j=n−[vn]+1

(1− ϕn−j
n )εj,2 = op(1).

By Karamata’s theorem again, we have for any 0 < p < min{1, α},

E
∣∣∣ 1
an

n∑
j=n−[vn]+1

(1− ϕn−j
n )εj,1

∣∣∣p =
vn
apn

(1− ϕn−j
n )pE(|εj,1|p) = O(vn/n) = o(1),

which implies that

c

knan

( 1

1− ϕn

) n∑
j=n−[vn]+1

(1− ϕn−j
n )εj,1 = op(1).

Thus,
c

knan
Sn3 = op(1).

By (4.12), (4.13), we have (4.9).
Next, we show (4.10). Without loss of generality, we set Y0 = 0. By (4.11), we have
n∑

i=1

Y 2
i =

n∑
i=1

( i∑
j=1

ϕi−j
n εj

)2

=
n∑

i=1

i∑
j=1

ϕ2(i−j)
n ε2j + 2

n∑
i=1

i∑
j=1

i−j∑
k=1

ϕ2i−k−2j
n εjεj+k

=

n∑
j=1

n∑
i=j

ϕ2(i−j)
n ε2j + 2

n∑
j=1

n−j∑
k=1

n∑
i=j+k

ϕ2i−k−2j
n εjεj+k

=
1

1− ϕ2
n

n∑
j=1

(1− ϕ2(n−j+1)
n )ε2j +

2

1− ϕ2
n

n∑
j=1

n−j∑
k=1

ϕk
n(1− ϕ2(n−j−k+1)

n )εjεj+k

=: Ln1 + Ln2. (4.14)

Denote Xj1 = ε2jI(|ε2j | > an) and Xj2 = ε2jI(|ε2j | ≤ an). Then, by Karamata’s theorem,
we have that for any ν < 2/α < 1,

E
∣∣∣ 1
a2n

n∑
j=1

ϕ2(n−j+1)
n Xj1

∣∣∣ν ≤ 1

a2νn

n∑
j=1

ϕ2ν(n−j+1)
n E|Xj1|ν

≤ C

n

n∑
j=1

ϕ2ν(n−j+1)
n = o(1). (4.15)



ZHANG Rong-mao, et al. Nearly nonstationary processes under infinite variance... 255

Similarly, by Karamata’s theorem again, we have

E
∣∣∣ 1
a2n

n∑
j=1

ϕ2(n−j+1)
n Xj2

∣∣∣ ≤ 1

a2n

n∑
j=1

ϕ2(n−j+1)
n E|Xj2| ≤

C

n

n∑
j=1

ϕ2(n−j+1)
n = o(1). (4.16)

Thus, by (4.15), (4.16), and Lemma 4.1,

2cLn1

kna2n
=

2c

kn(1− ϕ2
n)a

2
n

n∑
j=1

ε2j −
2c

kn(1− ϕ2
n)a

2
n

( n∑
j=1

ϕ2(n−j+1)
n Xj1 +

n∑
j=1

ϕ2(n−j+1)
n Xj2

)
=

2c

kn(1− ϕ2
n)

( 1

a2n

n∑
j=1

ε2j

)
+ op(1)

L−→ Sα/2,0. (4.17)

One the other hand, by Lemma 3.1 of Zhang and Ling (2015), there exist a 0 < ρ < 1 such
that for all j, k,

P (|εjεj+k| > x) ≤ C(x−α + ρkx−α/2). (4.18)

By (4.18) and the same arguments as in proving Ln1, we have that

2cLn2

kna2n
=

4c

kn(1− ϕ2
n)a

2
n

n∑
j=1

H∑
k=1

εjεj+k + op(1)

L−→ 2
H∑

k=1

Sα/2,k = 2
∞∑
k=1

Sα/2,k + op(1), (4.19)

by letting H → ∞.
By (4.17), (4.19), and their jointly convergence (by Lemma 4.1), we have (4.10) and com-

plete the proof of Lemma 4.2.

Proof of Theorem 2.2. Note that when µ = 0, Yt = ϕnYt−1 + εt, implying that
n∑

t=1

Yt−1εt =
1

2ϕn

n∑
t=1

(Y 2
t − ϕ2

nY
2
t−1 − ε2t )

=
1

2ϕn

[
(1− ϕ2

n)

n∑
t=1

Y 2
t−1 + Y 2

n − Y 2
0 −

n∑
t=1

ε2t

]
. (4.20)

Further, by (4.11), we have

Y 2
n

a2n
=

1

a2n

(
ϕn
nY0 +

n∑
j=1

ϕn−j
n εj

)2

≤ 2ϕ2n
n Y 2

0

a2n
+ 2

( 1

an

n∑
j=1

ϕn−j
n εj

)2

= op(1).

Thus, by (4.17), (4.20), and Lemma 4.2,

kn(ϕ̂n − ϕn)

=
( 1

kna2n

n∑
i=1

(Yi−1 − Y )2
)−1( 1

a2n

n∑
i=1

(Yi−1 − Y )εi

)
=

[ 1

kna2n

( n∑
i=1

Y 2
i−1 − nY

2
)]−1( 1

a2n

n∑
i=1

Yi−1εi −
1

a2n
Y

n∑
i=1

εi

)
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=
( 1

kna2n

n∑
i=1

Y 2
i−1

)−1( 1

a2n

n∑
i=1

Yi−1εi

)
+ op(1)

=
( 2

kna2n

n∑
i=1

Y 2
i−1

)−1[ (1− ϕ2
n)

a2n

n∑
t=1

Y 2
t−1 +

Y 2
n

a2n
− Y 2

0

a2n
− 1

a2n

n∑
t=1

ε2t

]
+ op(1)

= c
( 2c

kna2n

n∑
i=1

Y 2
i−1

)−1[ 2c

kna2n

n∑
t=1

Y 2
t−1 −

1

a2n

n∑
t=1

ε2t

]
+ op(1)

L−→
(
Sα/2,0 + 2

∞∑
i=1

Sα/2,i

)−1(
2

∞∑
i=1

Sα/2,i

)
=: (S∗

α/2)
−1Z∗

α/2

i.e., we complete the proof of Theorem 2.2.
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