Ideal cotorsion pairs over one point extensions

ZHU Hai-yan DU Ben-jun* WANG Qi-kai

Abstract

Let $R[P]$ be the one point extension of a k-algebra R by a projective R-module P. We prove that the extension of a complete ideal cotorsion pair in R-Mod is still a complete ideal cotorsion pair in $R[P]$-Mod. As an application, it is obtainable that the operation $(-)_{m}[P]$ satisfies the so-called distributive law relating the operations of products and extensions of ideals under appropriate conditions.

§1 Introduction

In the classical approximation theory, the object $A \in \mathcal{A}$ is approximated by a subclass of \mathcal{A}. To replace objects and subclasses with morphisms and ideals, Fu, Asensio, Herzog and Torrecillas [6] introduced ideal cotorsion pairs and the ideal approximation theory. Meantime, they established the connection between special precovering ideals and phantom morphisms in exact categories. Furthermore, Fu and Herzog obtained ideal versions of Salce's Lemma, Ghost Lemma and Wakamatsu's Lemma to develop the ideal approximation theory and gave an interesting application in [7].

As a generalization of the classical approximation theory, the ideal approximation theory has attracted more attention. Breaz and Modoi [2] extended the ideal approximation theory to triangulated categories. Asadollahi and Sadeghi investigated so-called "higher ideal approximation theory" in [1]. Tan, Wang and Zhao extended the ideal approximation theory associated to almost n-exact structures in extension closed subcategories of n-angulated categories in [13]. Furthermore, the theory of ideal approximations was developed in [12].

The primary task of this article is to extend the ideal cotorsion pair from a k-algebra R to its one point extension. More precisely, if $R[P]$ is the one point extension of an algebra R by a projective R-module P, we study how to construct an ideal cotorsion pair in $R[P]$-Mod from an ideal cotorsion pair in R-Mod in a natural way. For an ideal \mathcal{I} in R-Mod, $\mathcal{I}[P]$ is the collection of all morphisms $\dot{\mathrm{i}}=\binom{i_{k}}{i}:\binom{V_{1}}{M_{1}}_{\theta_{1}} \rightarrow\binom{V_{2}}{M_{2}}_{\theta_{2}}$ with $i \in \mathcal{I}$. Unfortunately, for an ideal cotorsion pair $(\mathcal{I}, \mathcal{J})$ in R-Mod, $(\mathcal{I}[P], \mathcal{J}[P])$ is not an ideal cotorsion pair (see Example 3.4). Motivated by the result in [10], we introduce the concept of $\mathcal{I}_{m}[P]$ (see 2.5 for details).

Now, our main result can be stated as follows.

[^0]Theorem 1.1. Let $R[P]$ be the one point extension of a k-algebra R, and let $(\mathcal{I}, \mathcal{J})$ be a complete ideal cotorsion pair in R-Mod. Then $\left(\mathcal{I}_{m}[P], \mathcal{J}[P]\right)$ is a complete ideal cotorsion pair in $R[P]$-Mod.

Let $(\mathcal{A} ; \mathcal{E})$ be an exact category, then the category $\operatorname{Arr}(\mathcal{A})$ has the natural exact structure whose conflations are the morphisms of conflations in $(\mathcal{A} ; \mathcal{E})$. We denote this exact category by $(\operatorname{Arr}(\mathcal{A}) ; \operatorname{Arr}(\mathcal{E}))$. Fu and Herzog in [7] introduced the concept of ME-conflation (see diagram (2.1)) and proved the ME substructure $(\operatorname{Arr}(\mathcal{A}), M E) \subseteq(\operatorname{Arr}(\mathcal{A}), \operatorname{Arr}(\mathcal{E}))$ is also exact. Moreover, they introduced the concept of an ME-extension $i * j$ of morphisms and then, if \mathcal{I} and \mathcal{J} be ideals of \mathcal{A}, the concept of an extension of ideals $\mathcal{I} \diamond \mathcal{J}=\langle i * j \mid i \in \mathcal{I}, j \in \mathcal{J}\rangle$. Then, Theorem 1.1 leads to interesting properties of the operation $(-)_{m}[P]$, which we call the distributive law, that is:

Theorem 1.2. Let $R[P]$ be the one point extension of a k-algebra R. For special precovering ideals \mathcal{I} and \mathcal{J}, we have the following properties (distributive law):
(1) $(\mathcal{I} \mathcal{J})_{m}[P]=\mathcal{I}_{m}[P] \mathcal{J}_{m}[P] ;$
(2) $(\mathcal{I} \diamond \mathcal{J})_{m}[P]=\mathcal{I}_{m}[P] \diamond \mathcal{J}_{m}[P]$.

The contents of this paper is arranged as follows. In section 2, the definitions and properties required in ideal approximation theory are first introduced. In section 3, we construct an extension $\mathcal{I}_{m}[P]$ of an ideal \mathcal{I}, we then give the proof of Theorem 1.1. In section 4, we complete the proof of Theorem 1.2 by applying Theorem 1.1.

§2 Preliminaries

Throughout this paper, \mathcal{A} is an abelian category and k is a field.
2.1. Ideals. An ideal \mathcal{I} of \mathcal{A} is a collection of morphisms satisfying:
(1) if $f: A \rightarrow B$ and $g: A \rightarrow B$ are two maps in \mathcal{I}, then $f \pm g \in \mathcal{I}$;
(2) if $i: A \rightarrow B$ is a map in \mathcal{I}, then for any maps $f: X \rightarrow A$ and $g: B \rightarrow Y$, the composition gif : $X \rightarrow Y$ is still in \mathcal{I}.
Equivalently, \mathcal{I} is an additive subfunctor of Hom: $\mathcal{A}^{o p} \times \mathcal{A} \rightarrow \mathrm{Ab}$. The ideal \mathcal{I} associates to every pair A and B of objects in \mathcal{A} a subgroup $\mathcal{I}(A, B) \subseteq \operatorname{Hom}(A, B)$ so that if $f: X \rightarrow A$ and g : $B \rightarrow Y$ are morphisms in \mathcal{A}, then the natural transformation $\operatorname{Hom}(f, g): \operatorname{Hom}(A, B) \rightarrow \operatorname{Hom}(X$, $Y)$ that assigns to $i \in \operatorname{Hom}(A, B)$.

$$
\operatorname{Hom}(f, g)(i): X \xrightarrow{f} A \xrightarrow{i} B \xrightarrow{g} Y
$$

respects \mathcal{I}. This is an additive subcategory of \mathcal{A}, for every additive subcategory $\mathcal{X} \subseteq \mathcal{A}$ gives rise to the ideal $\mathcal{I}(\mathcal{X})$ generated by morphisms of the form 1_{X}, where $X \in \mathcal{X}$; this is the ideal of morphisms that factor through an object in \mathcal{X}. (see [6]).
2.2. Homotopy. Consider an exact category $(\mathcal{A} ; \mathcal{E})$ consisting of an additive category \mathcal{A}, together with a distinguished collection \mathcal{E} of composable pairs of morphism (i, j) such that i is the kernel of j and j the cokernel of i. Such a pair is depicted by

$$
\eta: B \xrightarrow{i} C \xrightarrow{j} A
$$

and is called a conflation. The kernel $i: B \rightarrow C$ that appears in the conflation η is an inflation, the cokernel $j: C \rightarrow A$ is a deflation. The arrow category $\operatorname{Arr}(\mathcal{A})$ of \mathcal{A} is an abelian category whose objects $a: A_{0} \rightarrow A_{1}$ are the morphisms (arrows) of \mathcal{A}, and $f: a \rightarrow b$ in $\operatorname{Arr}(\mathcal{A})$ is given by a pair of morphisms $f=\left(f_{0}, f_{1}\right)$ of \mathcal{A} for which the diagram

commutes. And then, if $(\mathcal{A} ; \mathcal{E})$ is an exact category, then so $(\operatorname{Arr}(\mathcal{A}) ; \operatorname{Arr}(\mathcal{E}))$ [3, Corollary 2.10].
A conflation (i.e. exact sequence) $\xi: a \rightarrow b \rightarrow c$ in $\operatorname{Arr}(\mathcal{E})$ is null-homotopic if there are maps $\alpha: C_{0} \rightarrow B_{1}$ and $\beta: B_{0} \rightarrow A_{1}$ such that $b=k \beta+\alpha j$.

In fact, we have the following well-known result:

Lemma 2.1. Given the following conflation $\xi: a \rightarrow b \rightarrow c$

It is then clear that the following are equivalent:
(1) the conflation ξ is null-homotopic;
(2) there exists $\alpha: C_{0} \rightarrow B_{1}$, such that $c=l \alpha$;
(3) there exists $\beta: B_{0} \rightarrow A_{1}$, such that $\beta i=a$.

Proof. For completeness of the paper, we give the proof of $(2) \Rightarrow(1)$. Assume that $c=l \alpha$, and so $l \alpha j=j c=l b$. Then we have $l(b-\alpha j)=0$. By the universal property of the kernel, there exist $\beta: B_{0} \rightarrow A_{1}$, such that $k \beta=b-\alpha j$.

It follows that $b=\alpha j+k \beta$.

A conflation $\xi: j \rightarrow a \rightarrow i$ in $\operatorname{Arr}(\mathcal{E})$ is called ME if there is a factorization

of ξ, where the middle row is a conflation in $(\mathcal{A} ; \mathcal{E})$. Denote by $\operatorname{ME} \subseteq \operatorname{Arr}(\mathcal{E})$ the collection of ME conflations in $\operatorname{Arr}(\mathcal{E})$.
2.3. Ext-orthogonality. Given objects A and B of \mathcal{A}, the isomorphism classes of conflations form an abelian group $\operatorname{Ext}(A, B)$ with respect to the Baer sum operation. Furthermore, we have the additive bifunctor Ext: $\mathcal{A}^{o p} \times \mathcal{A} \rightarrow A b$.

A pair (i, j) of morphisms in \mathcal{A} is Ext-orthogonal, defined $\operatorname{Ext}(i, j)=0$ if every ME-extension $\xi: j \rightarrow a \rightarrow i$ in $\operatorname{Arr}(\mathcal{A})$ is null homotopic. This means that there are morphism $h: A_{0} \rightarrow J_{1}$ and $g: I_{0} \rightarrow A_{1}$ as in the diagram

satisfying $a=m_{1} h+g e_{0}$.
Proposition 2.2. [7, Proposiotion 5.2] Let $i: X \rightarrow A$ and $j: B \rightarrow Y$ be two morphisms in \mathcal{A}. The pair (i, j) is said to be Ext-orthogonal if $\operatorname{Ext}(i, j): \operatorname{Ext}(A, B) \rightarrow \operatorname{Ext}(X, Y)$ is a zero morphism.
2.4. Special precover. Let $\mathcal{I} \subseteq \mathcal{A}$ be an ideal and A be an object of \mathcal{A}. An \mathcal{I}-precover of A is a morphism $i \in \mathcal{I}, i: X \rightarrow A$, such that any other morphism $i^{\prime}: X^{\prime} \rightarrow A$ in \mathcal{I} factors though i,

In further, an \mathcal{I}-precover $i: X \rightarrow A$ is special if it is obtained as the pushout of a conflation η along a morphism $j: Y \rightarrow B$ in $\mathcal{I}^{\perp}:=\{j \mid \operatorname{Ext}(i, j)=0, \forall i \in \mathcal{I}\}$:

The ideal \mathcal{I} is called (special) precovering if every object $A \in \mathcal{A}$ has an (a special) \mathcal{I}-precover $i: X \rightarrow A$. Dually, we can define (special) \mathcal{J}-preenvelopes and (special) preenveloping classes.

A pair of ideals $(\mathcal{I}, \mathcal{J})$ in \mathcal{A} is called an ideal cotorsion pair if $\mathcal{I}^{\perp}=\mathcal{J}$ and $\mathcal{I}={ }^{\perp} \mathcal{J}$ with $\mathcal{I}^{\perp}=\{j \mid \operatorname{Ext}(i, j)=0, \forall i \in \mathcal{I}\}$ and ${ }^{\perp} \mathcal{J}=\{i \mid \operatorname{Ext}(i, j)=0, \forall j \in \mathcal{J}\}$. Moreover, an ideal cotorsion pair $(\mathcal{I}, \mathcal{J})$ is complete if every object in \mathcal{A} has a special \mathcal{J}-preenvelope and a special \mathcal{I}-precover(see [6]).
2.5. One point extension[11]. Let R be a k-algebra and P be a fixed projective right R module. We denote by $R[P]$ the one point extension of R by P, which the matrix algebra $\left(\begin{array}{ll}k & P \\ 0 & R\end{array}\right)$ with the ordinary matrix addition and the multiplication induced by the module structure of P. More precisely, the category $R[P]$-Mod can be described as follows: the objects are of form $\binom{V}{M}_{\theta}$ where $M \in R$-Mod, $V \in k$-Mod and $\theta: P \otimes_{R} M \rightarrow V$; the morphisms are of form $\binom{g}{f}:\binom{V_{1}}{M_{1}}_{\theta_{1}} \rightarrow\binom{V_{2}}{M_{2}}_{\theta_{2}}$, such that the following diagram is commutative

For a class \mathcal{C} of R-Mod, $\mathcal{C}[P]$ denotes the class of all objects $\binom{V}{C}_{\theta}$ of $R[P]$-Mod with $C \in \mathcal{C}$ and $\mathcal{C}_{m}[P]$ is the subclass of $\mathcal{C}[P]$ consisting of all objects $\binom{V}{C}_{\theta}$ with $C \in \mathcal{C}$ and θ a monomorphism. In particular, R - $\operatorname{Mod}[\mathrm{P}]=R[P]-\mathrm{Mod}$.

For an ideal \mathcal{I} of R-Mod, $\mathcal{I}[P]$ denotes the class in $R[P]$-Mod of all morphisms $\dot{\text { i }}=$ $\binom{i_{k}}{i}:\binom{V_{1}}{M_{1}}_{\theta_{1}} \rightarrow\binom{V_{2}}{M_{2}}_{\theta_{2}}$ with $i \in \mathcal{I}$. It is easy to check that $\mathcal{I}[P]$ is an ideal of $R[P]$-Mod. Forthermore, $\mathcal{I}_{m}[P]$ denotes the ideal of $R[P]$-Mod generated by all morphisms $\dot{\mathrm{I}}=\binom{i_{k}}{i}:\binom{V_{1}}{M_{1}}_{\theta_{1}} \rightarrow\binom{V_{2}}{M_{2}}_{\theta_{2}}$ with $i \in \mathcal{I}$ and θ_{1} a monomorphism.

§3 The proof of Theorem 1.1

Lemma 3.1. If $\operatorname{Ext}(i, j)=0$ with $i: I_{1} \rightarrow I_{2}$ and $j: J_{0} \rightarrow J_{1}$ in \mathcal{A}, then $\operatorname{Ext}($ fig,$j)=0$ for every morphism f and g.

Proof. Let $f: I_{2} \rightarrow F$ and $g: I_{0} \rightarrow I_{1}$ be morphisms and $\xi^{\prime}:$ fig $\rightarrow a \rightarrow j$ is a conflation. By [6, Proposition 3], we have

$$
\begin{aligned}
\operatorname{Ext}(f i g, j) & =\operatorname{Ext}\left(f i g, J_{1}\right) \operatorname{Ext}(F, j) \\
& =\operatorname{Ext}\left(g, J_{1}\right) \operatorname{Ext}\left(f i, J_{1}\right) \operatorname{Ext}(F, j) \\
& =\operatorname{Ext}\left(g, J_{1}\right) \operatorname{Ext}\left(I_{1}, j\right) \operatorname{Ext}\left(f i, J_{0}\right) \\
& =\operatorname{Ext}\left(g, J_{1}\right) \operatorname{Ext}\left(I_{1}, j\right) \operatorname{Ext}\left(i, J_{0}\right) \operatorname{Ext}\left(f, J_{0}\right) \\
& =\operatorname{Ext}\left(g, J_{1}\right) \operatorname{Ext}(i, j) \operatorname{Ext}\left(f, J_{0}\right) \\
& =0
\end{aligned}
$$

Thus, we get $\operatorname{Ext}(f i g, j)=0$, as desired.
Suppose that a morphism of conflations is given, as in the commutative diagram

Then the morphism $k: B \rightarrow Z$ is called a coextension of f by A. Next, we proceed as in the dual proof of $[6$, Proposition 9$]$, we get the following result:

Lemma 3.2. If \mathcal{M} is a collection of morphism in \mathcal{A}, then ${ }^{\perp} \mathcal{M}$ is an ideal closed under coextension by projective objects.

Lemma 3.3. Let \mathcal{A} be an abelian category with enough projective objects and suppose that \mathcal{J} is a special preenveloping class of \mathcal{A}. Given an object $A \in \mathcal{A}$, consider a conflation $\eta^{\prime}: K \rightarrow P \rightarrow A$ where P is a projective object and take a pushout

along a special \mathcal{J}-preenvelope $j: K \rightarrow C$. The morphism $i: X \rightarrow A$ is a special ${ }^{\perp} \mathcal{J}$-precover of A.

Proof.Since $j \in \mathcal{J} \subseteq\left[{ }^{\perp} \mathcal{J}\right]^{\perp}$, it is enough to prove $i \in{ }^{\perp} \mathcal{J}$ by [6, Proposition 11]. Then $i: X \rightarrow A$ is a special ${ }^{\perp} \mathcal{J}$-precover of A. The special \mathcal{J}-preenvelope $j: K \rightarrow C$ arises from a pullback

Let $h: C \rightarrow Z$, then the pushout of η^{\prime} along $j h$ is also the pushout along h of the conflation $\eta: C \rightarrow X \rightarrow A$. Thus we obtain the commutative diagram

where all rows and columns are conflations. Since $g \in{ }^{\perp} \mathcal{J}$ and $k: X \rightarrow L$ is a coextension of $g: W \rightarrow Y$ by the projective object P, we have $k \in{ }^{\perp} \mathcal{J}$ and $i=f k \in{ }^{\perp} \mathcal{J}$.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1 Firstly, we show that $\operatorname{Ext}\left(\mathcal{I}_{m}[P], \mathcal{J}[P]\right)=0$. By Lemma 3.1, it is sufficient to prove that $\operatorname{Ext}(\dot{\mathrm{i}}, \dot{\mathfrak{j}})=0$, where $\dot{\mathrm{i}}=\binom{i_{k}}{i}:\binom{V}{M}_{\theta} \rightarrow\binom{V_{1}}{M_{1}}_{\theta_{1}}$ with θ a monomorphism, $i \in \mathcal{I}$ and $\mathfrak{j}=\binom{j_{k}}{j} \in \mathcal{J}[P]$. Consider the ME-conflation in $R[P]$-Mod

By Lemma 2.1, there is a morphism $f: M \rightarrow C_{3}$ in R-Mod, such that $c_{3} f=i$ since $i \in \mathcal{I}$, $j \in \mathcal{J}$. Then we consider the ME-conflation in R-Mod

Note that d_{3} is an epimorphism in k-Mod, then there is a morphism $h: V \rightarrow D_{3}$ such that $d_{3} h=i_{k}$. It follows that

$$
d_{3} d(1 \otimes f)=\theta_{1}\left(1 \otimes c_{3}\right)(1 \otimes f)=\theta_{1}(1 \otimes i)=i_{k} \theta=d_{3} h \theta
$$

i.e. $d_{3}[d(1 \otimes f)-h \theta]=0$. By the property of kernel, there is a morphism $g: P \otimes M \rightarrow U_{2}$, such that $d(1 \otimes f)-h \theta=u_{2} g$. In addition, since θ is a monomorphism in k-Mod, there is a morphism $e: V \rightarrow U_{2}$, such that $g=e \theta$. Let $t=u_{2} e+h$. It is easy to find that

$$
d_{3} t=d_{3} u_{2} e+d_{3} h=i_{k}
$$

and

$$
t \theta=u_{2} e \theta+h \theta=u_{2} g+h \theta=d(1 \otimes f)
$$

which means that we have the following commutative diagram

Therefore, $\operatorname{Ext}(\mathfrak{i}, \mathfrak{j})=0$ holds, as desired.

In sequel, we will prove that ${ }^{\perp}(\mathcal{J}[P]) \subset \mathcal{I}_{m}[P]$. Let $\dot{i}=\binom{i_{k}}{i}:\binom{V_{1}}{M_{1}}_{\theta_{1}} \rightarrow\binom{V_{2}}{M_{2}}_{\theta_{2}} \in{ }^{\perp}(\mathcal{J}[P])$. Since $(\mathcal{I}, \mathcal{J})$ is a complete ideal cotorsion pair, there is a special \mathcal{I}-precover as follows, with $c_{3} \in \mathcal{I}, j \in \mathcal{J}$

Let $\binom{1 \otimes c}{0}: P \otimes C_{2} \rightarrow\left(P \otimes C_{3}\right) \oplus V_{2}$ and $\left(\theta_{2}\left(1 \otimes c_{3}\right), 1\right):\left(P \otimes C_{3}\right) \oplus V_{2} \rightarrow V_{2}$. It is easy to find $\left(\theta_{2}\left(1 \otimes c_{3}\right), 1\right)$ is an epimorphism. Let $\left(U_{1}, u_{1}\right)$ be the kernel of $\left(\theta_{2}\left(1 \otimes c_{3}\right), 1\right)$. Thus, the following exact diagram commutes

where l, l_{j} are induced naturally. Consider the pullback of the conflation

$$
0 \rightarrow\binom{U_{1}}{L_{1}} \rightarrow\binom{\left(P \otimes C_{3}\right) \oplus V_{2}}{C_{2}} \rightarrow\binom{V_{2}}{M_{2}} \rightarrow 0
$$

along the morphism $\dot{\text { i }}$, there is the following commutative exact diagram

Note that $\mathfrak{j}=\binom{1}{j} \in \mathcal{J}[P]$ since $j \in \mathcal{J}$ and $\dot{i} \in^{\perp}(\mathcal{J}[P])$, we have $\operatorname{Ext}(\dot{\mathrm{i}}, \dot{\mathfrak{j}})=0$. By Lemma 2.1, we have following commutative diagram

Since $\binom{1}{0}$ is a monomorphism and $c_{3} \in \mathcal{I}, \dot{1} \in \mathcal{I}_{m}[P]$, i.e. ${ }^{\perp}(\mathcal{J}[P]) \subset \mathcal{I}_{m}[P]$.
Next, we claim that $\left(\mathcal{I}_{m}[P]\right)^{\perp} \subset \mathcal{J}[P]$. Let $\mathfrak{j}=\binom{j_{k}}{j}:\binom{U_{1}}{L_{1}}_{\phi_{1}} \rightarrow\binom{U_{2}}{L_{2}}_{\phi_{2}} \in\left(\mathcal{I}_{m}[P]\right)^{\perp}$, it suffices to prove that $j \in \mathcal{J}$. For every ME-conflation with $i: M_{1} \rightarrow M_{2}$ in $\mathcal{I}^{\phi_{2}}$

In addition, consider the pushout of $\phi_{1}, 1 \otimes l_{1}$ and $\phi_{1}, 1 \otimes l_{2}$, we have following commutative diagram

Since $u_{2} \circ 1_{U_{1}} \circ \phi_{1}=d \circ(1 \otimes c) \circ\left(1 \otimes l_{1}\right)$, there is a morphism from D_{1} to D_{2} making the following diagram commutative bv the universal propertv of the pushout

Since $i \in \mathcal{I}$ and $1_{P \otimes M_{1}}$ is a monomorphism, $\dot{\mathrm{I}}=\binom{18 i}{i} \in \mathcal{I}_{m}[P]$. Consider the pushout of the conflation $0 \rightarrow\binom{U_{1}}{L_{1}} \rightarrow\binom{D_{2}}{C_{2}} \rightarrow\binom{P \otimes M_{2}}{M_{2}} \rightarrow 0$ along the morphism \mathfrak{j}, then we have the following commutative exact diagram

Due to $\dot{\text { i }} \in \mathcal{I}_{m}[P]$, we obtain $\operatorname{Ext}(\dot{i}, \mathfrak{j})=0$ which implies $\operatorname{Ext}(i, j)=0$. That is $j \in{ }^{\perp} \mathcal{I}=\mathcal{J}$, as required. Thus, we have ($\left.\mathcal{I}_{m}[P], \mathcal{J}[P]\right)$ is an ideal cotorsion pair in $R[P]$-Mod.

Finally, we need to show that $\left(\mathcal{I}_{m}[P], \mathcal{J}[P]\right)$ is complete. Let $\binom{V_{2}}{M_{2}}$ be an object in $R[P]$-Mod. As $(\mathcal{I}, \mathcal{J})$ is complete, M_{2} has a special \mathcal{I}-precover, i.e. we have the following commutative diagram

with $c_{3} \in \mathcal{I}$ and $j \in \mathcal{J}$. As the about proof, we have the following exact commutative diagram with u_{1} the kernel of $\left(\theta_{2}\left(1 \otimes c_{3}\right), 1\right), \mathbb{C}=\binom{\left(\theta_{2}\left(1 \otimes c_{3}\right), 1\right)}{c_{3}}$ and $\mathfrak{j}=\binom{1}{j}$.

Clearly, $\mathbb{C} \in \mathcal{I}_{m}[P], \dot{j} \in \mathcal{J}[P]$. Therefore, $\binom{\left(P \otimes C_{3}\right) \oplus V_{2}}{C_{2}} \xrightarrow{\mathscr{C}}\binom{\left(P \otimes C_{3}\right) \oplus V_{2}}{C_{3}}$ is a special \mathcal{I}-precover. In conclusion, ($\left.\mathcal{I}_{m}[P], \mathcal{J}[P]\right)$ is a complete ideal cotorsion pair.

The following example shows that $(\mathcal{I}[P], \mathcal{J}[P])$ is not an ideal cotorsion pair in general.
Example 3.4. Let $k[k]$ be the one point extension of k by k with k is a field, \mathcal{H} denotes the class of all morphism in k-Mod. Clearly, $(\mathcal{H}, \mathcal{H})$ is a unique ideal cotorsion pair in k-Mod, but the pair $(\mathcal{H}[k], \mathcal{H}[k])$ is not an ideal cotorsion pair in $k[k]$-Mod. In fact, $1_{\binom{0}{k}}$ in $\mathcal{H}[k]$, but there doesn't exist $f:\binom{0}{k} \rightarrow\binom{k}{k}$, such that the following diagram commutes

Thus $1_{\binom{0}{k}}$ is not a projective morphism, and hence $\mathcal{H}[k] \neq{ }^{\perp}(\mathcal{H}[k])$.
Corollary 3.5. Let $(\mathcal{F}, \mathcal{C})$ be a complete cotorsion pair in R-Mod. Then we have the following equation in $R[P]$-Mod

$$
\left(\mathcal{I}\left(\mathcal{F}_{m}[P]\right), \mathcal{I}(\mathcal{C}[P])\right)=\left(\mathcal{I}(\mathcal{F})_{m}[P], \mathcal{I}(\mathcal{C})[P]\right)
$$

Proof.By [10, Theorem 1.1], $\left(\mathcal{F}_{m}[P], \mathcal{C}[P]\right)$ is a complete cotorsion pair. Then $\left(\mathcal{I}\left(\mathcal{F}_{m}[P]\right), \mathcal{I}(\mathcal{C}[P])\right)$ is an ideal cotorsion pair by $[6$, Theorem 28].

Let $\dot{\mathrm{i}}=\binom{i_{k}}{i}:\binom{V_{1}}{M_{1}} \rightarrow\binom{V_{2}}{M_{2}} \in \mathcal{I}\left(\mathcal{F}_{m}[P]\right)$. Then in factors through by $\binom{U}{F}_{\theta}$ which belongs to $\mathcal{F}_{m}[P]$. Then we have the following commutative diagram

Due to $\binom{U}{F}_{\theta} \in \mathcal{F}_{m}[P], \theta$ is a monomorphism and $F \in \mathcal{F}$. Then $f \in \mathcal{I}(\mathcal{F})$. In further, $\binom{i_{k}}{i} \in \mathcal{I}(\mathcal{F})_{m}[P]$, i.e. $\mathcal{I}\left(\mathcal{F}_{m}[P]\right) \subset \mathcal{I}(\mathcal{F})_{m}[P]$.

Conversely, let i $=\binom{i_{k}}{i}:\binom{V_{1}}{M_{1}} \rightarrow\binom{V_{2}}{M_{2}}_{\theta_{2}} \in \mathcal{I}(\mathcal{F})_{m}[P]$, which means that we have following commutative diagram

where θ is a monomorphism and m_{2} is in $\mathcal{I}(\mathcal{F})$. Then, m_{2} can factor through by F with $F \in \mathcal{F}$. Denote the morphism from M to F and the morphism from F to M_{2} by m and f, i.e. $m_{2}=f m$. Denote by θ^{\prime}, v the pushout of $\theta, 1 \otimes m$. Since θ is a monomorphism, θ^{\prime} is monic i.e. $\binom{U}{F} \in \mathcal{F}_{m}[P]$. Since $\theta_{2}\left(1 \otimes m_{2}\right)=v_{2} \theta$, there is a morphism $u: U \rightarrow V_{2}$ such that the following diagram commutative

Hence i factors through by $\binom{U}{F}$. It follows it $\in \mathcal{I}\left(\mathcal{F}_{m}[P]\right)$, i.e. $\mathcal{I}(\mathcal{F})_{m}[P] \subset \mathcal{I}\left(\mathcal{F}_{m}[P]\right)$. Thus, $\mathcal{I}(\mathcal{F})_{m}[P]=\mathcal{I}\left(\mathcal{F}_{m}[P]\right)$.

$\S 4$ The proof of Theorem 1.2

Let i and j be morphisms in \mathcal{A}. The concept of $i * j$ is introduced by ME-extension $j \rightarrow i * j \rightarrow i$. To prove the Theorem 1.2, we need the following crucial result.

Proposition 4.1. Let \mathcal{I} and \mathcal{J} be ideals. Then $\mathcal{I}[P] \mathcal{J}[P]=(\mathcal{I} \mathcal{J})[P]$ and $\mathcal{I}[P] \diamond \mathcal{J}[P]=$ $(\mathcal{I} \diamond \mathcal{J})[P]$.

Proof. At first, we claim that $\mathcal{I}[P] \mathcal{J}[P]=(\mathcal{I} \mathcal{J})[P]$. For any ij $\in \mathcal{I}[P] \mathcal{J}[P]$, i.e.

$$
\binom{V_{1}}{M_{1}} \xrightarrow{\dot{\mathrm{j}}}\binom{V_{2}}{M_{2}} \xrightarrow{\dot{\mathrm{i}}}\binom{V_{3}}{M_{3}}
$$

with $\dot{\text { i }} \in \mathcal{I}[P]$ and $\mathfrak{j} \in \mathcal{J}[P]$, which means that there is the following diagram

Since i $\in \mathcal{I}[P]$ and $\dot{j} \in \mathcal{J}[P], i$ is in \mathcal{I} and j is in \mathcal{J}. Therefore, $i j$ is in $\mathcal{I} \mathcal{J}$. Hence, we have ij $\in(\mathcal{I} \mathcal{J})[P]$, which means $\mathcal{I}[P] \mathcal{J}[P] \subset(\mathcal{I} \mathcal{J})[P]$.

Next, for any $\binom{m_{k}}{m} \in(\mathcal{I} \mathcal{J})[P]$, we get the following commutative diagram

with $m \in \mathcal{I} \mathcal{J}$. Then we have $m=i j$ where $i \in \mathcal{I}$ and $j \in \mathcal{J}$, i.e. we obtain the following commutative diagram

Due to $\binom{m_{k}}{j} \in \mathcal{J}[P]$ and $\binom{1_{V_{3}}}{i} \in \mathcal{I}[P]$, we have $\binom{m_{k}}{m}=\binom{1_{V_{3}}}{i}\binom{m_{k}}{j} \in \mathcal{I}[P] \mathcal{J}[P]$ which means $(\mathcal{I} \mathcal{J})[P] \subset \mathcal{I}[P] \mathcal{J}[P]$. Therefore, we come to the conclusion that $(\mathcal{I} \mathcal{J})[P]=\mathcal{I}[P] \mathcal{J}[P]$.

In sequel, we will show that $\mathcal{I}[P] \diamond \mathcal{J}[P]=(\mathcal{I} \diamond \mathcal{J})[P]$. For any a $(\dot{\mathrm{i}} * \mathfrak{j}) \mathrm{b}=\binom{a_{k}}{a}\left(\binom{i_{k}}{i} *\binom{j_{k}}{j}\right)\binom{b_{k}}{b}$ in $\mathcal{I}[P] \diamond \mathcal{J}[P]$ where $\dot{j} \in \mathcal{J}[P]$ and i $\in \mathcal{I}[P]$, there is the following commutative diagram.

Since $0 \rightarrow j \rightarrow i * j \rightarrow i \rightarrow 0$ is an exact sequence, we have $a(i * j) b \in \mathcal{I} \diamond \mathcal{J}$. It follows that $\mathrm{a}(\mathrm{i} * \mathfrak{j}) \mathrm{b}$ in $(\mathcal{I} \diamond \mathcal{J})[P]$ which implies $\mathcal{I}[P] \diamond \mathcal{J}[P] \subset(\mathcal{I} \diamond \mathcal{J})[P]$.

Next, assume that for any $\binom{c}{a(i * j) b} \in(\mathcal{I} \diamond \mathcal{J})[P]$, where $i * j \in \mathcal{I} \diamond \mathcal{J}$, i.e. there is an exact sequence

$$
0 \longrightarrow j \xrightarrow{\substack{\bar{\alpha}_{1}=\left(\begin{array}{c}
\alpha_{1}^{\prime} \\
\alpha_{1}
\end{array}\right)} * j \xrightarrow{\substack{\bar{\alpha}_{3}=\left(\begin{array}{c}
\alpha_{3}^{\prime} \\
\alpha_{3}
\end{array}\right)}} i \longrightarrow 0}
$$

Then we have the following commutative diagram

There are morphisms

$$
\begin{aligned}
& \varphi=\theta_{2}^{\prime}(1 \otimes a)(1 \otimes(i * j)): P \otimes M_{0} \rightarrow V_{2}^{\prime} \\
& \varphi^{\prime}=\theta_{2}^{\prime}(1 \otimes a): P \otimes M_{0}^{\prime} \rightarrow V_{2}^{\prime}
\end{aligned}
$$

From this construction, we can get the following commutative diagram

$\operatorname{Denote}\binom{\varphi^{\prime}}{\varphi}$ by $\bar{\varphi}$. Therefore, there is a diagram as follows

Denoted by $\bar{\varphi}^{\prime}, \bar{\alpha}_{3}^{\prime}$ and the pushout of $\bar{\varphi}, 1 \otimes \bar{\alpha}_{3}$. Let j_{k} be the kernel of $\bar{\varphi}^{\prime}$, and then we have the following commutative diagram

with $\bar{\theta}: 1 \otimes j \rightarrow j_{k}$ induced. Due to $j \in \mathcal{J}$ and $i \in \mathcal{I}$, $\binom{j_{k}}{j}$ is in $\mathcal{J}[P]$ and $\binom{i_{k}}{i}$ is in $\mathcal{I}[P]$. Hence

$$
\binom{c}{a(i * j) b}=\binom{1_{V^{\prime}}}{a^{2}}\left(\binom{i_{k}}{i} *\binom{j_{k}}{j}\right)\binom{c}{b} \in \mathcal{I}[P] \diamond \mathcal{J}[P]
$$

So, $\mathcal{I}[P] \diamond \mathcal{J}[P] \subset(\mathcal{I} \diamond \mathcal{J})[P]$ and the conclusion $\mathcal{I}[P] \diamond \mathcal{J}[P]=(\mathcal{I} \diamond \mathcal{J})[P]$ can be reached finally.

Lemma 4.2. $\left(\mathcal{I}, \mathcal{I}^{\perp}\right)$ is a complete cotorsion pair if and only if \mathcal{I} is a special precovering ideal.
Lemma 4.3. Let $\left(\mathcal{I}, \mathcal{I}^{\perp}\right)$ and $\left(\mathcal{J}, \mathcal{J}^{\perp}\right)$ be complete cotorsion pairs. Then, $\left(\mathcal{I} \mathcal{J}, \mathcal{J}^{\perp} \diamond \mathcal{I}^{\perp}\right)$ and $\left(\mathcal{I} \diamond \mathcal{J}, \mathcal{J}^{\perp} \mathcal{I}^{\perp}\right)$ are complete cotorsion pairs.

Proof of Theorem 1.2. Since \mathcal{I}, \mathcal{J} are special precovering ideals, $\left(\mathcal{I}, \mathcal{I}^{\perp}\right)$ and $\left(\mathcal{J}, \mathcal{J}^{\perp}\right)$ are complete ideal cotorsion pairs by Lemma 4.2.

Then, according to Theorem 1.1, $\left(\mathcal{I}_{m}[P], \mathcal{I}^{\perp}[P]\right)$ and $\left(\mathcal{J}_{m}[P], \mathcal{J}^{\perp}[P]\right)$ are complete ideal cotorsion pairs. Hence, $\left(\mathcal{I}_{m}[P] \mathcal{J}_{m}[P], \mathcal{J}^{\perp}[P] \diamond \mathcal{I}^{\perp}[P]\right)$ and $\left(\mathcal{I}_{m}[P] \diamond \mathcal{J}_{m}[P], \mathcal{J}^{\perp}[P] \mathcal{I}^{\perp}[P]\right)$ are complete ideal cotorsion pairs by Lemma 4.3.

On the other hand, $\left(\mathcal{I} \mathcal{J}, \mathcal{J}^{\perp} \diamond \mathcal{I}^{\perp}\right)$ and $\left(\mathcal{I} \diamond \mathcal{J}, \mathcal{J}^{\perp} \mathcal{I}^{\perp}\right)$ are complete cotorsion pairs. Therefore, $\left((\mathcal{I} \mathcal{J})_{m}[P],\left(\mathcal{J}^{\perp} \diamond \mathcal{I}^{\perp}\right)[P]\right)$ and $\left((\mathcal{I} \diamond \mathcal{J})_{m}[P],\left(\mathcal{J}^{\perp} \mathcal{I}^{\perp}\right)[P]\right)$ are complete cotorsion pairs. By Proposition 4.1, we have

$$
\mathcal{I}_{m}[P] \mathcal{J}_{m}[P]=^{\perp}\left(\mathcal{J}^{\perp}[P] \diamond \mathcal{I}^{\perp}[P]\right)=^{\perp}\left(\left(\mathcal{J}^{\perp} \diamond \mathcal{I}^{\perp}\right)[P]\right)(\mathcal{I} \mathcal{J})_{m}[P]
$$

and

$$
\mathcal{I}_{m}[P] \diamond \mathcal{J}_{m}[P]={ }^{\perp}\left(\mathcal{J}^{\perp}[P] \mathcal{I}^{\perp}[P]\right)={ }^{\perp}\left(\left(\mathcal{J}^{\perp} \mathcal{I}^{\perp}\right)[P]\right)=(\mathcal{I} \diamond \mathcal{J})_{m}[P]
$$

Acknowledgement

The authors are grateful to the referees for reading the paper carefully and for many suggestions on mathematics and English expressions.

References

[1] J Asadollahi, S Sadeghi. Higher ideal approximation theory, preprint, 2020, arXiv:2010.13203.
[2] S Breaz, G C Modoi. Ideal cotorsion pair theories in triangulated categories, J Algebra, 2021, 567: 475-532.
[3] T H Bühler. Excat catergories, Expositions Math, 2010, 28(1): 1-69.
[4] E E Enochs. Injective and flat covers, envelopes and resolvents, J Math, 1981, 39(3): 189209.
[5] E E Enochs, O M G Genda. Relative Homological Algebra, Walter de Gruyter Berlin New York, 2000.
[6] X H Fu, P A Guil Asensio, I Herzog, B Torrecillas. Ideal approximation theory, Adv Math, 2013, 244: 750-790.
[7] X H Fu, I Herzog. Powers of the phantom ideal, Proc London Math Soc, 2016, 3(112): 714-752.
[8] X H Fu, I Herzog, J S Hu, H Y Zhu. Lattice theoretic properties of approximation ideals, J Pure Appl Algebra, 2022, 226(7): 106986.
[9] I Herzog. The phantom cover of a module, Adv Math, 2017, 215: 220-249.
[10] J S Hu, H Y Zhu. Special precovering classes in-comma category, Sci China Math, 2021, https://doi.org/10.1007/s11425-020-1790-9.
[11] Y N Lin, Z Q Lin. One-point extension and recollement, Sci China Math, 2008, 51(3): 376382.
[12] F Ozbek. Precovering and preenveloping ideals, Comm Algebra, 2015, 43: 2568-2584.
[13] L L Tan, D G Wang, T W Zhao. Ideal approximation in n-angulated category, 2020, arXiv:2012.03398v1.

College of Science, Zhejiang University of Technology, Hangzhou 310023, China.
Email: hyzhu@zjut.edu.cn, benjundu@sina.com, qikaiwang98@gmail.com

[^0]: Received: 2021-02-05. Revised: 2021-08-19.
 MR Subject Classification: 18E10, 18G25, 16S70.
 Keywords: one point extension, cotorsion pair, ME-conflation.
 Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-022-4375-z.
 Supported by Zhejiang Provincial Natural Science Foundation of China(LY18A010032).
 *Corresponding author.

