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Unilateral global interval bifurcation for problem with

mean curvature operator in Minkowski space and its

applications

SHEN Wen-guo

Abstract. In this paper, we establish a unilateral global bifurcation result from interval for a

class problem with mean curvature operator in Minkowski space with non-differentiable nonlin-

earity. As applications of the above result, we shall prove the existence of one-sign solutions to

the following problem −div

(
∇v√

1−|∇v|2

)
= α(x)v+ + β(x)v− + λa(x)f(v), in BR(0),

v(x) = 0, on ∂BR(0),

where λ ̸= 0 is a parameter, R is a positive constant and BR(0) = {x ∈ RN : |x| < R} is

the standard open ball in the Euclidean space RN (N ≥ 1) which is centered at the origin and

has radius R. v+ = max{v, 0}, v− = −min{v, 0}, a(x) ∈ C(BR(0), (0,+∞)), α(x), β(x) ∈
C(BR(0)), a(x), α(x) and β(x) are radially symmetric with respect to x; f ∈ C(R,R), sf(s) > 0

for s ̸= 0, and f0 ∈ [0,∞], where f0 = lim|s|→0 f(s)/s. We use unilateral global bifurcation

techniques and the approximation of connected components to prove our main results. We also

study the asymptotic behaviors of positive radial solutions as λ → +∞.

§1 Introduction

Dirichlet problem in a ball, associated to the mean curvature operator in the flat Minkowski

space LN+1 with (x1, · · ·, xN , t) and the Lorentzian metric
∑N

i=1(dxi)
2 − (dt)2 are of interest

in differential geometry and in general relativity [1, 2].

We first consider the following problem with mean curvature operator in Minkowski space −div

(
∇v√

1−|∇v|2

)
= λa(x)v + g(x, v, λ), in BR(0),

v(x) = 0, on ∂BR(0),
(1)

where λ is a parameter, R is a positive constant and BR(0) = {x ∈ RN : |x| < R} is the

standard open ball in the Euclidean space RN (N ≥ 1) which is centered at the origin and
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has radius R. Here the nonlinear function g ∈ C(BR(0) × R2,R) and a(x) is a weighted

function. Some important and interesting results for this type of problems have been obtained,

see [3-4] for zero or constant curvature, and [5-9] for variable curvature. Some specialists [10-

12] have also studied problem (1). Among them, Treibergs [11] studied the problem (1) with

λa(x)u + g(x, u, λ) ≡ C. López [12] studied the problem (1) with a ≡ 0, g(x, u, λ) = kv + λ.

Recently, Bereanu et al. [13, 14] have proved existence of classical positive radial solutions for

the problem (1) by Leray-Schauder degree argument and critical point theory. As in [13, 14],

we can easily show that the radially symmetric solutions of the problem (1) satisfy the following

boundary value problem{
−
(
rN−1 u′

√
1−u′2

)′
= λrN−1a(r)u+ rN−1g(r, u, λ), r ∈ (0, R),

u′(0) = u(R) = 0,
(2)

where r = |x| and u(r) = v(|x|). By a solution to the problem (2), we mean a function

u = u(r) ∈ C1[0, R] with ∥u′∥∞ < 1, such that rN−1u′/
√
1− u′2 is differentiable and (2) is

satisfied. Here ∥ ·∥∞ denotes the usual sup-norm. In 2016, Ma et al. [15] and Dai et al. [16, 17]

studied the existence of radial positive solutions and nodal solutions to the problem (1) (where

λau+ g = λf(x, v)) by bifurcation techniques, respectively.

On the other hand, among the above papers, the nonlinearities are differentiable at the

origin. In [18], Berestycki established an important global bifurcation theorem from intervals for

a class of second-order problems involving non-differentiable nonlinearity. The main difficulties

caused by non-differentiable nonlinearity when dealing with this problem lie in the bifurcation

results of [16] which cannot be applied directly to obtain our results. In [19], the result in

[18] has been improved partially by Schmitt and Smith. Recently, Ma and Dai [20] improved

Berestycki’s result (in [18]). Later, Dai et al. [21] and [22, 23] considered interval bifurcation

problem for a class of second-order and high-dimensional problems involving non-differentiable

nonlinearity, respectively.

Motivated by above papers, in this paper, we shall establish a global bifurcation result from

interval for problem with mean curvature operator in Minkowski space with nondifferentiable

nonlinearity  −div

(
∇v√

1−|∇v|2

)
= λa(x)v + F (x, v, λ), in BR(0),

v(x) = 0, on ∂BR(0).
(3)

It is clear that the radial solutions of (3) is equivalent to the solutions of the following problem{
−
(
rN−1 u′

√
1−u′2

)′
= λrN−1a(r)u+ rN−1F (r, u, λ), r ∈ (0, R),

u′(0) = u(R) = 0,
(4)

where λ ̸= 0 is a parameter, r = |x| with x ∈ BR(0), the nonlinear term F has the form

F = f + g, where f, g ∈ C([0, R] × R2) are radially symmetric, and a, f, g satisfying the

following conditions:

(H1) a(r) ∈ C([0, R], (0,+∞)) is radially symmetric with respect to r.

(H2)
∣∣∣ f(r,s,λ)s

∣∣∣ ≤ M1, for all r ∈ [0, R], 0 < |s| ≤ R and all λ ∈ R, where M1 is a positive

constant.

(H3) g(r, s, λ) = o(|s|) near s = 0 uniformly in r ∈ [0, R] and λ on bounded sets.

(H4) There exists a function h(t, u) ∈ C([0, R] × [−R,R],R) with h(t, s)s > 0 for any

r ∈ [0, R] and s ̸= 0, such that g(t, u, λ) = λh(t, u).

Under the above assumptions, we shall show that [λ1 − d1, λ1 + d1] is a bifurcation interval
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of problem (4) and there are two distinct unbounded sub-continua, D+ and D−, consisting of

the bifurcation branch D from [λ1 − d1, λ1 + d1], where d1 = M1/a0, a0 = minr∈[0,1] a(r)(see

Theorem 3.1), λ1 be the first eigenvalue for the following linear eigenvalue problem{
−(rN−1u′)′ = λrN−1a(r)u, r ∈ (0, R),

u′(0) = u(R) = 0.
(5)

It is well-known that λ1 is simple, isolated and the associated eigenfunction has fixed sign in

[0, R) (see for example [24] or [25, p. 269]).

On the basis of the unilateral global interval bifurcation result (Theorem 3.1), we shall study

the following problem −div

(
∇v√

1−|∇v|2

)
= λa(x)v + α(x)v+ + β(x)v− + g(x, v, λ), in BR(0),

v(x) = 0, on ∂BR(0).
(6)

It is clear that the radial solutions of (6) is equivalent to the solutions of the following problem
−
(
rN−1 u′

√
1−u′2

)′
= λrN−1a(r)u+ α(r)rN−1u+ + β(r)rN−1u−

+rN−1g(r, u, λ), r ∈ (0, R),

u′(0) = u(R) = 0,

(7)

where λ ̸= 0 is a parameter, a(r) satisfies (H1), u+ = max{u, 0}, u− = −min{u, 0}, g satisfies

(H3) and (H4), α(r), β(r) satisfy:

(H5) α(r), β(r) ∈ C([0, R]) are radially symmetric.

Furthermore, we shall investigate the existence of one-sign solutions for the following prob-

lem  −div

(
∇v√

1−|∇v|2

)
= α(x)v+ + β(x)v− + λa(x)f(v), in BR(0),

v(x) = 0, on ∂BR(0).
(8)

It is clear that the radial solutions of (8) is equivalent to the solutions of the following problem{
−
(
rN−1 u′

√
1−u′2

)′
= α(r)rN−1u+ + β(r)rN−1u− + λa(r)rN−1f(u), r ∈ (0, R),

u′(0) = u(R) = 0,
(9)

where λ ̸= 0 is a parameter, a(r) satisfies (H1), α(r), β(r) satisfy (H5), f satisfy condition in

section 5.

The rest of this paper is arranged as follows. In Section 2, we give some Preliminaries.

In Section 3, we establish the global bifurcation result from the interval for the problem (4).

In Section 4, on the basis of the global interval bifurcation result(see Theorem 3.1), we shall

establish unilateral global bifurcation result for the problem (7) with jumping nonlinearity (see

Theorem 4.2). In Section 5, we shall investigate the existence of one-sign solutions for a class

of the problems (9) with jumping nonlinearity.

§2 Preliminaries

Let Y = C[0, R] with the norm ∥u∥∞ = maxr∈[0,R] |u(r)|. Let E := {u(r) ∈ C1[0, R]|u′(0) =

u(R) = 0} with the usual norm ∥u∥ = max{∥u∥∞, ∥u′∥∞}. Let P+ = {u ∈ E : u(r) > 0, r ∈
(0, R)} and set P− = −P+ and P = P+ ∪P−. Let K± = R×P± under the product topology,

R = (−∞,+∞). Let C± denote the closure in K± of the set of nontrivial solutions of (2).
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We consider the following auxiliary problem{
−(rN−1u′)′ = rN−1h(r), r ∈ (0, R),

u′(0) = u(R) = 0
(10)

for a given h ∈ Y . By a solution of the problem (10), we understand a function u ∈ E with

rN−1u′ absolutely continuous which satisfies (10).

We have known that for every given h ∈ Y , there is a unique solution u to the problem (10)

(see [26]). Let LN (h) denote the unique solution to (10), which can be equivalently written as

LN (h) =

∫ R

0

G(r, s)sN−1h(s)ds,

where G(r, s) be the Green’s function associated with the operator LN (u) := −(rN−1u′)′ with

the same boundary condition as in problem (10) (see [26]). And LN : Y → E is linear completely

continuous (see [26, (2.5)-p.502 to Line 4-p.503]).

Similar the process of obtaining [16, (2.1)-p.60] or [17, (2.1)-p.469], when a, g satisfying

(H1) and (H3), if u is a solution of problem (2), then for any r ∈ (0, R), one has that

rN−1[λa(r)u+ g(r, u, λ)] = −(rN−1u′)′
1√

1− u′2
− rN−1u′2u′′ 1

(1− u′2)
√
1− u′2

= −(N − 1)rN−2u′ 1√
1− u′2

− rN−1u′′ 1√
1− u′2

· 1

1− u′2 .

(11)

By (11), one obtains that

−u′′ = [λa(r)u+ g(r, u, λ)](1− u′2)
3
2 +

N − 1

r
u′(1− u′2). (12)

Substituting (12) into (11), it follows that

−(rN−1u′)′ = rN−1[λa(r)u+ g(r, u, λ)](1− u′2)
3
2 − (N − 1)rN−2u′3.

Thus, the problem (2) is equivalent to
−(rN−1u′)′ = λrN−1a(r)u(1− (u′)2)

3
2 + rN−1g(r, u, λ)(1− (u′)2)

3
2

−(N − 1)rN−2(u′)3, r ∈ (0, R),

u′(0) = u(R) = 0

(13)

as a bifurcation problem from the trivial solution axis.

Define the Nemitskii operator H : R× E → E by

H(λ, u)(r) := λrN−1a(r)u(r) +K1(r, u, λ),

where

K1(r, u, λ) = rN−2
[
λa(r)ru

(
(1− (u′)2)

3
2 − 1

)
+ rg(r, u, λ)

(
1− (u′)2

) 3
2 − (N − 1)(u′)3

]
.

Furthermore, it is clear that the problem (2) can be equivalently written as

u = λLNu+ LN ◦K1(u) = LN ◦H(λ, u) = F (λ, u),

where

LNu =

∫ R

0

G(t, s)sN−1a(s)u(s)ds, LN ◦K1(u) =

∫ R

0

G(t, s)K1(s, u(s), λ)ds.

And LN ◦K1 : R×E → E is completely continuous (see [16, 17, 26]). Moreover, F is completely

continuous from R× E → E and F (λ, 0) = 0,∀λ ∈ R.
Let

g(r, u, λ) = max
0≤|s|≤u

|g(r, s, λ)| for r ∈ [0, R] and λ on bounded sets,
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then g is nondecreasing and

lim
u→0+

g(r, u, λ)

u
= 0 (14)

uniformly for r ∈ [0, R] and λ on bounded sets. Further it follows from (14) that

|g(r, u, λ)|
∥u∥

≤ g(r, u, λ)

∥u∥
≤ g(r, ∥u∥∞, λ)

∥u∥
≤ g(r, ∥u∥, λ)

∥u∥
→ 0 as ∥u∥ → 0 (15)

uniformly for r ∈ [0, R] and λ on bounded sets. By (15), it follows that

|g(r, u, λ)(1− (u′)2)
3
2 |

∥u∥
→ 0 as ∥u∥ → 0 (16)

uniformly for r ∈ [0, R] and λ on bounded sets.

By the proof of Theorem 1.1 of [16 or 17], we have that

(N − 1)(u′)3

r∥u∥
→ 0,

λa(r)u((1− (u′)2)
3
2 − 1)

∥u∥
→ 0 as ∥u∥ → 0. (17)

By (16) and (17), we have that

K1(r, u, λ)

∥u∥
→ 0 as ∥u∥ → 0 (18)

uniformly for r ∈ [0, R] and λ on bounded sets.

Applying the similar proof of Theorem 1.1 in [16], by [26, Theorem 1.3], we may obtain the

following result.

Lemma 2.1(see [16, Theorem 1.1]). Assume (H1) and (H3) hold. Then (λ1, 0) is a bifur-

cation point of the problem (2). Moreover, there exists an unbounded component C of the set

of solution of problem (2) in R×E bifurcating from (λ1, 0) such that C ⊂ ((R+×P )∪{(λ1, 0)})
and limλ→∞ ∥uλ∥ = max{1, R} for (λ, uλ) ∈ C \ {(λ1, 0)}. In addition, (λ1, 0) is the unique

bifurcation point on R× {0} of solutions of problem (2).

Furthermore, by Dancer [27, Theorem 2], using the similar method to prove [17, Theorem

1.1-p.471] with obvious changes, one can obtain that the problem (2) has two distinct unbound-

ed sub-continua C+ and C−, consisting of the bifurcation branch C emanating from (λ1, 0),

which satisfy:

Lemma 2.2. Both C+ and C− are unbounded and

Cν ⊂ ((R× P ν) ∪ {(λ1, 0)}),
where ν ∈ {+,−}.

Next, we give an important lemma which will be used later.

Lemma 2.3 (see[28, p.382]). Let L[y] = (rN−1y′)′, L[z] = (rN−1z′)′, where y, z ∈ C1[0, R],

z ̸= 0 in (0, R). Then we have the following identity:

d

dt

[
yrN−1

z
(zy′ − yz′)

]
= rN−1

[
|y′|2 + |y

z
z′|2 − 2y′(

yz′

z
)

]
+

[y
z
(zL[y]− yL[z]

]
.

Remark 2.1 (see [29]). By Young’s inequality, we get

rN−1

[
|y′|2 + |y

z
z′|2 − 2y′(

yz′

z
)

]
≥ 0

and the equality holds if and only if (yz )
′ = 0, t ∈ (0, R), i.e. u = kv for some constant k in each

component of (0, R).
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By Lemma 2.3 and Remark 2.1, we have the following result:

Lemma 2.4. Let L[y] is given in Lemma 2.3, y′(0) = y(R) = 0, y(t) > 0, z(t) > 0, t ∈ (0, R).

z(t) is a solution for the problem (5), we have∫ R

0

y

z
(zL[y]− yL[z]) dr ≤ 0.

In order to treat the problems with non-asymptotic nonlinearity at 0 and ∞, we use Why-

burn type superior limit theorems. From [30], if the collection of the infinite sequence of sets

is unbounded, the Whyburn’s limit theorem [31, Theorem 9.1] cannot be used directly because

the collection may not be relatively compact (where the definitions of superior limit and inferior

limit, reference see [30, line 11 to line 16]). Dai [30] overcomed this difficulty and established

the following results. In order to treat the problems with non-asymptotic nonlinearity at 0 and

∞, we shall need the following lemmas.

Lemma 2.5 (see [30, Lemma 2.5]). Let X be a normal space and let {Cn|n = 1, 2, ...} be

a sequence of unbounded connected subsets of X. Assume that:

(1) there exists z∗ ∈ lim infn→+∞ Cn with ∥z∗∥ < +∞;

(2) for every R > 0,
(
∪+∞
n=1Cn

)
∩BR is a relatively compact set of X, where

BR = {x ∈ X|∥x∥ ≤ R}.
Then D := lim supn→∞ Cn is unbounded, closed and connected.

Lemma 2.6 (see [30, Theorem 1.2]). Let X be a normal vector space and let {Cn|n = 1, 2, ...}
be a sequence of unbounded connected subsets of X. Assume that:

(1) there exists z∗ ∈ lim infn→+∞ Cn with ∥z∗∥ = +∞;

(2) There exists a homeomorphism T : X → X such that ∥T (z∗)∥ < +∞ and {T (Cn)} be

a sequence of unbounded connected subsets in X ;

(3) for every R > 0,
(
∪+∞
n=1Cn

)
∩BR is a relatively compact set of X, where

BR = {x ∈ X|∥x∥ ≤ R}.
Then D := lim supn→∞ Cn is unbounded, closed and connected.

Lemma 2.7 (see [30, Lemma 2.6]). Let (X, ρ) be a metric space. If {Ci}i∈N is a sequence

of sets whose limit superior is L and there exists a homeomorphism T : X → X such that for

every R > 0,
(
∪+∞
i=1T (Ci)

)
∩ BR is a relatively compact set, then for each ϵ > 0 there exists

an m such that for every n > m,Cn ⊂ Vϵ(L), where Vϵ(L) denotes the set of all points p with

ρ(p, x) < ϵ for any x ∈ L.

§3 Unilateral global interval bifurcation

Similar to the process of obtaining (13), when a, f, g satisfy (H1), (H2), (H3) and (H4),

we obtain that the problem (4) is equivalent to{
−(rN−1u′)′ = λrN−1a(r)u+ rN−1K2(r, u, λ), r ∈ (0, R),

u′(0) = u(R) = 0,
(19)
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where

K2(r, u, λ) =λa(r)u((1− (u′)2)
3
2 − 1) + f(r, u, λ)(1− (u′)2)

3
2

+ g(r, u, λ)(1− (u′)2)
3
2 − (N − 1)

r
u′3.

Let S ± denote the closure in K± of the set of nontrivial solutions of (4).

Using the similar method to prove [17, Lemma 2.1], by (19), we may easily obtain the fol-

lowing result.

Lemma 3.1 (see [17, Lemma 2.1]). If (λ, u) is a nontrivial solution of (4) under assumptions

(H1), (H2) and (H3) and u has a double zero, then u ≡ 0.

The first main result for (4) is the following theorem.

Theorem 3.1 Let (H1), (H2), (H3) and (H4) hold. Let d1 = M1/a0, where a0 = minr∈[0,1] a(r),

and let I = [λ1−d1, λ1+d1]. The component C ν of S ν∪(I×{0}) contains I×{0}, for ν = +,−
and such that

(i) C ν ⊂ (Kν ∪ (I × {0}));
(ii) C ν is unbounded;

(iii) limλ→∞ ∥uλ∥ = max{1, R} for (λ, uλ) ∈ C ν \ (I × {0}).
To prove Theorem 3.1, we introduce the following auxiliary approximate problem:{
−
(
rN−1 u′

√
1−u′2

)′
= λrN−1a(r)u+ rN−1f(r, u|u|ϵ, λ) + rN−1g(r, u, λ), r ∈ (0, R),

u′(0) = u(R) = 0.
(20)

By (19), the problem (20) is equivalent to{
−(rN−1u′)′ = λrN−1a(r)u+ rN−1K3(r, u, λ), r ∈ (0, R),

u′(0) = u(R) = 0,

where

K3(r, u, λ) =λa(r)u((1− (u′)2)
3
2 − 1) + f(r, u|u|ϵ, λ)(1− (u′)2)

3
2

+ g(r, u, λ)(1− (u′)2)
3
2 − (N − 1)

r
u′3.

To prove Theorem 3.1, the next lemma will play a key role.

Lemma 3.2. Let ϵn, 0 < ϵn < 1, be a sequence converging to 0. If there exists a sequence

(λn, un) ∈ R× P ν such that (λn, un) is a nontrivial solution of problem (20) corresponding to

ϵ = ϵn, and (λn, un) converges to (λ, 0) in R× E, then λ ∈ I.

Proof. Without loss of generality, we may assume that ∥un∥ ≤ 1. Let wn = un/∥un∥,
then wn satisfies the problem{

−(rN−1w′
n)

′ = λnr
N−1a(r)wn + rN−1K3(r,un,λn)

∥un∥ , r ∈ (0, R),

w′
n(0) = wn(R) = 0.

Clearly, (H2) implies that

|f(r, un|un|ϵn , λn)(1− (u′
n)

2)
3
2 |

∥un∥
≤ |f(t, un|un|ϵn , λn)|

un|un|ϵn
· un|un|ϵn

∥un∥
≤ M1 · |un|ϵn → M1

(21)

uniformly in r ∈ [0, R].
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Note that ∥wn∥ = 1 implies ∥wn∥∞ ≤ 1. By (15) and (21), we have that λnr
N−1a(r)wn +

rN−1K3(r, un, λn)/∥un∥ is bounded in C2[0, R] for n large enough. The compactness of LN

implies that wn is convergent in E. Without loss of generality, we may assume that wn → w in

E with ∥w∥ = 1. Clearly, we have w ∈ P ν . We claim that w ∈ P ν . On the contrary, suppose

that w ∈ ∂P ν , by Lemma 3.1, then w ≡ 0, which is a contradiction with ∥w∥ = 1.

Now, we deduce the boundedness of λ. Let φν ∈ P ν be an eigenfunction of problem (5)

corresponding to λ1.

We can assume without loss of generality that ν = +. By the Lemma 2.4, it follows that∫ R

0

wn

φ+

(
φL[wn]− wnL[φ

+]
)
dr

=

∫ R

0

(λ1 − λn)a(r)r
N−1(φ+)2dr −

∫ R

0

rN−1K3(r, un, λn)

∥un∥
(φ+)2dr ≤ 0.

(22)

Similarly, we can also show that∫ R

0

(λn − λ1)a(r)r
N−1w2

ndr +

∫ R

0

rN−1K3(r, un, λn)

∥un∥
w2

ndr ≤ 0. (23)

If λ ≤ λ1, considering (15), (21) and (22), we have that∫ R

0

(λ1 − λ)a(r)rN−1(φ+)2 ≤ lim
n→∞

∫ R

0

rN−1K3(r, un, λn)

∥un∥
(φ+)2dr ≤

∫ R

0

M1r
N−1(φ+)2dr.

Hence, we get that ∫ R

0

(λ1 − λ)a0r
N−1(φ+)2 ≤

∫ R

0

M1r
N−1(φ+)2dr,

which implies λ ≥ λ1 − d.

If λ ≥ λ1, considering (15), (21) and (23), we have that∫ R

0

(λ− λ1)a(r)r
N−1w2

ndr ≤
∫ R

0

M1r
N−1w2dr.

Hence, we get that λ ≤ λ1 + d. Therefore, we have that λ ∈ I.

Proof of Theorem 3.1. We only prove the case of C+ since the case of C− is similar. Let

C+ be the component of S + ∪ (I × {0}), containing I × {0}.
We divide the proofs into the following several steps.

(i) We show that C ν ⊂ (Kν ∪ (I×{0})). Using the similar method to prove Theorem 1.1 of

[21, Line 13-20 of p.107] with obvious changes, we may prove that C+ ⊂ (R×P+)∪ (I ×{0}).
(ii) We prove that C+ is unbounded.

Suppose on the contrary that C+ is bounded. Using a proof similar to that of Theorem 1

of [18] with obvious changes, we can find a neighborhood O of C+ such that S + ∩ ∂O = ∅.
In order to complete the proof of this theorem, we consider the problem (20). For ϵ > 0, it

is easy to show that nonlinear term f(r, u|u|ϵ, λ) + g(r, u, λ) satisfies the condition (H3). Let

Sϵ = {(λ, u) : (λ, u) satisfies (20) andu ̸≡ 0}
R×E

.

By Lemma 2.2, there exists an unbounded continuum C ν
ϵ of S ν

ϵ bifurcating from (λ1, 0) such

that

C ν
ϵ ⊂ (R× P ν) ∪ {(λ1, 0)}, for ν = + and − .

So there exists (λϵ, uϵ) ∈ C+
ϵ ∩ ∂O for all ϵ > 0. Since O is bounded in R×P+, Eq. (20) shows

that (λϵ, uϵ) is bounded in R × C2 independently of ϵ. By the compactness of LN , one can

find a sequence ϵn → 0 such that (λϵn , uϵn) converges to a solution (λ, u) of (4). So, u ∈ P ν , if

u ∈ ∂P ν , then from Lemma 3.1 follows that u ≡ 0. By Lemma 3.2, λ ∈ I, which contradicts



SHEN Wen-guo. Unilateral global interval bifurcation for problem with mean... 167

the definition of O. If u ∈ P+, then (λ, u) ∈ S + ∩ ∂O which contradicts S + ∩ ∂O = ∅.

(iii) Now, we shall prove that limλ→∞ ∥u∥ = max{1, R}. For any (λn, un) ∈ C+ \ (I ×
{0}) with λn → +∞ as n → +∞.

Same as the proof of Theorem 1.1 of [16, Line 8 of p.62 to Line 19 of p.63], there exist

a positive constant τ0 > 0 and ρn ∈ (0, R) such that un(ρ) ≥ σ0 for n large enough, where

ρ ∈ (0, ρ∗), ρ∗ = lim infn→+∞ ρn, and one may obtain that un(r) ∈ [σ0, R] for any r ∈ [ρ/4, ρ].

By (H4), letting h1 = min[ρ/4,ρ]×[τ0,R] h(t, un). It follows that g(t, un, λn) ≥ λnh1. Now,

integrating the first equation of problem (4) from ρ/2 to r for any r ∈ [ρ/2, ρ] and n large

enough, we get that

rN−1 u′
n√

1− u′2
n

= −
∫ r

ρ/2

tN−1[λna(t)un + f(t, un, λn) + g(t, un, λn)]dt.

Set a0 = mint∈[ρ/2,ρ] a(t). By simple computation, we can show that

|λna(t)un + f(t, un, λn) + g(t, un, λn)| ≥ |λnτ0(a0 + h1)−RM | for all t ∈ [0, R].

Moreover, we have that

1√
1− ∥u′

n∥2∞
≥ 1√

1− u′2
n

≥ | u′
n√

1− u′2
n

|

= | 1

rN−1

∫ r

ρ/4

tN−1[λna(t)u+ f(t, un, λn) + g(t, un, λn)]dt|

≥ |λnτ0(a0 + h1)−RM |
NrN−1

∫ r

ρ/4

tN−1dt

=
|λnτ0(a0 + h1)−RM |

rN−1
(rN − (ρ/4)N )

≥ |λnτ0(a0 + h1)−RM |
NρN−1

((ρ/2)N − (ρ/4)N ) ≥ |λnτ0(a0 + h1)−RM |ρ
N2N

(1− 1

2N
)

By limn→+∞ λn = +∞, it follows that limn→+∞ ∥u′
n∥∞ = 1. Noting that

|un(r)| = |
∫ r

R

un(t)dt| ≤
∫ r

R

|un(t)
′|dt ≤ ∥u′

n∥∞R.

Thus, one may obtain that limλ→∞ ∥u∥ = max{1, R}.

From Theorem 3.1 and its proof, we can easily get a corollary.

Corollary 3.1. There exist two sub-continua C+ and C− of solutions of (4) in R × E, b-

ifurcating from I × {0}, for ν = +,− and such that

(i) C ν ⊂ ((R× P ν) ∪ (I × {0}));

(ii) C ν is unbounded;

(iii) limλ→∞ ∥uλ∥ = max{1, R} for (λ, uλ) ∈ C ν \ (I × {0}).

Remark 3.1. If K2 = f + g satisfies the conditions (H2) and (H3), then the conclusions

of Theorem 3.1 and Corollary 3.1 are valid for the problem (19).
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§4 Unilateral global bifurcation for the problem (7)

Consider the following auxiliary problem{
−(rN−1u′)′ = λrN−1a(r)u+ αrN−1u+ + βrN−1u−, r ∈ (0, R),

u′(0) = u(R) = 0.
(24)

By a similar argument of [23, Theorem 2], we can obtain the following theorem.

Theorem 4.1. There exist two simple half-eigenvalues λ+ and λ− for problem (24). The

corresponding half-linear solutions are in {λ+}×P+ and {λ−}×P−. Furthermore, aside from

λ+ and λ−, there is no other half-eigenvalue with positive or negative eigenfunction.

Proof. By Theorem 3.1 and Remark 3.1, we know that there exists at least one solution

of problem (24), (λν , uν) ∈ R× P ν , for every ν = + and ν = − . The positive homogeneous of

problem (24) implies that {(λν , cuν), c > 0} are half-linear solutions in {λν} × P ν . Lemma 3.1

implies that any nontrivial solution u of problem (24) lies in some P ν . We claim that for any

solution (λ, u) of problem (24) with u ∈ P ν ,

Using the similar method to prove [23, Theorem 2], we may prove that λ = λν and u = cuν

for some positive constant c. Similar the process of obtaining (13), one may get that the problem

(7) is equivalent to{
−(rN−1u′)′ = λrN−1a(r)u+ rN−1(αu+ + βu−) + rN−1K4(r, u, λ), r ∈ (0, R),

u′(0) = u(R) = 0,
(25)

where

K4(r, u, λ) =(λa(r)u+ αu+ + βu−)
(
(1− (u′)2)

3
2 − 1

)
+ g(r, u, λ)(1− (u′)2)

3
2 − N − 1

r
u′3.

Furthermore, it is clear that the problem (25) can be equivalently written as

u = λLNu+ LN ◦K5(u) = F1(λ, u),

where

K5(r, u, λ) = αu+ + βu− +K4(r, u, λ), LNu =

∫ R

0

G(t, s)sN−1a(s)u(s)ds,

LN ◦K5 =

∫ R

0

G(t, s)sN−1K5(s, u(s), λ)ds.

And LN ◦K5 : R×E → E is completely continuous (see [16, 17, 26]). Moreover, F1 is completely

continuous from R× E → E and F1(λ, 0) = 0, ∀λ ∈ R.
Similar to Lemma 2.2 in [17], we may get the following lemmas:

Lemma 4.1. For fixed λ > 0, if {uk} is a sequence of solutions of problem (7) satisfies

limk→+∞ uk = 0 uniformly in r ∈ [0, R], then limk→+∞ u′
k = 0 and limk→+∞ u′′

k = 0 uniformly

in r ∈ [0, R].

Proof. Integrating the first equation of problem (7) from 0 to r for any r ∈ [0, R], we get

that

rN−1 u′
k√

1− u′2
k

= −
∫ r

0

[αtN−1u+
k + βtN−1u−

k + tN−1g(t, uk, λ)]dt.
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By (H3), we have that limk→+∞ g(t, uk, λ) = 0 uniformly t ∈ [0, R] and λ on bounded sets. It

follows that limk→+∞ u′
k = 0 uniformly in r ∈ [0, R].

Similar to method of obtaining (12), for any r ∈ (0, R), one has that

−u′′
k = [λa(r)uk + αu+

k + βu−
k + g(r, uk, λ)](1− u′2

k )
3
2 +

N − 1

r
u′
k(1− u′2

k ). (26)

By limk→+∞ uk = 0 and limk→+∞ u′
k = 0 uniformly in r ∈ [0, R] together with (26), it follows

that limk→+∞ u′′
k = 0 uniformly in r ∈ (0, R).

Taking the limit r → 0+ on both sides of the (26), together with limr→0+ uk(r) = 0 and

limr→0+ u′
k(r) = 0, by L’Hospital’s rule, we have that

− lim
r→0+

u′′
k(r) = lim

r→0+

(N − 1)u′
k(r)(1− u′2

k (r))

r

= lim
r→0+

(N − 1)[u′′
k(r)(1− u′2

k )(r)) + u′
k(−2)u′

ku
′′
k ]

1
= lim

r→0+
(N − 1)u′′

k(r).

We obtain that limr→0+ u′′
k(r) = 0.

By limr→R− uk(r) = limr→R− u′
k(r) = 0, taking the limit r → R− on both sides of the (26),

we may get that limr→R− u′′
k(r) = 0.

Moreover, it follows that limk→+∞ u′′
k = 0 uniformly in r ∈ [0, R].

Lemma 4.2. For fixed λ > 0, if u is a solutions of problem (7) satisfies u → 0 uniformly

in r ∈ [0, R], then

lim
u→0+

(1− (u′)2)
3
2 − 1

u
= 0, lim

u→0+

(N − 1)(u′)3

u
= 0.

Proof. From Lemma 4.1, we have that limu→0 u
′ = 0 and limu→0 u

′′ = 0 uniformly in r ∈ [0, R].

By L’Hospital’s rule, we have

lim
u→0+

(1− (u′)2)
3
2 − 1

u
= lim

u→0+

3
2 (1− (u′)2)

1
2 · (−2u′u′′)

u′ = lim
u→0+

3

2
(1− (u′)2)

1
2 · (−2u′′) = 0

and

lim
u→0+

(N − 1)(u′)3

u
= lim

u→0+

(N − 1)3(u′)2u′′

u′ = lim
u→0+

3(N − 1)u′u′′ = 0.

Using a similar method to prove [21, Theorem 3.3](or [22, Theorem 3.2]), we may obtain

the following result.

Theorem 4.2. For ν = +,−, (λν , 0) is a bifurcation point for problem (7). Moreover, there

exists an continuum Dν of solutions of problem (7), for ν = +,− and such that

(i) Dν ⊂ ((R× P ν) ∪ {(λν , 0)});
(ii) Dν is unbounded;

(iii) Dν ∩ (R× {0}) = (λν , 0);

(iv) limλ→∞ ∥uλ∥ = max{1, R} for (λ, uλ) ∈ (Dν \ {(λν , 0)}).

Proof. By (14), we have

|g(r, u, λ)|
|u|

≤ g(r, u, λ)

|u|
≤ g(r, |u|, λ)

|u|
→ 0 as |u| → 0
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uniformly for r ∈ [0, R] and λ on bounded sets. It follows that

lim
|u|→0

g(r, u, λ)(1− (u′)2)
3
2

|u|
= 0. (27)

By Lemma 4.2, one obtain that

(λa(r)u+ αu+ + βu−)
(
(1− (u′)2)

3
2 − 1

)
((1− (u′)2)

3
2 − 1)

|u|
→ 0,

(N − 1)(u′)3

r|u|
→ 0 as |u| → 0.

(28)

By (27) and (28), we have that

K4(r, u, λ)

|u|
→ 0 as |u| → 0 (29)

uniformly for r ∈ [0, R] and λ on bounded sets. Let α0 := maxr∈[0,R] |α(r)| and β0 :=

maxr∈[0,R] |β(r)|. For 0 < |u| ≤ R, one get that |(αu+ + βu−)/u| ≤ α0 + β0. Let

I0 =

[
λ1 −

α0 + β0

a0
, λ1 +

α0 + β0

a0

]
.

Corollary 3.1 and Remark 3.1 show that there exist two unbounded sub-continua D+ and D−

of solutions of (25) in R × E, bifurcating from I0 × {0}, and Dν ⊂ (R × P ν) ∪ (I0 × {0}) for

ν = + and ν = −, in other words, (i) and (ii) hold.

(iii) Let us show that Dν ∩ (R× {0}) = (λν , 0), i.e. (λν , 0) is the unique bifurcation point

for problem (7). Otherwise, there exists (λn, un) be a sequence of solutions of problem (7) such

that λn → λ and un → 0. By ∥un∥ for the two side of (25) and letting vn = un

∥un∥ , we have that

vn should be a solution of problem

vn = LN

[
λrN−1a(r)vn + α(r)rN−1v+n + β(r)rN−1v−n +

rN−1K4(r, un, λn)

∥un∥

]
.

Same as method of obtaining (18), we have that

K4(r, un, λn)

∥un∥
→ 0 as ∥un∥ → 0 (30)

uniformly for r ∈ [0, R] and λ on bounded sets.

By (30) and the compactness of LN , we obtain that for some convenient subsequence vn → v0
as n → +∞. Now v0 verifies the equation

−(rN−1v′0)
′ = λa(r)rN−1v0 + α(r)rN−1v+0 + β(r)rN−1v−0 (31)

and ∥v0∥ = 1. By (31), it follows that λ = λν for ν ∈ {+,−}.

(iv) Now, we shall prove that limλ→∞ ∥uλ∥ = max{1, R}. For any (λn, un) ∈ C+ \{(λ+, 0)}
with λn → +∞ as n → +∞.

Same as the proof of Theorem 3.1, integrating the first equation of problem (7) from ρ/2 to

r, for any r ∈ [ρ/2, ρ] and and n large enough, we get that

rN−1 u′
n√

1− u′2
n

= −
∫ r

ρ/2

tN−1[λna(t)un + αu+
n + βu−

n + g(t, un, λn)]dt.

Set α0 := maxt∈[ρ/4,ρ] |α(t)| and β0 := maxt∈[ρ/4,ρ] |β(t)|. Similar to the proof of Theorem 3.1,
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we have that
1√

1− ∥u′
n∥2∞

≥ 1√
1− u′2

n

≥ | u′
n√

1− u′2
n

|

= | 1

rN−1

∫ r

ρ/2

tN−1[λna(t)u+ αu+
n + βu−

n + g(t, un, λn)]dt|

≥ |λnσ0(a0 + h1)−R(α0 + β0)|
NrN−1

∫ r

ρ/2

tN−1dt

≥ |λnσ0(a0 + h1)−R(α0 + β0)|ρ
N2N

((1− 1

2N
).

By limn→+∞ λn = +∞, it follows that limn→+∞ ∥u′
n∥∞ = 1. Noting that

|un(r)| = |
∫ r

R

un(t)dt| ≤
∫ r

R

|un(t)
′|dt ≤ ∥u′

n∥∞R.

Thus, one may obtain that limλ→∞ ∥u∥ = max{1, R}.

Remark 4.1. Theorem 4.2 indicates that the bifurcation interval I0 = {λ+, λ−}, i.e., for

problem (7), the bifurcation interval I0 is a finite point set. What conditions can ensure that

the component indeed bifurcating from an interval is still an open problem for the problems

with mean curvature operator in Minkowski space.

§5 Radial one-sign solutions for the problem (9)

Following Theorem 4.2, we shall investigate the existence of one-sign solutions for the prob-

lem (9), where a(r), α(r) and β(r) satisfying the condition (H1) and (H5), respectively. We

assume that f satisfies the following assumptions:

(H6) sf(s) > 0 for s ̸= 0.

(H7) f0 ∈ (0,∞).

(H8) f0 = ∞.

(H9) f0 = 0.

where

f0 = lim
|s|→0

f(s)

s
.

Applying Theorem 4.2 to problem (9), we have the following result.

Theorem 5.1. Let (H1), (H5), (H6) and (H7) hold. For ν = +,−, (λ
ν

f0
, 0) is a bifurca-

tion point for problem (9). Moreover, there exists an continuum Dν of solutions of problem

(9), for ν = +,− and such that

(i) Dν ⊂ ((R× P ν) ∪ {(λ
ν

f0
, 0)});

(ii) Dν is unbounded;

(iii) Dν ∩ (R× {0}) = (λ
ν

f0
, 0);

(iv) limλ→∞ ∥uλ∥ = max{1, R} for (λ, uλ) ∈ (Dν \ {(λ
ν

f0
, 0)}).

Proof of Theorem 5.1. Let ζ ∈ C(R,R) be such that

f(u) = f0u+ ζ(u)

with lim|u|→0
ζ(u)
u = 0.
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Same the process of getting (13), one obtain that the problem (9) is equivalent to
−(rN−1u′)′ = λrN−1a(r)f0u+ αrN−1u+ + βrN−1u−

+λrN−1K6(r, λ, u), r ∈ (0, R),

u′(0) = u(R) = 0,

(32)

where

K6(r, λ, u) =(λa(r)f0u+ αu+ + βrN−1u−)((1− (u′)2)
3
2 − 1)

+ a(r)ζ(u)(1− (u′)2)
3
2 − N − 1

r
u′3.

Using the similar method to prove (29), one get

K6(r, λ, u)

|u|
→ 0 as |u| → 0

uniformly for r ∈ (0, R) and λ on bounded sets.

Let us consider the problem (32) as a bifurcation problem from the trivial solution u ≡ 0.

Applying Theorem 4.2 to problem (32), we have the following result.

For ν = +,−, (λ
ν

f0
, 0) is a bifurcation point for problem (32). Moreover, there exists an

unbounded continuum Dν of solutions of problem (32), such that Dν ⊂ ((R×P ν)∪{(λ
ν

f0
, 0)}),

i.e., (i) and (ii) hold.

By Theorem 4.2 (iii), (iv), we may get the results of Theorem 5.1 (iii) and (iv).

Theorem 5.2. Let (H1), (H5), (H6) and (H8) hold. For ν = +,−, (0, 0) is a bifurca-

tion point for problem (9). Moreover, there exists an continuum Dν of solutions of problem

(9), for ν = +,− and such that

(i) Dν is unbounded;

(ii) Dν joins (0, 0) to (∞,max{1, R});
(iii) Dν ⊂ ((R× P ν) ∪ {(0, 0)});
(iv) Dν ∩ (R× {0}) = {(0, 0)}.

Proof of Theorem 5.2. Inspired by the idea of [32], we define the cut-off function of f

as the following

f [n](s) :=


ns, s ∈ [− 1

n ,
1
n ],[

f( 2n )− 1
]
(ns− 2) + f( 2n ), s ∈ ( 1n ,

2
n ),

−
[
f(− 2

n ) + 1
]
(ns+ 2) + f(− 2

n ), s ∈ (− 2
n ,−

1
n ),

f(s), s ∈ (−∞,− 2
n ] ∪ [ 2n ,+∞).

We consider the following problem{
−
(
rN−1 u′

√
1−u′2

)′
= αrN−1u+ + βrN−1u− + λrN−1a(r)f [n](u), r ∈ (0, R),

u′(0) = u(R) = 0.
(33)

Clearly, we can see that limn→+∞ f [n](s) = f(s), (f [n])0 = n.

Similar the proof of Theorem 5.1, there exists an unbounded continuum Dν[n] of solutions

of the problem (33) emanating from (λ
ν

n , 0), such that Dν[n] ⊂ ((R × P ν) ∪ {(λ
ν

n , 0)}) and

(∞,max{1, R}) ∈ Dν[n].

Taking z∗ = (0, 0), we easily obtain that z∗ ∈ lim infn→+∞ Dν[n]. So condition (1) in Lemma

2.5 is satisfied with z∗ = (0, 0).

Since F1 is completely continuous from R × E → E, we have that
(
∪+∞
n=1D

ν[n]
)
∩ BR is s

pre-compact,and accordingly (2) in Lemma 2.5 holds.
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Therefore, by Lemma 2.5, Dν = lim supn→∞ Dν[n] is unbounded closed connected such

that z∗ ∈ Dν , and (∞,max{1, R}) ∈ Dν . Clearly, u is the solution of problem (9) for any

(λ, u) ∈ Dν . From the definition of superior limit (see [31, P. 7]), we can easily see that

Dν ⊆ ∪∞
n=1D

ν[n]. So one has that Dν ⊂ ((R×P ν)∪{(0, 0)}). In other words, (i), (ii) and (iii)

hold.

(iv) We may claim that z∗ = (0, 0), is the unique bifurcation point of Dν .

Suppose on the contrary that there exists a sequence (λn, un) ∈ Dν \{(0, 0)} = lim supn→∞
Dν[n] \{(0, 0)} such that limn→∞ λn = µ ̸= 0 and limn→∞ un = 0. Hence, for any N0 ∈ N, there
exists n0 ≥ N0 such that (λn, un) ∈ Dν[n0]. By (33), it follows that λn0

= λν

n0
for n0 ≥ N0.

From the arbitrary of N0, it implies that n0 → ∞, i.e., µ = 0, which contradicts the assumption

of µ ̸= 0.

Theorem 5.3. Let (H1), (H5), (H6) and (H9) hold. (∞, 0) is a bifurcation point for problem

(9). Moreover, there exists an continuum Dν of solutions of problem (9), for ν = +,− and such

that

(i) Dν is unbounded;

(ii) Dν joins (∞, 0) to (∞,max{1, R});
(iii) Dν ⊂ (R× P ν);

(iv) ProjR(D
ν) ̸= ∅.

Proof of Theorem 5.3. Inspired by the idea of [32], we define the cut-off function of f

as the following

f [n](s) :=


1
ns, s ∈ [− 1

n ,
1
n ],[

f( 2n )−
1
n2

]
(ns− 2) + f( 2n ), s ∈ ( 1n ,

2
n ),

−
[
f(− 2

n ) +
1
n2

]
(ns+ 2) + f(− 2

n ), s ∈ (− 2
n ,−

1
n ),

f(s), s ∈ (−∞,− 2
n ] ∪ [ 2n ,+∞).

We consider the following problem{
−
(
rN−1 u′

√
1−u′2

)′
= αrN−1u+ + βrN−1u− + λrN−1a(t)f [n](u), r ∈ (0, R),

u′(0) = u(R) = 0.
(34)

Clearly, we can see that limn→+∞ f [n](s) = f(s), (f [n])0 = 1
n .

Similar the proof of Theorem 5.1, there exists an unbounded continuum Dν[n] of solutions

of the problem (34) emanating from (λνn, 0), such that Dν[n] ⊂ ((R × P ν) ∪ {(λνn, 0)}) and

(∞,max{1, R}) ∈ Dν[n].

Taking z∗ = (∞, 0), we easily obtain that z∗ ∈ lim infn→+∞ Dν[n] with ∥z∗∥R×E = +∞ So

condition (1) in Lemma 2.6 is satisfied with z∗ = (+∞, 0).

Define a mapping T : R×X → R×X such that

T (λ, u) =


( 1λ , u), λ ∈ (−∞, 0) ∪ (0,+∞),

(0, u), λ = ∞,

(∞, u), λ = 0.

It is easy to verify that T is a homeomorphism and ∥T (z∗)∥R×X = 0. Obviously, {T (Dν[n])}
be a sequence of unbounded connected subsets in X. So (2) in Lemma 2.6 holds.

Since F1 is completely continuous from R× E → E, we have that
(
∪+∞
n=1T (D

ν[n])
)
∩ BR is

s pre-compact,and accordingly (3) in Lemma 2.6 holds.

Therefore, by Lemma 2.6, Dν = lim supn→∞ Dν[n] is unbounded closed connected such that
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z∗ ∈ Dν and (∞,max{1, R}) ∈ Dν , i.e., (i) and (ii) hold.

(iii) Obviously, u is the solution of problem (9) for any (λ, u) ∈ Dν
k . From the definition

of superior limit (see [31, P. 7]), we can easily see that Dν ⊆ ∪∞
n=1D

ν[n]. So one has that and

Dν ⊂ (R× (P ν ∪ {0})).
Next, we show that Dν∩(R×{0}) = ∅. Suppose on the contrary that there exists a sequence

{(λn, un)} ⊆ Dν such that limn→∞ λn = µ and limn→∞ ∥un∥ = 0. From (11) we can easily get

that

un =

∫ R

0

G(r, s)sN−2[(sαu+
n + sβu−

n + λna(s)sf(un))(1− (u′)2)
3
2 − (N − 1)u′3]ds.

Letting vn = un/∥un∥. we have that

vn =

∫ R

0

G(r, s)sN−2

[
(sαv+n + sβv−n + λna(s)s

f(un)

∥un∥
)(1− (u′)2)

3
2 − (N − 1)

u′3

∥un∥

]
ds.

Similar to (15), we can show that

lim
n→∞

f(un)

∥un∥
= 0. (35)

By (17), (35), and the compactness of LN , we obtain that for some convenient subsequence

vn → v as n → ∞. Letting n → ∞, we obtain that

|v| ≤ M

∫ R

0

G(r, s)sN−1|v|ds,

where M = max{α0, β0}. By the Gronwall-Bellman inequality [33, Lemma 2.1], we obtain that

∥v∥ = 0.This contradicts the fact of ∥v∥ = 1. Hence, we have that Dν ⊂ (R× P ν).

(iv) Next we show that the projection of Dν on R is nonempty. By Theorem 5.1 (ii) and

(iv), we have known that Dν[n] has unbounded projection on R for any fixed n ∈ N. By Lemma

2.7, for each fixed ϵ > 0 there exists an m such that for every n > m,Dν[n] ⊂ Vϵ(Dν). This

implies that

(λνn,∞) ⊆ ProjR(D
ν[n]) ⊆ ProjR(Vϵ(D

ν)),

where ProjR(D
ν) denotes the projection of Dν on R. It follows that the projection of Dν is

nonempty on R.
From Theorems 5.1-5.3, we can easily derive the following corollary, which gives the ranges

of parameter guaranteeing problem (9) has zero, one or two one-sign radial solutions.

Corollary 5.1 Assume that (H1), (H5), (H6) and (H7) hold. We may get the following

results.

(i) If λν > 0, then there exists µ1 ∈ (0, λν

f0
) such that problem (9) has no radial solution for

all λ ∈ (0, µ1); has at least two radial one-sign solutions for all λ ∈ (µ1,+∞).

(ii) If νλν > 0, then there exist µ+
1 ∈ (0, λ+

f0
) and µ−

1 ∈ (λ
−

f0
, 0) such that problem (9) has

no radial solution for all λ ∈ (µ−
1 , 0) ∪ (0, µ+

1 ); has at least two radial one-sign solutions for all

λ ∈ (−∞, µ−
1 ) ∪ (µ+

1 ,+∞).

(iii) If νλν < 0, then there exist µ−
1 ∈ (0, λ−

f0
) and µ+

1 ∈ (λ
+

f0
, 0) such that problem (9) has

no radial solution for all λ ∈ (µ+
1 , 0) ∪ (0, µ−

1 ); has at least two radial one-sign solutions for all

λ ∈ (−∞, µ+
1 ) ∪ (µ−

1 ,+∞).

(iv) If λν < 0, then there exists µ1 ∈ (λ
ν

f0
, 0) such that problem (9) has no radial solution

for all λ ∈ (µ1, 0); has at least two radial one-sign solutions for all λ ∈ (−∞, µ1).

Corollary 5.2 Assume that (H1), (H5), (H6) and (H8) hold. We may get the following
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results.

(i) If λν > 0, then the problem (9) has at least two radial one-sign solutions for all λ ∈
(0,+∞).

(ii) If νλν ̸= 0, then the problem (9) has at least two radial one-sign solutions for all

λ ∈ (−∞, 0) ∪ (0,+∞).

(iii) If λν < 0, then the problem (9) has at least two radial one-sign solutions for all

λ ∈ (−∞, 0).

Corollary 5.3 Assume that (H1), (H5), (H6) and (H9) hold. We may get the following

results.

(i) If λν > 0, then there exists 0 < µ2 ≤ µ3 such that problem (9) has no radial solution for

all λ ∈ (0, µ2); has at least four radial one-sign solutions for all λ ∈ (µ3,+∞).

(ii) If νλν ̸= 0, then there exists 0 ̸= νµν
2 ≤ νµν

3 such that problem (9) has no radial

solution for all λ ∈ (µ−ν
2 , 0) ∪ (0, µν

2); has at least four radial one-sign solutions for all λ ∈
(−∞, µ−ν

3 ) ∪ (µν
3 ,+∞).

(iii) If λν < 0, then there exists µ3 ≤ µ2 < 0 such that problem (9) has no radial solution

for all λ ∈ (µ2, 0); has at least four radial one-sign solutions for all λ ∈ (−∞, µ3).
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