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Modified approximation and error estimation for King’s
type (p, q)-BBH operators

M. Mursaleen1,2,∗ Mohd. Ahasan2,3 Asif Khan2

Abstract. In this paper, the King’s type modification of (p, q)-Bleimann-Butzer and Hahn

operators is defined. Some results based on Korovkin’s approximation theorem for these new

operators are studied. With the help of modulus of continuity and the Lipschitz type maximal

functions, the rate of convergence for these new operators are obtained. It is shown that the

King’s type modification have better rate of convergence, flexibility than classical (p, q)-BBH

operators on some subintervals. Further, for comparisons of the operators, we presented some

graphical examples and the error estimation in the form of tables through MATLAB (R2015a)

§1 Introduction

In the year 1980, Bleimann-Butzer and Hahn [6] generalized the following Bernstein type
operators which approximate continuous functions on unbounded interval [0,∞).

Ln(f ;x) =
1

(1 + x)n

n∑
k=0

[
n
k

]
xkf

(
k

n− k + 1

)
, n ∈ N and x ∈ [0,∞). (1)

For detailed study, one can refer ([12], [15]).

In the field of approximation theory, first of all Lupaş used q-integers of the Bernstein poly-
nomials and after that Phillips gave another q-based generalization of these polynomials. In
2015, Mursaleen et al. firstly, used (p, q)-integers in this field and constructed (p, q)-analogue
of the classical Bernstein polynomials and studied the approximation properties of the opera-
tors. After that many researchers used (p, q)-integers for other operators and introduced their
approximation properties (see [1]–[3], [13], [14], [16], [17], [20]–[32]).

In the sequel, we recall basic definitions and some notations from post quantum calculus
[(p, q)-calculus].
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of continuity, Hölder inequality and Lipschitz functions.
Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-022-4105-6.
∗Corresponding author.



200 Appl. Math. J. Chinese Univ. Vol. 37, No. 2

For 0 < q < p ≤ 1 and non-negative integer j, j ∈ N, we have

[j]p,q =



pj−qj

p−q , if q ̸= p ̸= 1

jpj−1, if q = p ̸= 1

[j]q , if p = 1

j, if q = p = 1,

[j]p,q! =

 [j]p,q[j − 1]p,q · · · [1]p,q, j ∈ N

1, j = 0
and

(ax+ by)np,q =

n∑
j=0

p
(n−j)(n−j−1)

2 q
j(j−1)

2

[
n
j

]
p,q

an−jbjxn−jyj ,

(x+ y)np,q =
n∑

j=0

(pj−1x+ qj−1y). (2)

If we take y = 0 in (2), then

(x)jp,q = p
j(j−1)

2 xj .[
n
j

]
p,q

=
[n]p,q!

[j]p,q![n− j]p,q!
, 0 ≤ j ≤ n.

For more details, one can refer [11].
Let CB [0,∞) denote the set of all bounded and continuous functions defined on [0,∞) endowed
with the norm

∥ f ∥CB= sup
x≥0

|f(x)|,

and let ω be a modulus of continuity that satisfies:
(i) ω is a non-negative increasing function on the interval [0,∞).
(ii) ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2) and ω satisfy the following inequality

ω(rδ) ≤ rω(δ), for r ∈ N.
(iii) ω(δ) = 0, as δ → 0.
Let Hw be the set of all real valued functions on [0,∞) and Hw ⊆ CB [0,∞). For any u, v ∈
[0,∞), we have

|f(u)− f(v)| ≤ ω

(∣∣∣∣ u

1 + u
+

v

1 + v

∣∣∣∣) .

Gadjiev and Çakar [10] studied the properties of the operators An : Hw → CB [0,∞) and ob-
tained the following result.

Theorem 1.1. Let {An} be a sequence of positive linear operators An : Hw → CB[0,∞) and
satisfy

lim
n→∞

∥∥∥∥∥An

((
t

1 + t

)j

;x

)
−
(

x

1 + x

)j
∥∥∥∥∥
CB

= 0, j = 0, 1, 2.

Then
lim
n→∞

∥An(f ;x)− f(x)∥CB
= 0, for any f ∈ Hw.
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Mursaleen et al. [25] introduced the following (p, q)-BBH operators. For 0 < q < p ≤ 1 and
x ∈ [0,∞), we have

Lp,q
n (f ;x) =

1

lp,qn (x)

n∑
k=0

f

(
pn−k+1[k]p,q

[n− k + 1]p,qqk

)
q

k(k−1)
2 p

(n−k)(n−k−1)
2

[
n
k

]
p,q

xk, (3)

where f is defined on [0,∞) and lp,qn (x) =
n−1∏
k=0

(pk + qkx).

For the above operators (3), we recall the following lemma as proved in [25].

Lemma 1.2. For x ≥ 0 and 0 < q < p ≤ 1. Then the following properties are true.

1. Lp,q
n (e0;x) = e0,

2. Lp,q
n ( t

1+t ;x) =
p[n]p,q
[n+1]p,q

(
x

1+x

)
,

3. Lp,q
n (( t

1+t )
2;x) =

pq2[n]p,q [n−1]p,q
[n+1]2p,q

x2

(1+x)(p+qx) +
pn+1[n]p,q
[n+1]2p,q

(x)
(1+x)

=
q2[n]p,q[n− 1]p,q

[n+ 1]2p,q

(x)2

(1 + x)2
+

pn+1[n]p,q
[n+ 1]2p,q

(x)

(1 + x)
.

In the above Lemma 1.2, we see that the operators (3) preserve only e0 but do not preserve

the test functions e1 and e2. So after scaling f
(

pn−k+1[k]p,q
[n−k+1]p,qqk

)
by f

(
[n+1]p,q
p[n]p,q

pn−k+1[k]p,q
[n−k+1]p,qqk

)
in (3),

we have

Lp,q
n (f ;x) =

1

lp,qn (x)

n∑
k=0

f

(
pn−k[n+ 1]p,q[k]p,q
[n]p,q[n− k + 1]p,qqk

)
p

(n−k)(n−k−1)
2 q

k(k−1)
2

[
n
k

]
p,q

xk. (4)

The operators (4) satisfy the following properties.

Lemma 1.3. For 0 < q < p ≤ 1 and for any x ∈ [0,∞), we obtain

1. Lp,q
n (e0;x) = e0,

2. Lp,q
n ( t

1+t ;x) =
x

1+x ,

3. Lp,q
n (( t

1+t )
2;x) =

q2[n−1]p,q
p2[n]p,q

(x)2

(1+x)2 + pn−1

[n]p,q

(x)
(1+x) .

In Lemma 1.3, the operators (4) preserve the test functions e0 and e1 but do not preserve the
monomial e2. In 2003, King [18] established a new technique to get better approximation for the
Bernstein operators. In this method, the new operators approximate every continuous function
f ∈ C[0, 1], while preserving the function e2 = x2. Several standard linear positive operators
preserve e0 and e1 (i.e. preserve constant as well as linear function), but this technique helps
in reproducing the quadratic function as well. For more details about King type (see [8], [9]).
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§2 Construction of the operators Hp,q
n

Applying King’s technique on the operators (4), we give modified (p, q)-Bleimann-Butzer
and Hahn operators as follows:

Hp,q
n (f ;x) =

1

hp,q
n (x)

n∑
j=0

f

(
pn−j [n+ 1]p,q[j]p,q
[n]p,q[n− j + 1]p,qqj

)
p

(n−j)(n−j−1)
2 q

j(j−1)
2

[
n
j

]
p,q

(rp,qn (x))j , (5)

where hp,q
n (x) =

n−1∏
j=0

(pj + qjrp,qn (x)), for 0 < q < p ≤ 1.

Now using King’s approach [18] and after some simplifications, rp,qn (x) is defined as

rp,qn (x) =

(√
p2n+2 + p2q2[n]p,q[n− 1]p,q

4(x)2

(1+x)2 − pn+1
)

2q2[n− 1]p,q
, n ≥ 2.

Obviously rp,qn (x) ≥ 0, since√
p2n+2 + 4p2q2[n]p,q[n− 1]p,q

(x)2

(1 + x)2
− pn+1 ≥ 0.

If we take rp,qn (x) = x
1+x , then the operators (5) turn out to be the previous operators (4), and

the operators (5) satisfy the following relations.

Lemma 2.1. For 0 < q < p ≤ 1 and x ∈ CB [0,∞), the following equality holds.

1. Hp,q
n (e0;x) = e0,

2. Hp,q
n ( t

1+t ;x) = rp,qn (x),

3. Hp,q
n (( t

1+t )
2;x) =

q2[n−1]p,q
p2[n]p,q

(rp,qn (x))
2
+ pn−1

[n]p,q
rp,qn (x) = (x)2

(1+x)2 .

§3 Main results

By using the operators Hp,q
n (f ;x), we get the Korovkin’s type result with the help of The-

orem 1.1.
We now take p = pn, q = qn, where qn ∈ (0, 1), pn ∈ (qn, 1) such that

lim
n→∞

qn = 1, lim
n→∞

qnn = c1, (6)

lim
n→∞

pn = 1 and lim
n→∞

pnn = c2, (7)

where c1, c2 are constants.

Theorem 3.1. Let (6) and (7) hold and Hp,q
n (f ;x) be defined by (5). Then, we get

lim
n→∞

∥Hpn,qn
n (f ;x)− f(x)∥CB

= 0, for any f ∈ Hw.

Proof. By using Theorem 1.1 and Lemma 2.1, we have

lim
n→∞

∥∥∥∥∥Hpn,qn
n

((
t

1 + t

)j

;x

)
−
(

x

1 + x

)j
∥∥∥∥∥
CB

= 0, j = 0, 1, 2. (8)
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For j = 0, (8) is fulfilled by using Lemma 2.1. Now for j = 1∥∥∥∥∥Hpn,qn
n

((
t

1 + t

)j

;x

)
−
(

x

1 + x

)j
∥∥∥∥∥
CB

=

∥∥∥∥rpn,qn
n (x)− x

1 + x

∥∥∥∥ ,
where, rpn,qn

n (x) is defined as above and we know that lim
n→∞

rpn,qn
n (x) = x

1+x . Hence the condi-

tion holds for j = 1.
Finally, for j = 2, we have∥∥∥∥∥Hpn,qn

n

((
t

1 + t

)2

;x

)
−
(

x

1 + x

)2
∥∥∥∥∥
CB

=

∥∥∥∥∥ (x)2

(1 + x)2
−
(

x

1 + x

)2
∥∥∥∥∥

= 0,

since Hpn,qn
n

((
t

1+t

)2
;x

)
= (x)2

(1+x)2 . So, equation (8) holds for j = 2. Thus, the proof is

completed.

§4 Rates of convergence

Let f ∈ Hw. The modulus of continuity of f is given by

w(f, δ) = wf (δ) =
∑

| τ
1+τ − x

1+x |≤δ

|f(τ)− f(x)|, for each τ, x ≥ 0,

and for all f in Hw[0,∞), we have
(i) lim

n→∞
wf (δ) = 0,

(ii) |f(τ)− f(x)| ≤ wf (δ)
∣∣∣(1 + | τ

1+τ − x
1+x |

δ

)∣∣∣ .
Recall that the rate of convergence for the operators (3) were obtained by Mursaleen et al.
[25]. After some modification in (3), we get the new operators (4) and calculate the rate of
convergence. For δ > 0 and for every f ∈ C[0,∞), we get

|Lp,q
n (f ;x)− f(x)| ≤ 2w̃

(
f ;
√

δn(x)
)
, (9)

where

δn(x) =
x2

(1 + x)2

(
q2n[n− 1]pn,qn

p2n[n]pn,qn

1 + x

pn + qnx
− 1

)
+

pn−1
n

[n]pn,qn

x

1 + x
.

Further, for the operators (5), we estimate the rate of convergence and also show that it is
better than the rate of convergence of the operators (4) on some subinterval.

Theorem 4.1. Let pn, qn, for 0 < qn < pn ≤ 1 satisfying (6) and (7). Then for any f ∈ Hw

and for each x ≥ 0, we obtain

|Hpn,qn
n (f ;x)− f(x)| ≤ 2w

(
f ;
√
γn(x)

)
, n ≥ 2

where

γn(x) =
x

1 + x

pn+1
n −

√
p2n+2
n + p2nq

2
n[n]pn,qn [n− 1]pn,qn

4(x)2

(1+x)2

q2n[n− 1]pn,qn


+

2(x)2

(1 + x)2
.
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Proof. For all n ≥ 2, x ∈ [0,∞) and n ∈ N− {0, 1}, we have

|Hpn,qn
n (f ;x)− f(x)| ≤ Hpn,qn

n (|f(t)− f(x)|;x)

≤ w(f, δ)

{
1 +

1

δ
Hpn,qn

n

(∣∣∣∣ t

1 + t
− x

1 + x

∣∣∣∣ ;x)} .

By applying the Cauchy Schwarz inequality in above expression, we have

|Hpn,qn
n (f ;x)− f(x)| ≤ w(f, δ)

1 +
1

δ

√√√√Hpn,qn
n

((
t

1 + t
− x

1 + x

)2

;x

) .

Since

Hpn,qn
n

((
t

1 + t
− x

1 + x

)2

;x

)
= Hpn,qn

n

((
t

1 + t

)2

;x

)
+

(
x

1 + x

)2

Hpn,qn
n (1;x)

− 2

(
x

1 + x

)
Hpn,qn

n

((
t

1 + t

)
;x

)
=

(x)2

(1 + x)2
+

(
x

1 + x

)2

− 2

(
x

1 + x

)
(rpn,qn

n (x))

= 2
(x)2

(1 + x)2
− 2

(
x

1 + x

)
(rpn,qn

n (x)) , (10)

where, rpn,qn
n (x) is defined in (5).

By using the expression (10), we omit the details.

If we choose the sequences pn and qn, where 0 < qn < pn ≤ 1 satisfying (6) and (7), then

lim
n→∞

1

[n]pn,qn

= 0.

Hence
lim

n→∞
γn(x)

= lim
n→∞

2
(

x
1+x

)2
+ x

1+x

pn+1
n −

√
p2n+2
n +4p2

nq
2
n[n]pn,qn [n−1]pn,qn

(x)2

(1+x)2

q2n[n−1]pn,qn




= lim
n→∞

{
2
(

x
1+x

)2
+ x

1+x

{
pn+1
n

q2n[n−1]pn,qn
−
√

p2n+2
n

q4n[n−1]2pn,qn

+
4p2

n[n]pn,qn
(x)2

(1+x)2

q2n[n−1]pn,qn

}}

= lim
n→∞

{
2(x)2

(1+x)2 + x
1+x

{
0−

√
0 +

4p2
n[n]pn,qn

(x)2

(1+x)2

q2n[n−1]pn,qn

}}
= 2(x)2

(1+x)2 + x
1+x

{
−2
(

x
1+x

)}
= 0.

Since [n]p,q = pn−1 + q[n − 1]p,q, it is obvious that lim
n→∞

γn(x) = 0. Theorem 4.1 gives the

rate of pointwise convergence of the operators Hp,q
n (f ;x) to f(x).

Now if we take
x

(1 + x)
≤ pn−1

3[n]p,q
,
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(or)

x ≤ pn−1

3[n]p,q − pn−1
,

then it is shown that for all n ≥ 2, Theorem 4.1 have better rate of convergence for the new
operators than the rate of convergence given by (9) for the operators (4). Since

γn(x) ≤ δn(x) for all n ≥ 2.

2
(

x
1+x

)2
+ x

1+x

pn+1−
√

p2n+2+p2q2[n]p,q[n−1]p,q
4(x)2

(1+x)2

q2[n−1]p,q


≤ x2

(1+x)2

(
q2[n−1]p,q
p2[n]p,q

1+x
(p+qx) − 1

)
+ pn−1

[n]p,q
x

1+x

⇒ 2
(

x
1+x

)2
+ x

1+x

{
pn+1−

√
p2n+2+0

q2[n−1]p,q

}
≤ x2

(1+x)2 (0− 1) + pn−1

[n]p,q
x

1+x

⇒ 2
(

x
1+x

)2
+ x

1+x

{
0

q2[n−1]p,q

}
≤ − x2

(1+x)2 + pn−1

[n]p,q
x

1+x

⇒ 3
(

x
1+x

)2
≤ pn−1

[n]p,q
x

1+x

⇒ 3
(

x
1+x

)
≤ pn−1

[n]p,q

⇒ x
1+x ≤ pn−1

3[n]p,q

⇒ x ≤ pn−1

3[n]p,q−pn−1 .

On this subinterval [
0,

pn−1

3[n]p,q − pn−1

]
,

King’s type approach for approximation is better than (p, q)-Bleimann-Butzer and Hahn oper-
ators. Further we will obtain an estimate concerning the rate of convergence of the operators
Hp,q

n (f ;x) by means of Lipschitz type maximal function.
We consider the following space [4]

Tβ,E = {f : sup(1 + x)βfβ(x) ≤ K
1

(1 + z)β
: x ∈ [0,∞) and z ∈ E ⊂ [0,∞)},

where K > 0 and f is a continuous and bounded function on [0,∞), 0 < β ≤ 1.
A Lipschitz type maximal function was defined by Lenze [19] and is defined as

fβ(x, t) =
∑
t>0

|f(t)− f(x)|
|x− t|β

, x ̸= t

and
d(x,E) = inf{|x− z| : z ∈ E}.

Theorem 4.2. For every f ∈ Tβ,E, we have

|Hpn,qn
n (f ;x)− f(x)| ≤ K

(
γ

β
2
n (x) + 2(d(x,E))β

)
,

where γn(x) is shown in Theorem 4.1.

Proof. Let E be the closure of the space E. Then for x ≥ 0, there exists a point x1 ∈ E such
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that
|x− x1| = d(x,E).

Thus, we have

|f − f(x)| ≤ |f − f(x1)|+ |f(x1)− f(x)|.
Since Hp,q

n are linear positive operators, f ∈ Tβ,E . Now applying above inequality, we get

|Hp,q
n (f ;x)− f(x)| ≤ Hp,q

n (|f − f(x1)|;x) + |f(x1)− f(x)|Hp,q
n (1;x) (11)

≤ K

(
|x− x1|β

(1 + x)β(1 + x1)β
+Hp,q

n

(∣∣∣∣ t

1 + t
− x1

1 + x1

∣∣∣∣β ;x
))

.

Since Hp,q
n (1;x) = 1, by using the inequality (c+ d)β ≤ cβ + dβ for c ≥ 0, d ≥ 0, we can write∣∣∣∣ t

1 + t
− x1

1 + x1

∣∣∣∣β ≤
∣∣∣∣ t

1 + t
− x

1 + x

∣∣∣∣β +

∣∣∣∣ x

1 + x
− x1

1 + x1

∣∣∣∣β .
Consequently, we get

Hp,q
n

(∣∣∣∣ t

1 + t
− x1

1 + x1

∣∣∣∣β ;x
)

≤ Hp,q
n

(∣∣∣∣ t

1 + t
− x

1 + x

∣∣∣∣β ;x
)

(12)

+ Hp,q
n

(∣∣∣∣ x

1 + x
− x1

1 + x1

∣∣∣∣β ;x
)

≤ Hp,q
n

(∣∣∣∣ t

1 + t
− x

1 + x

∣∣∣∣β ;x
)

+
|x− x1|β

(1 + x)β(1 + x1)β
Hp,q

n (1;x) .

By using the Hölder’s inequality, we obtain

Hp,q
n

(∣∣∣∣ t

1 + t
− x1

1 + x1

∣∣∣∣β ;x
)

≤ Hp,q
n

((
t

1 + t
− x

1 + x

)2

;x

) β
2

+
|x− x1|β

(1 + x)β(1 + x1)β
Hp,q

n (1;x) .

In view of (11), we omit the details.

In particular, if we take E∗ = [0,∞) in Theorem 4.2, then the following holds.

Corollary 4.3. For every f ∈ Tβ,E∗ , we get

|Hpn,qn
n (f ;x)− f(x)| ≤ Kγ

β
2
n (x),

where γn(x) is defined as above.

§5 Generalization of the operators Hp,q
n

Here, we obtain some generalization for the new operators Hp,q
n similar to [4], [7] and [25].

We consider

H(p,q),µ
n =

1

hp,q
n (x)

n∑
j=0

f

(
pn−j [n+ 1]p,q[j]p,q + µ

bn,j

)
p

(n−j)(n−j−1)
2 q

j(j−1)
2

[
n
j

]
p,q

(rp,qn (x))j ,

(13)
where µ ∈ R and bn,j satisfies

bn,j + pn−j [k]p,q = an,
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and
[n]2p,q
an

−→ 1, as n −→ ∞.

If bn,j = [n]p,q[n− j + 1]p,qq
j + α for any n, j and 0 < q < p ≤ 1 then an = dn + α,

where

dn = [n]pn,qn [n− j + 1]pn,qnq
j
n + pn−j

n [n+ 1]pn,qn [j]pn,qn

= [n]pn,qn [n+ 1]pn,qn + pn−j
n qnn [j]pn,qn

as [n − j + 1]p,qq
j = [n + 1]p,q − pn−j+1[j]p,q. For the operators (13), we have the following

result.

Theorem 5.1. Let p = pn and q = qn which satisfy (6) and (7) for 0 < qn < pn ≤ 1. Then
for any f ∈ Tβ,[0,∞), we obtain

lim
n→∞

∥∥∥H(pn,qn),µ
n (f ;x)− f(x)

∥∥∥
CB

≤ 3K

×max

{(
[n]2pn,qn

an+µ

)β (
µ

[n]2pn,qn

)β
,
∣∣∣1− dn

an+µ

∣∣∣β (M1)
β
, 2−

√
4p2

n[n]pn,qn

q2n[n−1]pn,qn

}
,

where

M1 =

√
p2n+2
n + 4p2nq

2
n[n]pn,qn [n− 1]pn,qn − pn+1

n

2q2n[n− 1]pn,qn

.

Proof. By using (5) and (13), we get

|H(pn,qn),µ
n (f ;x)− f(x)|

≤ 1
hpn,qn
n (x)

n∑
j=0

∣∣∣f (pn−j
n [n+1]pn,qn [j]pn,qn+µ

bn,j

)
− f

(
pn−j
n [n+1]pn,qn [j]pn,qn

µ+bn,j

)∣∣∣ [ n
j

]
pn,qn

× p
(n−j)(n−j−1)

2
n q

j(j−1)
2

n (rp,qn (x))j

+ 1
hpn,qn
n (x)

n∑
j=0

∣∣∣f (pn−j
n [n+1]pn,qn [j]pn,qn

µ+bn,j

)
− f

(
pn−j
n [n+1]pn,qn [j]pn,qn+µ

[n]pn,qn [n−j+1]pn,qnqjn

)∣∣∣ [ n
j

]
pn,qn

× p
(n−j)(n−j−1)

2
n q

j(j−1)
2

n (rp,qn (x))j +|Hpn,qn
n (f ;x)− f(x)|.

Since f ∈ Tβ,E∗ and using Corollary 4.3, we obtain

|H(pn,qn),µ
n (f ;x)− f(x)|

≤ K
hpn,qn
n (x)

n∑
j=0

∣∣∣ pn−j
n [n+1]pn,qn [j]pn,qn+µ

pn−j
n [n+1]pn,qn [j]pn,qn+µ+bn,j

− pn−j
n [n+1]pn,qn [j]pn,qn

µ+pn−j
n [n+1]pn,qn [j]pn,qn+bn,j

∣∣∣β [ n
j

]
pn,qn

× p
(n−j)(n−j−1)

2
n q

j(j−1)
2

n (rp,qn (x))j

+ K
hpn,qn
n (x)

n∑
j=0

∣∣∣ pn−j
n [n+1]pn,qn [j]pn,qn

pn−j
n [n+1]pn,qn [j]pn,qn+µ+bn,j

− pn−j
n [n+1]pn,qn [j]pn,qn

pn−j
n [n+1]pn,qn [j]pn,qn+[n]pn,qn [n−j+1]pn,qnqjn

∣∣∣β
×
[

n
j

]
pn,qn

p
(n−j)(n−j−1)

2
n q

j(j−1)
2

n (rp,qn (x))j +Kγ
β
2
n (x).

This implies that

|H(pn,qn),µ
n (f ;x)− f(x)| ≤ K

(
[n]2pn,qn

an+µ

)β (
µ

[n]2pn,qn

)β
+ K

hpn,qn
n (x)

∣∣∣1− dn

an+µ

∣∣∣β n∑
j=0

[
pn−j
n [n+1]pn,qn [j]pn,qn

dn

]β
p

(n−j)(n−j−1)
2

n q
j(j−1)

2
n

[
n
j

]
pn,qn

(rp,qn (x))j
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+|Hpn,qn
n (f ;x)− f(x)|

= K
(

[n]2pn,qn

an+µ

)β (
µ

[n]2pn,qn

)β
+K

∣∣∣1− dn

an+µ

∣∣∣β Hpn,qn
n

(
( t
1+t )

β ;x
)
+Kγ

β
2
n (x).

Now using the Hölder inequality and condition (2) of Lemma 2.1, we obtain

|H(pn,qn),µ
n (f ;x)− f(x)| ≤ K

(
[n]2pn,qn

an+µ

)β (
µ

[n]2pn,qn

)β
+K

∣∣∣1− dn

an+µ

∣∣∣β (rp,qn (x))
β
+Kγ

β
2
n (x).

Thus the proof is completed.

§6 Some graphical analysis with error estimation

By using the MATLAB(R2015a), we illustrate here the comparison between the operators
defined in (4) and the modified operators (5) to the function x2 for different parameters. For our
convenience, we give some graphical examples and tables (rate of convergence, error estimation)
on the interval [0, 1] and its subintervals. Error estimation is denoted by ∥ Lp,q

n (f ;x) − f(x) ∥
and ∥ Hp,q

n (f ;x)− f(x) ∥ for the operators (4) and (5), respectively.

Figure 1. Approximation of the function f(x) = x2 by (p, q)-BBH operators for n = 5.

Figure 2. Approximation of the function f(x) = x2 by (p, q)-BBH operators for n = 15.

Example 6.1 Figures 1 and 2 show the convergence of (p, q)-BBH operators (4) for
n = 5, 15. We see that for different values of the integers p, q, as n increases, the opera-
tors (4) converge towards the function.

Example 6.2 Figures 3 and 4 show the convergence of the operators (5) to the function
f(x) = x2. Here, we can see that for different values of p and q, as n increases, King’s type
modification gives better approximation on the subinterval[

0,
pn−1

3[n]p,q − pn−1

]
. (14)



M. Mursaleen, et al. Modified approximation and error estimation for King’s... 209

Figure 3. Approximation of the function f(x) = x2 by King’s type modification of (p, q)-BBH
operators for n = 5.

Figure 4. Approximation of the function f(x) = x2 by King’s type modification of (p, q)-BBH
operators for n = 15.

6.1 Rate of convergence

Let us take f(x) = x2. We now calculate the rate of convergence for the operators (4) and
(5) which are denoted by δn(x) and γn(x), respectively. We compare rate of convergence for
different values of p, q and n on the above subinterval (14) which is shown in the following:

Tables 1(a), 1(b) show the comparison between rate of convergence of the operators (4) and
(5), respectively.

Table 1(a).(For fixed p = 0.9, q = 0.7)
n rate of conv. at x=0.03 rate of conv. at x=0.05 rate of conv. at x=0.08
15 0.0064 0.0103 0.0155
16 0.0064 0.0102 0.0154
17 0.0064 0.0102 0.0154

Table 1(b).(For fixed p = 0.9, q = 0.7)
n rate of conv. at x=0.03 rate of conv. at x=0.05 rate of conv. at x=0.08
15 0.0054 0.0078 0.0105
16 0.0036 0.0048 0.0054
17 0.0022 0.0024 0.0014

Tables 2(a), 2(b) show the comparison between rate of convergence of the operators (4) and
(5), respectively.
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Table 2(a). (For fixed p = 0.95, q = 0.85)
n rate of conv. at x=0.02 rate of conv. at x=0.03 rate of conv. at x=0.04
40 0.0020 0.0030 0.0039
41 0.0020 0.0030 0.0039
42 0.0020 0.0030 0.0039

Table 2(b).(For fixed p = 0.95, q = 0.85)
n rate of conv. at x=0.02 rate of conv. at x=0.03 rate of conv. at x=0.04
40 0.0015 0.0021 0.0028
41 0.0012 0.0016 0.0020
42 0.0009 0.0011 0.0013

6.2 Error estimation

Here, we calculate the error estimation for (p, q)-Bleimann-Butzer and Hahn operators and
King’s type (p, q)-Bleimann-Butzer and Hahn operators to the function f(x) = x2.
In Tables 3 and 4, we can easily see that the error estimation of King’s type operators is better
than (p, q)-Bleimann-Butzer and Hahn operators.
For any x, t ≥ 0 such that |t− x| < δ, the absolute error bound (a.e.b) is denoted by

2ω(f ; δ) = sup |f(t)− f(x)|.

Table 3. For the operators (4).

n(fixed p = 0.9, q = 0.7)
√
δn(x) (a. e. b.) = 2ω(f ;

√
δn)

15
√
δ15(0.08)=0.1244 0.0310√
δ15(0.05)=0.1014 0.0206√
δ15(0.03)=0.080 0.0128

16
√
δ16(0.08)=0.1240 0.0308√
δ16(0.05)=0.1009 0.0204√
δ16(0.03)=0.080 0.0128

17
√
δ17(0.08)=0.1240 0.0308√
δ17(0.05)=0.1009 0.0204√
δ17(0.03)=0.0800 0.0128

Table 4. For New Operators (5).

n(fixed p = 0.9, q = 0.7)
√
γn(x) (a. e. b.) = 2ω(f ;

√
γn)

15
√
δ15(0.08)=0.1024 0.0201√
δ15(0.05)=0.0883 0.0156√
δ15(0.03)=0.0734 0.0108

16
√
δ16(0.08)=0.0734 0.0108√
δ16(0.05)=0.0692 0.0096√
δ16(0.03)=0.0600 0.0072

17
√
δ17(0.08)=0.0374 0.0028√
δ17(0.05)=0.0489 0.0048√
δ17(0.03)=0.0469 0.0044
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[31] S AMohiuddine, F Özger. Approximation of functions by Stancu variant of Bernstein-Kantorovich
operators based on shape parameter α, Rev R Acad Cienc Exactas Fis Nat Se A Math RACSAM,
2020, 114(2): 1-17.

[32] N Rao, A Wafi. (p, q)-Bivariate-Bernstein-Chlowdosky Operators, Filomat, 2018, 32(2): 369-378.

1Department of Medical Research, China Medical University Hospital, China Medical University (Tai-
wan), Taichung, Taiwan, China.
2Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India.
3Department of Mathematics, School of Basic and Applied Sciences, Galgotias University, Greater
Noida-203201, India.

Email: mursaleenm@gmail.com, ahasan.amu@gmail.com, asifjnu07@gmail.com


