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Ideal cotorsion pairs over one point extensions

ZHU Hai-yan DU Ben-jun∗ WANG Qi-kai

Abstract. Let R[P ] be the one point extension of a k-algebra R by a projective R-module

P . We prove that the extension of a complete ideal cotorsion pair in R-Mod is still a complete

ideal cotorsion pair in R[P ]-Mod. As an application, it is obtainable that the operation (−)m[P ]

satisfies the so-called distributive law relating the operations of products and extensions of ideals

under appropriate conditions.

§1 Introduction

In the classical approximation theory, the object A ∈ A is approximated by a subclass of
A. To replace objects and subclasses with morphisms and ideals, Fu, Asensio, Herzog and
Torrecillas [6] introduced ideal cotorsion pairs and the ideal approximation theory. Meantime,
they established the connection between special precovering ideals and phantom morphisms
in exact categories. Furthermore, Fu and Herzog obtained ideal versions of Salce’s Lemma,
Ghost Lemma and Wakamatsu’s Lemma to develop the ideal approximation theory and gave
an interesting application in [7].

As a generalization of the classical approximation theory, the ideal approximation theory
has attracted more attention. Breaz and Modoi [2] extended the ideal approximation theory to
triangulated categories. Asadollahi and Sadeghi investigated so-called “ higher ideal approxi-
mation theory” in [1]. Tan, Wang and Zhao extended the ideal approximation theory associated
to almost n-exact structures in extension closed subcategories of n-angulated categories in [13].
Furthermore, the theory of ideal approximations was developed in [12].

The primary task of this article is to extend the ideal cotorsion pair from a k-algebra R to
its one point extension. More precisely, if R[P ] is the one point extension of an algebra R by a
projective R-module P , we study how to construct an ideal cotorsion pair in R[P ]-Mod from an
ideal cotorsion pair in R-Mod in a natural way. For an ideal I in R-Mod, I[P ] is the collection
of all morphisms i =

(
ik
i

)
:
(
V1

M1

)
θ1

→
(
V2

M2

)
θ2

with i ∈ I. Unfortunately, for an ideal cotorsion

pair (I,J ) in R-Mod, (I[P ],J [P ]) is not an ideal cotorsion pair (see Example 3.4). Motivated
by the result in [10], we introduce the concept of Im[P ] (see 2.5 for details).

Now, our main result can be stated as follows.
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Theorem 1.1. Let R[P ] be the one point extension of a k-algebra R, and let (I,J ) be a
complete ideal cotorsion pair in R-Mod. Then (Im[P ],J [P ]) is a complete ideal cotorsion pair
in R[P ]-Mod.

Let (A; E) be an exact category, then the category Arr(A) has the natural exact structure
whose conflations are the morphisms of conflations in (A; E). We denote this exact category by
(Arr(A);Arr(E)). Fu and Herzog in [7] introduced the concept of ME-conflation (see diagram
(2.1)) and proved the ME substructure (Arr(A),ME) ⊆ (Arr(A),Arr(E)) is also exact. More-
over, they introduced the concept of an ME-extension i ∗ j of morphisms and then, if I and J
be ideals of A, the concept of an extension of ideals I ⋄J = ⟨i∗ j|i ∈ I, j ∈ J ⟩. Then, Theorem
1.1 leads to interesting properties of the operation (−)m[P ], which we call the distributive law,
that is:

Theorem 1.2. Let R[P ] be the one point extension of a k-algebra R. For special precovering
ideals I and J , we have the following properties (distributive law):

(1) (IJ )m[P ] = Im[P ]Jm[P ];

(2) (I ⋄ J )m[P ] = Im[P ] ⋄ Jm[P ].

The contents of this paper is arranged as follows. In section 2, the definitions and properties
required in ideal approximation theory are first introduced. In section 3, we construct an
extension Im[P ] of an ideal I, we then give the proof of Theorem 1.1. In section 4, we complete
the proof of Theorem 1.2 by applying Theorem 1.1.

§2 Preliminaries

Throughout this paper, A is an abelian category and k is a field.

2.1. Ideals. An ideal I of A is a collection of morphisms satisfying:

(1) if f : A → B and g : A → B are two maps in I, then f ± g ∈ I;

(2) if i : A → B is a map in I, then for any maps f : X → A and g : B → Y , the composition
gif : X → Y is still in I.

Equivalently, I is an additive subfunctor of Hom: Aop×A → Ab. The ideal I associates to
every pair A and B of objects in A a subgroup I(A,B)⊆Hom(A,B) so that if f : X → A and g :
B → Y are morphisms in A, then the natural transformation Hom(f, g) :Hom(A,B) →Hom(X,
Y ) that assigns to i ∈Hom(A,B).

Hom(f, g)(i) : X
f−→ A

i−→ B
g−→ Y

respects I. This is an additive subcategory of A, for every additive subcategory X ⊆ A gives
rise to the ideal I(X ) generated by morphisms of the form 1X , where X ∈ X ; this is the ideal
of morphisms that factor through an object in X . (see [6]).

2.2. Homotopy. Consider an exact category (A; E) consisting of an additive category A, to-
gether with a distinguished collection E of composable pairs of morphism (i, j) such that i is
the kernel of j and j the cokernel of i. Such a pair is depicted by

η : B
i−→ C

j−→ A
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and is called a conflation. The kernel i : B → C that appears in the conflation η is an inflation,
the cokernel j : C → A is a deflation. The arrow category Arr(A) of A is an abelian category
whose objects a : A0 → A1 are the morphisms (arrows) of A, and f : a → b in Arr(A) is given
by a pair of morphisms f = (f0, f1) of A for which the diagram

A0
f0 //

a

��

B0

b

��
A1

f1 // B1

commutes. And then, if (A; E) is an exact category, then so (Arr(A);Arr(E)) [3, Corollary 2.10].

A conflation (i.e. exact sequence) ξ : a → b → c in Arr(E) is null-homotopic if there are
maps α : C0 → B1 and β : B0 → A1 such that b = kβ + αj.

A0
i //

a

��

B0
j //

b

��β~~||
||
||
||

C0

c

��
α

~~||
||
||
||

A1
k

// B1
l

// C1

In fact, we have the following well-known result:

Lemma 2.1. Given the following conflation ξ : a → b → c

A0
i //

a

��

B0
j //

b

��

C0

c

��
A1

k
// B1

l
// C1

It is then clear that the following are equivalent:

(1) the conflation ξ is null-homotopic;

(2) there exists α : C0 → B1, such that c = lα;

(3) there exists β : B0 → A1, such that βi = a.

Proof . For completeness of the paper, we give the proof of (2) ⇒ (1). Assume that c = lα,
and so lαj = jc = lb. Then we have l(b − αj) = 0. By the universal property of the kernel,
there exist β : B0 → A1, such that kβ = b− αj.

B0

b−αj

��

β

~~||
||
||
||

A1
k

// B1
l

// C1

It follows that b = αj + kβ.

�
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A conflation ξ : j → a → i in Arr(E) is called ME if there is a factorization

Ξ0 : J0 // A0
//

a1

��

I0

i

��
Ξ : J0 //

j

��

A //

a2

��

I1 (2.1)

Ξ1 : J1 // A1
// I1

of ξ, where the middle row is a conflation in (A; E). Denote by ME ⊆ Arr(E) the collection of
ME conflations in Arr(E).
2.3. Ext-orthogonality. Given objects A and B of A, the isomorphism classes of conflations
form an abelian group Ext(A,B) with respect to the Baer sum operation. Furthermore, we
have the additive bifunctor Ext:Aop ×A → Ab.

A pair (i, j) of morphisms inA is Ext-orthogonal, defined Ext(i, j) = 0 if every ME-extension
ξ : j → a → i in Arr(A) is null homotopic. This means that there are morphism h : A0 → J1
and g : I0 → A1 as in the diagram

Ξ0 : J0

j

��

// A0
e0 //

a

��h~~}}
}}
}}
}}

I0

i

��
g

~~}}
}}
}}
}

Ξ1 : J1
m1 // A1

// I1
satisfying a = m1h+ ge0.

Proposition 2.2. [7, Proposiotion 5.2] Let i : X → A and j : B → Y be two morphisms in
A. The pair (i, j) is said to be Ext-orthogonal if Ext(i, j):Ext(A,B) → Ext(X,Y ) is a zero
morphism.

2.4. Special precover. Let I ⊆ A be an ideal and A be an object of A. An I-precover of A is
a morphism i ∈ I, i : X → A, such that any other morphism i′ : X ′ → A in I factors though i,

X ′

i′

��~~|
|
|
|

X
i

// A

In further, an I-precover i : X → A is special if it is obtained as the pushout of a conflation
η along a morphism j : Y → B in I⊥ := { j | Ext(i, j)=0, ∀i ∈ I}:

η : Y //

j

��

Z

��

// A

B // X
i // A

The ideal I is called (special) precovering if every object A ∈ A has an (a special) I-precover
i : X → A. Dually, we can define (special) J -preenvelopes and (special) preenveloping classes.

A pair of ideals (I,J ) in A is called an ideal cotorsion pair if I⊥ = J and I = ⊥J with
I⊥ = { j | Ext(i, j)=0, ∀i ∈ I} and ⊥J = { i | Ext(i, j)=0, ∀j ∈ J }. Moreover, an ideal
cotorsion pair (I,J ) is complete if every object in A has a special J -preenvelope and a special
I-precover(see [6]).
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2.5. One point extension[11]. Let R be a k-algebra and P be a fixed projective right R-
module. We denote by R[P ] the one point extension of R by P , which the matrix algebra(
k P
0 R

)
with the ordinary matrix addition and the multiplication induced by the module struc-

ture of P . More precisely, the category R[P ]-Mod can be described as follows: the objects are
of form

(
V
M

)
θ
where M ∈ R-Mod, V ∈ k-Mod and θ : P ⊗RM → V ; the morphisms are of form(

g
f

)
:
(
V1

M1

)
θ1

→
(
V2

M2

)
θ2
, such that the following diagram is commutative

P ⊗M1
1⊗f //

θ1

��

P ⊗M2

θ2

��
V1

g // V2

For a class C ofR-Mod, C[P ] denotes the class of all objects
(
V
C

)
θ
ofR[P ]-Mod with C ∈ C and

Cm[P ] is the subclass of C[P ] consisting of all objects
(
V
C

)
θ
with C ∈ C and θ a monomorphism.

In particular, R-Mod[P]=R[P ]-Mod.
For an ideal I of R-Mod, I[P ] denotes the class in R[P ]-Mod of all morphisms i =(

ik
i

)
:
(
V1

M1

)
θ1

→
(
V2

M2

)
θ2

with i ∈ I. It is easy to check that I[P ] is an ideal of R[P ]-Mod. Forther-

more, Im[P ] denotes the ideal ofR[P ]-Mod generated by all morphisms i =
(
ik
i

)
:
(
V1

M1

)
θ1

→
(
V2

M2

)
θ2

with i ∈ I and θ1 a monomorphism.

§3 The proof of Theorem 1.1

Lemma 3.1. If Ext(i, j)=0 with i : I1 → I2 and j : J0 → J1 in A, then Ext(fig, j)=0 for
every morphism f and g.

Proof . Let f : I2 → F and g : I0 → I1 be morphisms and ξ′ : fig → a → j is a conflation. By
[6, Proposition 3], we have

Ext(fig, j) = Ext(fig, J1)Ext(F, j)

= Ext(g, J1)Ext(fi, J1)Ext(F, j)

= Ext(g, J1)Ext(I1, j)Ext(fi, J0)

= Ext(g, J1)Ext(I1, j)Ext(i, J0)Ext(f, J0)

= Ext(g, J1)Ext(i, j)Ext(f, J0)

= 0

Thus, we get Ext(fig, j)=0, as desired. �
Suppose that a morphism of conflations is given, as in the commutative diagram

A
j //

g

��

B //

k
��

C

f

��
Y

h
// Z

l
// X

Then the morphism k : B → Z is called a coextension of f by A. Next, we proceed as in the
dual proof of [6,Proposition 9], we get the following result:

Lemma 3.2. If M is a collection of morphism in A, then ⊥M is an ideal closed under coex-
tension by projective objects.
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Lemma 3.3. Let A be an abelian category with enough projective objects and suppose that J is
a special preenveloping class of A. Given an object A ∈ A, consider a conflation η′:K → P → A
where P is a projective object and take a pushout

η′ : K //

j

��

P //

��

A

η : C // X
i

// A

along a special J -preenvelope j : K → C. The morphism i : X → A is a special ⊥J -precover
of A.

Proof .Since j ∈ J ⊆ [⊥J ]⊥, it is enough to prove i ∈ ⊥J by [6, Proposition 11]. Then
i : X → A is a special ⊥J -precover of A. The special J -preenvelope j : K → C arises from a
pullback along a morphism g : W → Y in ⊥J as in the commutative diagram

Let h : C → Z, then the pushout of η′ along jh is also the pushout along h of the conflation
η : C → X → A. Thus we obtain the commutative diagram

where all rows and columns are conflations. Since g ∈ ⊥J and k : X → L is a coextension of
g : W → Y by the projective object P , we have k ∈ ⊥J and i = fk ∈ ⊥J .

�
We are now in a position to prove Theorem 1.1.



ZHU Hai-yan, et al. Ideal cotorsion pairs over one point extensions 219

Proof of Theorem 1.1 Firstly, we show that Ext(Im[P ],J [P ])=0. By Lemma 3.1, it is
sufficient to prove that Ext(i, j) = 0, where i =

(
ik
i

)
:
(
V
M

)
θ
→

(
V1

M1

)
θ1

with θ a monomorphism,

i ∈ I and j =
(
jk
j

)
∈ J [P ]. Consider the ME-conflation in R[P ]-Mod

0 //
(
U1

L1

)
//
(
D1

C1

)
//

��

(
V
M

)
θ

i

��

// 0

0 //
(
U1

L1

)
j

��

//
(
D2

C2

)
//

��

(
V1

M1

)
// 0

0 //
(
U2

L2

) (u2
l2
)
//
(
D3

C3

)
d

(d3c3) //
(
V1

M1

)
θ1

// 0

By Lemma 2.1, there is a morphism f : M → C3 in R-Mod, such that c3f = i since i ∈ I ,
j ∈ J . Then we consider the ME-conflation in R-Mod

0 // L1
// C1

//

��

M

��
f

��
















// 0

0 // L1

��

// C2
//

��

M1
// 0

0 // L2
// C3

c3 // M1
// 0

Note that d3 is an epimorphism in k-Mod, then there is a morphism h : V → D3 such that
d3h = ik. It follows that

d3d(1⊗f) = θ1(1⊗c3)(1⊗f) = θ1(1⊗i) = ikθ = d3hθ

i.e. d3[d(1⊗f) − hθ] = 0. By the property of kernel, there is a morphism g : P⊗M → U2 ,
such that d(1⊗f) − hθ = u2g. In addition, since θ is a monomorphism in k-Mod, there is a
morphism e : V → U2, such that g = eθ. Let t = u2e+ h. It is easy to find that

d3t = d3u2e+ d3h = ik
and

tθ = u2eθ + hθ = u2g + hθ = d(1⊗f)
which means that we have the following commutative diagram

Therefore, Ext(i, j) = 0 holds, as desired.
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In sequel, we will prove that ⊥(J [P ]) ⊂ Im[P ]. Let i =
(
ik
i

)
:
(
V1

M1

)
θ1

→
(
V2

M2

)
θ2

∈ ⊥(J [P ]).

Since (I,J ) is a complete ideal cotorsion pair, there is a special I-precover as follows, with
c3 ∈ I, j ∈ J

0 // L1

j

��

l1 // C2
c2 //

c

��

M2
// 0

0 // L2
l2 // C3

c3 // M2
// 0

Let
(
1⊗c
0

)
: P⊗C2 → (P⊗C3) ⊕ V2 and (θ2(1⊗c3), 1) : (P⊗C3) ⊕ V2 → V2. It is easy to find

(θ2(1⊗c3), 1) is an epimorphism. Let (U1, u1) be the kernel of (θ2(1⊗c3), 1). Thus, the following
exact diagram commutes

where l, lj are induced naturally. Consider the pullback of the conflation

0 →
(
U1

L1

)
→

(
(P ⊗ C3)⊕ V2

C2

)
→

(
V2

M2

)
→ 0

along the morphism i, there is the following commutative exact diagram

0 //
(
U1

L1

)
//
(
D1

C1

)
//

��

(
V1

M1

)
θ

i

��

// 0

0 //
(
U1

L1

)
j

��

//
(
(P⊗C3)⊕V2

C2

)
//

��

(
V2

M2

)
// 0

0 //
(
U1

L2

)
//
(
(P⊗C3)⊕V2

C3

)((θ2(1⊗c3),1)
c3

)
//
(
V2

M2

)
θ1

// 0

Note that j =
(
1
j

)
∈ J [P ] since j ∈ J and i ∈⊥ (J [P ]), we have Ext(i, j) = 0. By Lemma 2.1,

we have following commutative diagram

Since
(
1
0

)
is a monomorphism and c3 ∈ I, i ∈ Im[P ], i.e. ⊥(J [P ]) ⊂ Im[P ].

Next, we claim that (Im[P ])⊥ ⊂ J [P ]. Let j =
(
jk
j

)
:
(
U1

L1

)
ϕ1

→
(
U2

L2

)
ϕ2

∈ (Im[P ])⊥, it

suffices to prove that j ∈ J . For every ME-conflation with i : M1 → M2 in I
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In addition, consider the pushout of ϕ1, 1⊗ l1 and ϕ1, 1⊗ l2, we have following commutative
diagram

Since u2 ◦ 1U1 ◦ ϕ1 = d ◦ (1⊗c) ◦ (1⊗l1), there is a morphism from D1 to D2 making the
following diagram commutative by the universal property of the pushout

Since i ∈ I and 1P⊗M1 is a monomorphism, i =
(
1⊗i
i

)
∈ Im[P ]. Consider the pushout of the

conflation 0 →
(
U1

L1

)
→

(
D2

C2

)
→

(
P⊗M2

M2

)
→ 0 along the morphism j, then we have the following

commutative exact diagram

Due to i ∈ Im[P ], we obtain Ext(i, j) = 0 which implies Ext(i, j) = 0. That is j ∈ ⊥I = J , as
required. Thus, we have (Im[P ],J [P ]) is an ideal cotorsion pair in R[P ]-Mod.

Finally, we need to show that (Im[P ],J [P ]) is complete. Let
(
V2

M2

)
be an object in R[P ]-Mod.

As (I,J ) is complete, M2 has a special I-precover, i.e. we have the following commutative
diagram
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with c3 ∈ I and j ∈ J . As the about proof, we have the following exact commutative diagram
with u1 the kernel of (θ2(1⊗c3), 1), c =

(
(θ2(1⊗c3),1)

c3

)
and j =

(
1
j

)
.

Clearly, c ∈ Im[P ], j ∈ J [P ]. Therefore,
(
(P⊗C3)⊕V2

C2

) c→
(
(P⊗C3)⊕V2

C3

)
is a special I-precover.

In conclusion, (Im[P ],J [P ]) is a complete ideal cotorsion pair.
�

The following example shows that (I[P ],J [P ]) is not an ideal cotorsion pair in general.

Example 3.4. Let k[k] be the one point extension of k by k with k is a field, H denotes the
class of all morphism in k-Mod. Clearly, (H,H) is a unique ideal cotorsion pair in k-Mod, but
the pair (H[k],H[k]) is not an ideal cotorsion pair in k[k]-Mod. In fact, 1(0k)

in H[k], but there

doesn’t exist f :
(
0
k

)
→

(
k
k

)
, such that the following diagram commutes(

0
k

)
1

f

��~
~
~
~

(
k
k

)
(01)

//
(
0
k

)
Thus 1(0k)

is not a projective morphism, and hence H[k] ̸= ⊥(H[k]).

Corollary 3.5. Let (F , C) be a complete cotorsion pair in R-Mod. Then we have the following
equation in R[P ]-Mod

(I(Fm[P ]), I(C[P ])) = (I(F)m[P ], I(C)[P ]).

P roof.By [10, Theorem 1.1], (Fm[P ], C[P ]) is a complete cotorsion pair. Then (I(Fm[P ]), I(C[P ]))
is an ideal cotorsion pair by [6, Theorem 28].

Let i =
(
ik
i

)
:
(
V1

M1

)
→

(
V2

M2

)
∈ I(Fm[P ]). Then i factors through by

(
U
F

)
θ
which belongs to

Fm[P ]. Then we have the following commutative diagram
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Due to
(
U
F

)
θ
∈ Fm[P ], θ is a monomorphism and F ∈ F . Then f ∈ I(F). In further,(

ik
i

)
∈ I(F)m[P ], i.e. I(Fm[P ]) ⊂ I(F)m[P ].

Conversely, let i =
(
ik
i

)
:
(
V1

M1

)
→

(
V2

M2

)
θ2

∈ I(F)m[P ], which means that we have following

commutative diagram

where θ is a monomorphism and m2 is in I(F). Then, m2 can factor through by F with
F ∈ F . Denote the morphism from M to F and the morphism from F to M2 by m and f , i.e.
m2 = fm. Denote by θ′, v the pushout of θ, 1⊗m. Since θ is a monomorphism, θ′ is monic i.e.(
U
F

)
∈ Fm[P ]. Since θ2(1⊗m2) = v2θ, there is a morphism u : U → V2 such that the following

diagram commutative

Hence i factors through by
(
U
F

)
. It follows i ∈ I(Fm[P ]), i.e. I(F)m[P ] ⊂ I(Fm[P ]). Thus,

I(F)m[P ] = I(Fm[P ]).

�

§4 The proof of Theorem 1.2

Let i and j be morphisms in A. The concept of i ∗ j is introduced by ME-extension
j → i ∗ j → i. To prove the Theorem 1.2, we need the following crucial result.

Proposition 4.1. Let I and J be ideals. Then I[P ]J [P ] = (IJ )[P ] and I[P ] ⋄ J [P ] =
(I ⋄ J )[P ].

Proof. At first, we claim that I[P ]J [P ] = (IJ )[P ]. For any ij ∈ I[P ]J [P ], i.e.(
V1

M1

) j //
(
V2

M2

) i //
(
V3

M3

)
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with i ∈ I[P ] and j ∈ J [P ], which means that there is the following diagram

P⊗M1
1⊗j //

θ1

��

P⊗M2
1⊗i //

θ2

��

P⊗M3

θ3

��
V1

jk
// V2

ik
// V3

Since i ∈ I[P ] and j ∈ J [P ], i is in I and j is in J . Therefore, ij is in IJ . Hence, we have
ij ∈ (IJ )[P ], which means I[P ]J [P ] ⊂ (IJ )[P ].

Next, for any
(
mk

m

)
∈ (IJ )[P ] , we get the following commutative diagram

P ⊗M1
1⊗m //

θ1

��

P ⊗M3

θ3

��
V1

mk // V3

with m ∈ IJ . Then we have m = ij where i ∈ I and j ∈ J , i.e. we obtain the following
commutative diagram

P⊗M1
1⊗j //

θ1

��

P⊗M2
1⊗i //

θ3(1⊗i)

��

P⊗M3

θ3

��
V1 mk

// V3 V3

Due to
(
mk

j

)
∈ J [P ] and

(1V3
i

)
∈ I[P ], we have

(
mk

m

)
=

(1V3
i

)(
mk

j

)
∈ I[P ]J [P ] which means

(IJ )[P ] ⊂ I[P ]J [P ]. Therefore, we come to the conclusion that (IJ )[P ] = I[P ]J [P ].

In sequel, we will show that I[P ]⋄J [P ] = (I⋄J )[P ]. For any a(i∗j)b =
(
ak

a

)
(
(
ik
i

)
∗
(
jk
j

)
)
(
bk
b

)
in I[P ] ⋄ J [P ] where j ∈ J [P ] and i ∈ I[P ], there is the following commutative diagram.

Since 0 → j → i∗j → i → 0 is an exact sequence, we have a(i∗j)b ∈ I ⋄ J . It follows that
a(i ∗ j)b in (I ⋄ J )[P ] which implies I[P ] ⋄ J [P ] ⊂ (I ⋄ J )[P ].

Next, assume that for any
(

c
a(i∗j)b

)
∈ (I ⋄ J )[P ] , where i ∗ j ∈ I ⋄ J , i.e. there is an exact

sequence
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Then we have the following commutative diagram

There are morphisms

φ = θ′2(1⊗a)(1⊗(i∗j)) : P⊗M0 → V ′
2

φ′ = θ′2(1⊗a) : P⊗M ′
0 → V ′

2

From this construction, we can get the following commutative diagram

Denote
(
φ′

φ

)
by φ. Therefore, there is a diagram as follows
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Denoted by φ′, α′
3 and the pushout of φ, 1⊗α3 . Let jk be the kernel of φ′, and then we have

the following commutative diagram

with θ : 1⊗ j → jk induced. Due to j ∈ J and i ∈ I,
(
jk
j

)
is in J [P ] and

(
ik
i

)
is in I[P ]. Hence(

c
a(i∗j)b

)
=

(1V ′
2

a

)
(
(
ik
i

)
∗
(
jk
j

)
)
(
c
b

)
∈ I[P ] ⋄ J [P ]

So, I[P ]⋄J [P ] ⊂ (I ⋄J )[P ] and the conclusion I[P ]⋄J [P ] = (I ⋄J )[P ] can be reached finally.
�

Lemma 4.2. (I, I⊥) is a complete cotorsion pair if and only if I is a special precovering ideal.

Lemma 4.3. Let (I, I⊥) and (J ,J⊥) be complete cotorsion pairs. Then, (IJ ,J⊥ ⋄ I⊥) and
(I ⋄ J ,J⊥I⊥) are complete cotorsion pairs.

Proof of Theorem 1.2. Since I,J are special precovering ideals, (I, I⊥) and (J ,J⊥) are
complete ideal cotorsion pairs by Lemma 4.2.

Then, according to Theorem 1.1, (Im[P ], I⊥[P ]) and (Jm[P ],J⊥[P ]) are complete ideal
cotorsion pairs. Hence, (Im[P ]Jm[P ],J⊥[P ] ⋄ I⊥[P ]) and (Im[P ] ⋄ Jm[P ],J⊥[P ]I⊥[P ]) are
complete ideal cotorsion pairs by Lemma 4.3.

On the other hand, (IJ ,J⊥ ⋄ I⊥) and (I ⋄J ,J⊥I⊥) are complete cotorsion pairs. There-
fore, ((IJ )m[P ], (J⊥ ⋄I⊥)[P ]) and ((I ⋄J )m[P ], (J⊥I⊥)[P ]) are complete cotorsion pairs. By
Proposition 4.1 , we have

Im[P ]Jm[P ] = ⊥(J⊥[P ] ⋄ I⊥[P ]) = ⊥((J⊥ ⋄ I⊥)[P ])(IJ )m[P ]

and
Im[P ] ⋄ Jm[P ] = ⊥(J⊥[P ]I⊥[P ]) = ⊥((J⊥I⊥)[P ]) = (I ⋄ J )m[P ]

�
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