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Zero-inflated non-central negative binomial distribution

TIAN Wei-zhong1,* LIU Ting-ting2 YANG Yao-ting2

Abstract. In this article, the zero-inflated non-central negative binomial (ZINNB) distribution

is introduced. Some of its basic properties are obtained. In addition, we use the maximum like-

lihood estimation method to estimate the parameters of the ZINNB distribution, and illustrate

its application by fitting the actual data sets.

§1 Introduction

In statistics, counting data is a type of statistical data that is usually used to record the
results of the occurrence and frequency of events. If the count data contains more zeros than
expected, we generally called them zero-inflated data. Zero-inflated data are common in many
disciplines, like engineering, manufacturing, economics, public health, epidemiology, psychol-
ogy, sociology, political science, agriculture, road safety, species abundance, and criminology.
One approach to analysis such data is to use zero-inflated Poisson (ZIP) distribution, which
were introduced by Lambert [6], and several authors have utilized the ZIP distribution for
modeling count data with an excessive number of zeros, see [1, 2, 5]. Later on, a fair amount
of statistical methodology has been required in order to account for the feature of excess ze-
ros. Greene [3] introduced the zero-inflated negative binomial (ZINB) to test zero inflation
and overdispersion, Hall [4] studied the zero-inflated binomial (ZIB) distribution on an upper
bounded count situation, and Sim et al. [12] discussed a zero-inflated Conway-Maxwell Poisson
(ZICMP) distribution and developed the score and likelihood ratio tests. Recently, Sellers and
Young [11] considered a zero-inflated sum-of-Conway-Maxwell-Poissons (ZISCMP) regression
as a flexible analysis tool to model count data that express significant data dispersion and con-
tain excess zeros, which contains zero-inflated Poisson (ZIP), zero-inflated negative binomial
(ZINB), zero-inflated binomial (ZIB), and the zero-inflated Conway-Maxwell-Poisson (ZICMP).

The non-central negative binomial (NNB) distribution was found in neural counting mech-
anisms and photon counting, which was introduced by Ong and Lee [9]. The random variable
X is said to have a NNB distribution, with the parameters v > 0, λ > 0 and 0 < p < 1, denoted
by X ∼ NNB(p, v, λ), if the probability mass function (pmf) is of the form,

P (X = k) = P (k; p, v, λ) = e−λppkqvLv−1
k (−λq),

where q = 1− p, and Lα
n(x) is the generalised Laguerre polynomials defined as follows,

Received: 2020-03-19. Revised: 2021-09-14.
MR Subject Classification: 62D05, 62E10, 62F03, 62F10, 62P10.
Keywords: zero-inflated non-central negative binomial distribution, maximum likelihood estimation, good-

ness of fit.
Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-022-4070-0.
∗Corresponding author.



188 Appl. Math. J. Chinese Univ. Vol. 37, No. 2

Lα
n(x) =

(α+ 1)n
n!

1F 1(−n, α+ 1;x), (1)

with α ∈ Z, n = 0, 1, 2, · · · and 1F 1(a, b; z) is the confluent hypergeometric function.

In fact, if λ = 0, the NNB distribution is reduced to the negative binomial (NB) distribution,
NB(p, v). If p → 0, v → ∞ such that vp is constant, the NNB distribution is reduced to the
Poisson distribution, P (vp), see Ong and Lee [9].

The NNB distribution has many important properties and applications, Lee and Ong [7]
discussed the higher-order and non-stationary properties of the stochastic reversible counter
based on NNB distribution, Ong and Lee [8, 9] studied a bivariate generalization of the NNB
distribution. The NNB distribution is derived by mixing the Poisson distribution with a certain
Bessel function distribution or the negative binomial distribution with the Poisson distribution,
and Ong et al. [10] proposed various important probabilistic properties of the NNB distribution
in practical applications.

The aim of this paper is to develop a zero-inflated non-central negative binomial (ZINNB)
distribution, which is the generalization of the ZINB distribution and ZIP distribution. The
rest of the article is organized as follows. The definition of the ZINNB distribution and some of
its basic properties, such as probability generating function (pgf), moments, mean and variance
are studied in Section 2. The test method for data existence of zero inflation is given in section
3. Maximum Likelihood Estimation of the parameters and the simulation for the proposed
method are investigated in Section 4. Two real data applications are discussed in Section 5. A
conclusion is provided in Section 6.

§2 ZINNB distribution and its properties

In this section, we present the definition of the ZINNB distribution and some useful prop-
erties.

Definition 2.1. Let Y be a discrete random variable which follows a ZINNB distribution with
w ∈ [0, 1], v > 0, λ > 0 and 0 < p = 1− q < 1. The pmf of Y is

f(y;w, p, v, λ) = P (Y = y) =

{
w + (1− w)e−λpqv, if y = 0,

(1− w)e−λppyqvLv−1
y (−λq), if y = 1, 2, 3, · · · ,

(2)

and we denote it as Y ∼ ZINNB(w, p, v, λ).

Remark 2.1. When w = 0, the ZINNB distribution is reduced to the NNB distribution,
NNB(p, v, λ). When λ = 0, the ZINNB distribution is reduced to the ZINB distribution,
ZINB(w, p, v) [16]. If p → 0, v → ∞ such that vp is constant, then the ZINNB distribution is
reduced to the ZIP distribution, ZIP (w, vp) [17].

According to the definition of the confluent hypergeometric function, we have

1F 1(a, b; z) =
∞∑
i=0

(a)i
(b)i

zi

i!
, (3)

and for α > 0,

(α)i =
Γ(α+ i)

Γ(α)
=

(α+ i− 1)!

(α− 1)!
,

(−α)i = (−1)i
α!

(α− i)!
. (4)
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Therefore, for y ̸= 0,

f(y;w, p, v, λ) = (1− w)e−λppyqv(v + y − 1)!

y∑
i=0

(λq)i

i!(y − i)!(v + i− 1)!
.

To emphasise the usefulness of parameters w, p, v and λ, the plots of pmf of ZINNB
distributions with different values of parameters are given in Figure 1.

Figure 1. pmf for ZINNB (0.3,0.2,0.5,4), ZINNB (0.8,0.2,0.5,4), ZINNB (0.3,0.6,0.5,4), ZINNB
(0.3,0.2,3,4) and ZINNB (0.3,0.2,0.5,1).

Next, we study some basic properties of Y ∼ ZINNB(w, p, v, λ).
Proposition 2.1. If Y ∼ ZINNB(w, p, v, λ), then the pgf of Y is given

G(t) = w + (1− w)

(
q

1− pt

)v

eλ
(

q
1−pt−1

)
. (5)

Proof.
According to Ong and Lee [9], we know the pgf of NNB distribution is

g(t) =

∞∑
k=0

P (k; p, v, λ)tk =

(
q

1− pt

)v

eλ
(

q
1−pt−1

)
.

According to equation (2), we have

G(t) =

∞∑
y=0

f(y;w, p, v, λ)ty

= w + (1− w)e−λpqv +
∞∑
y=1

(1− w)e−λppyqvLv−1
y (−λq)ty

= w + (1− w)P (0; p, v, λ) + (1− w)
∞∑
y=1

P (y; p, v, λ)ty

= w + (1− w)g(t).

Proposition 2.2. If Y ∼ ZINNB(w, p, v, λ), the recursion formula of f(y;w, p, v, λ) with y ̸= 0
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is

(y+1)f(y + 1;w, p, v, λ) = (1−w)
[
(2y+v+λq)pf(y;w, p, v, λ)−p2(y+v−1)f(y − 1;w, p, v, λ)

]
.

(6)

Proof. For y ̸= 0, we have

(y + 1)f(y + 1) = (y + 1)(1− w)e−λppy+1qvLv−1
y+1(−λq),

and according to the recursion formula of Lα
n(x), see Ong and Lee [9]. The recursion formula is

(y + 1)Lα
y+1(x) = (2y + α+ 1− x)Lα

y (x)− (y + α)Lα
y−1(x), (7)

thus, we get equation (6).

Corollary 2.1. If Y ∼ ZINNB(w, p, v, λ), for j ≥ 1, the j − th factorial moments of Y ,
E[(Y )j ] = E[Y (Y − 1)(Y − 2) · · · (Y − j + 1)], are

µ[j] = (1− w)j!

(
p

q

)j

Lv−1
j (−λ). (8)

Proof. From equation (5), we have

G(t) = w + (1− w)

(
q

1− pt

)v

eλ
(

q
1−pt−1

)
.

On differentiating the above equation j times with respect to t and putting t = 1, we get
equation (8).

Corollary 2.2. The expected value and variance of Y ∼ ZINNB(w, p, v, λ) are

E(Y ) = (1− w)

(
p

q

)
(v + λ) = V,

V ar(Y ) = (1− w)

[
V +

(
p

q

)2

(v + 2λ)

]
.

Proposition 2.3. If Y ∼ ZINNB(w, p, v, λ), the recursion formula for the j − th factorial
moments µ[j] is

µ[j+1] =
p

q
(2j + v + λ− 1)µ[j] − j

(
p

q

)2

(j + v − 1)µ[j−1], j ≥ 1. (9)

Proof. From equation (8), we have

µ[j+1] = (1− w)(j + 1)!

(
p

q

)(j+1)

Lv−1
j+1(−λ),

and the result can be obtained by equation (7).

Proposition 2.4. If Y1 ∼ ZINNB(w, p, v1, λ1) and Y2 ∼ ZINNB(w, p, v2, λ2) be independent.
i) The probability of the sum of Y1 and Y2 is

P (Y1 + Y2 = n) =


w2 + w(1− w)

[
e−λ1pqv1 + e−λ2pqv2

]
+ (1− w)

2
e−λpqv, if n = 0,

w(1− w)pn
[
e−λ1pqv1Lv1−1

n (−λ1q) + e−λ2pqv2Lv2−1
n (−λ2q)

]
+(1− w)2e−λppnqvLv−1

n (−λq), if n ̸= 0.

(10)

ii) If Y1 = k ̸= 0, then the conditional probability of P (Y1 = k|Y1+Y2 = n) is given by following,

P (Y1 = k|Y1 + Y2 = n)

=

{
(1− w)e−λpqvLv1−1

k (−λ1q)L
v2−1
n−k (−λ2q)h(θ), if n ̸= k,[

we−λ1pqv1Lv1−1
n (−λ1q) + (1− w)e−λpqvLv1−1

n (−λ1q)
]
h(θ), if k = n,

(11)
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where h(θ) =
[
w
[
e−λ1pqv1Lv1−1

n (−λ1q) + e−λ2pqv2Lv2−1
n (−λ2q)

]
+ (1− w)e−λpqvLv−1

n (−λq)
]−1

,
θ = (w, p, v1, v2, λ1, λ2), v = v1 + v2 and λ = λ1 + λ2.

Proof. The results can be obtained after some algebraically calculations with considering
equation (2) and the following equation,

n∑
k=0

La
k(x1)L

b
n−k(x2) = Lb

n(x2) +
n−1∑
k=1

La
k(x1)L

b
n−k(x2) + La

n(x1) = La+b−1
n (x1 + x2).

§3 Zero inflation test

Before using the zero-inflated model to fit and analyze the data, the zero inflation phe-
nomenon of the data should be tested first. In this section, we analyze the data through
dispersion index, zero inflation index and hypothesis testing statistics.

3.1 Over dispersion and zero inflation index

The NNB distribution provides a lot of conveniences for us to analyze the data sets. However,
in many practical applications, we will encounter the phenomenon of the over-dispersion of
data. In other words, the variance of the count variable exceeds its mean. At this time, the
traditional discrete distribution (the NNB distribution, Poisson distribution, negative binomial
distribution, etc.) cannot fit the data well.

Given a count variable Y , its dispersion index is usually defined as d = V (Y )/E(Y ). The
variable is over dispersed if d > 1. Another measure of the departure from the NNB distribution
is the zero inflation index.

Definition 3.1. Let Y to be a nonnegative integer random variable (count variable) such that
its mean is µ and its proportion of 0 is p0. The zero inflation index of Y is zi = 1+ log(p0)/µ.

Notice that zi = 0 if Y is NNB distribution and zi > 0 if Y is ”zero-inflated”. That is, its
proportion of 0 is greater than the proportion of 0 of an NNB variate with the same mean.

3.2 The Chi-square test

The test of zero inflation is equivalent to the hypothesis test of zero-inflated parameter w:

H0 : w = 0 V S H1 : w > 0.

When the test results do not reject the null hypothesis H0, it is considered that there is no
zero inflation phenomenon in the counting data. The Chi-square test statistic χ2 is used to test
the deviation between the actual observed data and the expected observed data of the sample
data,

χ2 =
c∑

i=1

(fi −mi)
2

mi
= S1,

where c is the number of classes decided for a given data set, fi and mi are the observed
frequencies and expected frequencies under the null hypothesis H0 of the ith class, respectively.
When the null hypothesis is valid, the chi-square statistic follows an asymptotic chi-square
distribution with c− 1 degrees of freedom.
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§4 Maximum likelihood estimation and simulations

In this section, we discuss the estimation of the parameters w, p, v and λ of the ZINNB
distribution. Let a(y) be the observed frequency of y events for any y = 0, 1, 2, ... and z be the
highest value of y observed. Then the likelihood function of the sample is

L(w, p, v, λ|y) =
z∏

y=0

f(y)
a(y)

= f0(y)
a(0)

z∏
y=1

f1(y)
a(y)

,

where f0(y) and f1(y) are given in equation (2) when y = 0 and y ̸= 0, respectively.

The log-likelihood function of the sample is

lnL(w, p, v, λ|y) = a(0)ln[w + (1− w)e−λpqv] +
z∑

y=1

a(y)ln[(1− w)e−λppyqvLv−1
y (−λq)]. (12)

On differentiating the log-likelihood function equation (12) with respect to the parameters
w, p, v and λ and setting up to zero, we obtain the following equations,

∂lnL(w, p, v, λ|y)
∂w

=
a(0)(1− e−λpqv)

w + (1− w)e−λpqv
+

z∑
y=1

a(y)

1− w
= 0,

∂lnL(w, p, v, λ|y)
∂p

= −
a(0)(1− w)e−λpqv(λ+ v

q )

w + (1− w)e−λpqv
+

z∑
y=1

a(y)

[
y

p
− λ− v

q
+ λ

Lv−2
y−1(−λq)

Lv−1
y (−λq)

]
= 0,

∂lnL(w, p, v, λ|y)
∂v

=
a(0)(1− w)e−λpvqv−1

w + (1− w)e−λpqv
+

z∑
y=1

a(y)

[
v

q
+ λ

Lv−2
y−1(−λq)

Lv−1
y (−λq)

]
= 0,

and
∂lnL(w, p, v, λ|y)

∂λ
= −a(0)(1− w)e−λpqvp

w + (1− w)e−λpqv
+

z∑
y=1

a(y)

[
qLv−2

y−1(−λq)

Lv−1
y (−λq)

− p

]
= 0.

Maximum likelihood estimators of w, p, v, and λ are obtained by solving the above e-
quations simultaneously. The estimates can be obtained through numerical procedures and R
programming, refering Wickham and Grolemund [13].

In this following, a simulation is conducted to illustrate the behavior of the maximum
likelihood estimations. Simulations are carried out by taking samples of sizes n = 50, 100,
300, and 500 from ZINNB(w, p, v, λ) distribution for all combinations of w = 0.3, 0.8, p =
0.2, 0.6, v = 0.5, 3, and λ = 1, 4. For each configuration of the experiments, 1000 data sets
were generated. The maximum likelihood estimators for 16 groups of parameters with their
standard deviations and bias are computed by simulated annealing (SANN) method with R
software. The results are shown in Table 1, 2, 3 and 4.

As can be seen from Table 1, 2, 3 and 4, the sample size affects the estimator of parameters.
When the sample size is getting bigger, the estimators are getting better. And the standard
deviation values have decreasing trend, as the sample size increased. The bias values gets closer
and closer to zero as the sample size increases.

§5 Applications

In this section, we consider to apply our proposed distribution into two real data sets. The
first data set comes from labor mobility in the German Labor market, which measured how
often a person changed employers over a ten-year period from 1974 to 1984. The number of
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Table 1. Simulation of the maximum likelihood estimators for parameters with standard devi-
ation (sd) and bias of the ZINNB distribution. (n=50)

w p v λ ŵ (sd, bias) p̂ (sd, bias) v̂ (sd, bias) λ̂ (sd, bias)

0.3 0.2 0.5 4 0.212 (0.276, -0.095) 0.210 (0.071, 0.010) 0.433 (0.896, -0.083) 3.865 (0.946, -0.184)

0.3 0.2 0.5 1 0.197 (0.709, -0.131) 0.183 (0.551, -0.066) 0.542 (0.994, 0.043) 0.813 (1.325, -0.195)

0.3 0.2 3 4 0.286 (0.103, -0.014) 0.203 (0.124, 0.009) 2.928 (0.613, -0.098) 3.947 (0.777, -0.069)

0.3 0.2 3 1 0.260 (0.248, -0.060) 0.237 (0.127, 0.037) 2.819 (0.955, -0.183) 0.883 (1.019, -0.117)

0.3 0.6 0.5 4 0.321 (0.087, 0.010) 0.596 (0.046, -0.004) 0.502 (0.608, 0.044) 4.026 (0.659, 0.027)

0.3 0.6 0.5 1 0.227 (0.301, -0.063) 0.587 (0.115, -0.013) 0.595 (0.701, 0.096) 1.089 (0.826, 0.089)

0.3 0.6 3 4 0.309 (0.065, 0.032) 0.597 (0.034, -0.039) 3.001 (0.539, 0.017) 3.990 (0.555, -0.070)

0.3 0.6 3 1 0.304 (0.073, 0.031) 0.599 (0.056, -0.104) 2.998 (0.572, -0.018) 1.013 (0.633, 0.012)

0.8 0.2 0.5 4 0.725 (0.389, -0.075) 0.184 (0.208, -0.016) 0.456 (1.146, -0143) 3.839 (1.144, -0.164)

0.8 0.2 0.5 1 0.0.831 (1.223, 0.104) 0.138 (0.990, -0.313) 0.439 (0.559, -0.225) 0.859 (0.671, -0.316)

0.8 0.2 3 4 0.777 (0.095, -0.024) 0.202 (0.080, 0.063) 2.981 (0.913, -0.104) 3.931 (0.977, -0.086)

0.8 0.2 3 1 0.715 (0.338, -0.086) 0.188 (0.295, -0.094) 2.781 (1.159, -0.221) 0.949 (1.152, -0.251)

0.8 0.6 0.5 4 0.802 (0.075, 0.011) 0.587 (0.079, -0.013) 0.522 (0.111, 0.023) 4.006 (0.090, 0.025)

0.8 0.6 0.5 1 0.787 (0.358, -0.092) 0.564 (0.230, -0.037) 0.502 (0.269, 0.075) 1.016 (0.231, 0.064)

0.8 0.6 3 4 0.786 (0.061, -0.109) 0.593 (0.062, -0.085) 3.015 (0.754, 0.070) 4.022 (0.667, 0.048)

0.8 0.6 3 1 0.795 (0.068, -0.067) 0.593 (0.089, -0.081) 3.027 (0.307, 0.025) 1.059 (0.527, 0.059)

Table 2. Simulation of the maximum likelihood estimators for parameters with standard devi-
ation (sd) and bias of the ZINNB distribution. (n=100)

w p v λ ŵ (sd, bias) p̂ (sd, bias) v̂ (sd, bias) λ̂ (sd, bias)

0.3 0.2 0.5 4 0.243 (0.210, -0.057) 0.202 (0.045, 0.006) 0.439 (0.713, -0.062) 3.916 (0.750, -0.087)

0.3 0.2 0.5 1 0.249 (0.519, -0.103) 0.212 (0.300, 0.039) 0.523 (0.804, 0.023) 0.930 (1.111, -0.187)

0.3 0.2 3 4 0.294 (0.083, -0.006) 0.203 (0.036, 0.007) 2.942 (0.542, -0.061) 3.956 (0.513, -0.047)

0.3 0.2 3 1 0.285 (0.178, -0.042) 0.221 (0.096, 0.021) 2.899 (0.769, -0.103) 0.882 (0.792, -0.118)

0.3 0.6 0.5 4 0.302 (0.055, 0.009) 0.601 (0.032, -0.002) 0.501 (0.420, 0.016) 4.002 (0.413, 0.023)

0.3 0.6 0.5 1 0.353 (0.226, 0.058) 0.600 (0.091, 0.008) 0.533 (0.494, 0.032) 1.009 (0.602, 0.087)

0.3 0.6 3 4 0.299 (0.046, -0.029) 0.597 (0.024, -0.031) 2.997 (0.340, -0.021) 4.030 (0.384, 0.046)

0.3 0.6 3 1 0.302 (0.047, 0.028) 0.599 (0.037, -0.084) 3.014 (0.402, 0.012) 1.001 (0.409, -0.010)

0.8 0.2 0.5 4 0.767 (0.212, -0.033) 0.212 (0.113, 0.012) 0.476 (0.864, -0.124) 3.858 (0.888, -0.145)

0.8 0.2 0.5 1 0.806 (0.913, 0.073) 0.141 (0.699, -0.104) 0.426 (0.471, -0.223) 0.947 (0.459, -0.285)

0.8 0.2 3 4 0.789 (0.081, -0.011) 0.206 (0.053, 0.059) 2.898 (0.717, -0.095) 4.071 (0.737, 0.079)

0.8 0.2 3 1 0.749 (0.199, -0.051) 0.209 (0.225, 0.051) 2.830 (0.951, -0.172) 0.963 (0.939, -0.138)

0.8 0.6 0.5 4 0.802 (0.069, 0.007) 0.598 (0.059, -0.008) 0.497 (0.089, -0.013) 4.004 (0.078, 0.019)

0.8 0.6 0.5 1 0.745 (0.189, -0.056) 0.584 (0.132, -0.017) 0.501 (0.149, 0.066) 1.003 (0.157, 0.035)

0.8 0.6 3 4 0.799 (0.041, -0.105) 0.596 (0.038, -0.059) 32.994 (0.501, -0.069) 4.039 (0.406, 0.035)

0.8 0.6 3 1 0.797 (0.046, -0.032) 0.599 (0.059, -0.043) 2.997 (0.261, -0.019) 0.986 (0.494, -0.024)
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Table 3. Simulation of the maximum likelihood estimators for parameters with standard devi-
ation (sd) and bias of the ZINNB distribution. (n=300)

w p v λ ŵ (sd, bias) p̂ (sd, bias) v̂ (sd, bias) λ̂ (sd, bias)

0.3 0.2 0.5 4 0.287 (0.102, -0.014) 0.205 (0.034, 0.005) 0.465 (0.426, -0.036) 3.957 (0.381, -0.047)

0.3 0.2 0.5 1 0.288 (0.353, -0.091) 0.209 (0.163, 0.032) 0.527 (0.531, 0.027) 0.985 (0.767, -0.109)

0.3 0.2 3 4 0.297 (0.035, -0.002) 0.201 (0.013, 0.003) 2.988 (0.276, -0.015) 3.981 (0.268, -0.023)

0.3 0.2 3 1 0.305 (0.099, 0.017) 0.208 (0.057, 0.012) 2.949 (0.471, -0.054) 0.952 (0.455, -0.049)

0.3 0.6 0.5 4 0.291 (0.026, -0.004) 0.599 (0.015, -0.001) 0.494 (0.213, -0.007) 4.001 (0.227, 0.014)

0.3 0.6 0.5 1 0.280 (0.136, -0.021) 0.587 (0.053, -0.003) 0.512 (0.294, 0.012) 1.089 (0.361, 0.016)

0.3 0.6 3 4 0.301 (0.021, 0.018) 0.601 (0.012, 0.027) 2.999 (0.163, -0.012) 4.001 (0.185, -0.013)

0.3 0.6 3 1 0.301 (0.023, 0.013) 0.597 (0.021, -0.059) 2.998 (0.194, -0.005) 1.003 (0.234, 0.009)

0.8 0.2 0.5 4 0.786 (0.099, -0.015) 0.199 (0.046, -0.009) 0.525 (0.508, 0.065) 3.965 (0.518, -0.039)

0.8 0.2 0.5 1 0.794 (0.388, -0.034) 0.202 (0.322, 0.073) 0.483 (0.213, -0.121) 0.988 (0.233, -0.167)

0.8 0.2 3 4 0.797 (0.029, -0.004) 0.201 (0.025, 0.014) 2.986 (0.350, -0.021) 3.995 (0.387, -0.072)

0.8 0.2 3 1 0.786 (0.054, -0.015) 0.205 (0.064, 0.042) 2.927 (0.561, -0.075) 0.997 (0.518, -0.042)

0.8 0.6 0.5 4 0.801 (0.031, 0.003) 0.597 (0.029, -0.005) 0.498 (0.039, -0.012) 4.002 (0.045, 0.008)

0.8 0.6 0.5 1 0.822 (0.128, 0.028) 0.601 (0.074, 0.012) 0.521 (0.087, 0.050) 1.003 (0.121, 0.028)

0.8 0.6 3 4 0.787 (0.020, -0.076) 0.601 (0.020, 0.047) 3.002 (0.237, 0.034) 3.998 (0.283, -0.018)

0.8 0.6 3 1 0.794 (0.023, -0.019) 0.589 (0.031, -0.021) 3.012 (0.169, 0.006) 1.003 (0.307, 0.017)

Table 4. Simulation of the maximum likelihood estimators for parameters with standard devi-
ation (sd) and bias of the ZINNB distribution. (n=500)

w p v λ ŵ (sd, bias) p̂ (sd, bias) v̂ (sd, bias) λ̂ (sd, bias)

0.3 0.2 0.5 4 0.297 (0.064, -0.010) 0.201 (0.030, 0.001) 0.497 (0.273, -0.024) 4.008 (0.283, -0.034)

0.3 0.2 0.5 1 0.302 (0.259, 0.063) 0.232 (0.139, 0.032) 0.508 (0.452, 0.014) 0.963 (0.555, -0.094)

0.3 0.2 3 4 0.299 (0.025, -0.002) 0.200 (0.010, 0.001) 2.993 (0.189, -0.010) 3.994 (0.208, -0.009)

0.3 0.2 3 1 0.292 (0.084, -0.008) 0.194 (0.035, -0.003) 2.984 (0.313, -0.018) 1.008 (0.301, 0.029)

0.3 0.6 0.5 4 0.300 (0.018, 0.002) 0.599 (0.012, -0.001) 0.492 (0.153, -0.006) 4.002 (0.166, 0.009)

0.3 0.6 0.5 1 0.287 (0.083, -0.013) 0.600 (0.034, 0.002) 0.504 (0.215, 0.004) 1.006 (0.258, 0.005)

0.3 0.6 3 4 0.301 (0.015, 0.007) 0.603 (0.008, 0.015) 3.002 (0.124, -0.007) 4.005 (0.127, 0.005)

0.3 0.6 3 1 0.305 (0.017, 0.008) 0.598 (0.015, -0.048) 2.995 (0.147, -0.003) 0.998 (0.172, -0.003)

0.8 0.2 0.5 4 0.796 (0.044, -0.005) 0.204 (0.046, 0.004) 0.513 (0.379, 0.048) 3.977 (0.402, -0.027)

0.8 0.2 0.5 1 0.778 (0.301, -0.019) 0.207 (0.195, -0.037) 0.490 (0.137, -0.086) 0.989 (0.207, -0.145)

0.8 0.2 3 4 0.797 (0.018, -0.002) 0.200 (0.017, 0.002) 2.993 (0.265, -0.017) 4.011 (0.269, 0.014)

0.8 0.2 3 1 0.795 (0.036, -0.007) 0.204 (0.048, 0.014) 2.946 (0.365, -0.055) 0.965 (0.389, -0.036)

0.8 0.6 0.5 4 0.799 (0.024, -0.002) 0.600 (0.019, -0.004) 0.498 (0.032, -0.007) 4.001 (0.039, 0.003)

0.8 0.6 0.5 1 0.804 (0.080, 0.017) 0.601 (0.058, 0.001) 0.500 (0.053, 0.021) 0.994 (0.105, -0.003)

0.8 0.6 3 4 0.799 (0.013, -0.013) 0.600 (0.012, -0.033) 2.996 (0.174, -0.011) 3.985 (0.180, -0.006)

0.8 0.6 3 1 0.799 (0.015, -0.011) 0.597 (0.023, -0.009) 3.003 (0.119, 0.004) 1.009 (0.237, 0.008)
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participants was 807, and the detailed description of the data is shown in Winkelmann and
Zimmermann [14]. The second data set has a sample of 5190 people from the Australian health
survey, asking how many times they consulted a doctor or specialist in the two weeks prior to
the interview, for details see Winkelmann [15]. ZINNB distribution was used to fit these two
groups of data, and other existing distributions, such as, NNB, ZIP and ZINB distribution were
selected for comparison.

For comparing all models, we calculated the Akaike information criterion (AIC) and Bayesian
information criterion (BIC). All these data are shown in Table 5 and Table 6. In addition, the
comparison diagrams of each distribution fitting data are drawn in Figure 2 and Figure 3.

For the labor mobility data set, the value of the empirical dispersion index and the empirical
zero inflation index are d̃1 = 2.030 > 1 and z̃i = 0.303. We calculate the Chi-square test
statistic S = 131.642 > 15.086, so we reject the null hypothesis H0, in favor of H1 : w > 0.
In chi-square test, the defined classes for this example are {{0}, {1}, {2}, {3}, {4}, {5 and
above}}. Consequently, these empirical values show that this set of data is over-dispersed and
zero inflation exists. Based on the above results, we conducted a fitting analysis on this group
of data, and the results are shown in Table 5.

Table 5. Fit the labor mobility data using ZINNB, NNB, ZIP and ZINB distribution.

Count Observed frequency ZINNB NNB ZIP ZINB

0 465 478.13 321.40 450.99 596.07

1 183 162.13 249.36 157.59 44.80

2 89 92.06 135.33 114.74 30.71

3 39 44.01 61.51 55.70 23.11

4 17 18.87 25.01 20.28 18.16

5 5 7.49 9.40 5.91 14.63

6 1 2.81 3.33 1.43 11.99

7 6 1.00 1.13 0.30 9.94

8 0 0.35 0.37 0.05 8.31

9 1 0.12 0.12 0.01 6.99

10 1 0.04 0.04 0.001 5.91

total 807 807 807 807 807

Estimates of the parameters ŵ = 0.341 ŵ = 0.425 ŵ = 0.624

p̂ = 0.190 p̂ = 0.179

v̂ = 0.983 v̂ = 1.176 k̂ = 0.548

λ̂ = 3.982 λ̂ = 3.844 λ̂ = 1.456 µ̂ = 4.257

AIC 1998.67 2100.95 2030.18 2454.50

BIC 2017.44 2115.03 2039.57 2468.58

In this data set, we see that the AIC and BIC of each distribution are from small to large
are, ZINNB, ZIP, NNB, ZINB. Therefore, it can be seen that the ZINNB distribution gives
better fit to this set of data.

For the number of doctor consultations data set, the value of the empirical dispersion index
and the empirical zero inflation index are d̃1 = 2.111 > 1 and z̃i = 0.252. The Chi-square test
statistic S = 131.642 > 15.086, so we reject the null hypothesis H0, in favor of H1 : w > 0.
In chi-square test, the defined classes for this example are {{0}, {1}, {2}, {3}, {4}, {5 and
above}}. Consequently, these empirical values show that this set of data is over-dispersed and
zero inflation exists. Based on the above results, we conducted a fitting analysis on this group
of data, and the results are shown in Table 6.
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Figure 2. Using ZINNB, NNB, ZIP and ZINB distribution to fit the labor mobility data
comparison chart.

Table 6. Fit the number of doctor consultations data using ZINNB, NNB, ZIP and ZINB
distribution.

Count Observed frequency ZINNB NNB ZIP ZINB

0 4141 4146.25 3032.64 4245.33 4651.26

1 782 675.48 1449.65 407.59 132.32

2 174 256.15 505.45 305.21 83.21

3 30 81.20 149.57 152.36 59.61

4 24 22.98 39.86 57.05 45.32

5 9 6.01 9.86 17.09 35.65

6 12 1.48 2.31 4.26 28.67

7 12 0.35 0.52 0.91 23.41

8 5 0.08 0.11 0.17 19.33

9 1 0.02 0.02 0.03 16.11

total 5190 5190 5190 5190 5190

Estimates of the parameters ŵ = 0.559 ŵ = 0.766 ŵ = 0.827

p̂ = 0.121 p̂ = 0.119

v̂ = 0.973 v̂ = 0.627 k̂ = 0.411

λ̂ = 3.975 λ̂ = 3.850 λ̂ = 1.498 µ̂ = 3.379

AIC 7297.99 8359.10 7669.76 8997.86

BIC 7324.21 8378.76 7682.87 9017.52
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Figure 3. Using ZINNB, NNB, ZIP and ZINB distribution to fit the number of doctor consul-
tation data comparison chart.

According to the data in Table 6, the AIC and BIC for ZINNB distribution is relatively
small, which can be concluded that the ZINNB distribution gives better fit to this data.

From the above fitting results, it can be seen that the goodness of fit of different distributions
in different data sets may be different. On the whole, we can get the goodness of fit of ZINNB
distribution is relatively good from Figure 2 and Figure 3.

By looking at these two sets of data, we find that the data are overdispersed. In other words,
the variance of the count variable exceeds its mean. The reason why ZINNB distribution can
better fit these two sets of data may be that ZINNB is composed of other distributions and can
degenerate into other distributions under different cases, including extra parameters. Moreover,
the data sets are overdispersed, and the traditional discrete distributions cannot fit the data
well. Therefore, when the data set is over-dispersed, we can try to select ZINNB distribution
to fit the data.

§6 Conclusion

In this paper, the ZINNB distribution is introduced. Several important statistical properties
of the distribution are studied. The maximum likelihood estimation for parameters of the
ZINNB distribution is discussed. In order to illustrate the usefulness of this model, two real
data application are investigated. After comparing with the existing distributions, the results
showed that the ZINNB distribution had a good goodness of fit. Continued in-depth study
of the nature and the related regression models of ZINNB distribution will be the subject of
subsequent work.
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