
Appl. Math. J. Chinese Univ.
2022, 37(1): 147-158

An efficient algorithm to clip a 2D-polygon against a

rectangular clip window

Sushil Chandra Dimri Umesh Kumar Tiwari Mangey Ram

Abstract. Polygon clipping is of great importance in computer graphics. One of the popular

algorithms to clip a polygon is Cohan–Sutherland Hodgeman algorithm which is based on line

clipping. Cohan–Sutherland Hodgeman algorithm clips the polygon against the given rectan-

gular clip window with the help of line clipping method. Cohan–Sutherland algorithm requires

traversing the polygon in anti clockwise direction (positive orientation). In this work we propose

an efficient polygon clipping algorithm against a rectangular clip window. Proposed algorithm

uses parametric representation of polygon edges. Using the concept of point clipping, we can

find required intersection points of edges of polygon with clip window boundaries. Well suited

numerical illustrations are used to explain the proposed polygon clipping method. The proposed

algorithm is computationally less expensive and comprehensive.

§1 Introduction

Clipping is treated as crucial operation in computer graphics and related technologies. Clip-

ping can be categorised as point clipping, line clipping, area clipping, curve clipping or text

clipping. Clipping is one of the basic operations that always attracts researchers and practition-

ers for the development of new, innovative and efficient algorithms. Clipping methods basically

focus on identifying a particular part of a substance. That identified part may belong to the

inner or outer area of the substance. Most of the clipping algorithms available in literature

are based on comparisons and computations. These comparisons and computations not only

increase the computational complexity of the algorithms but sometimes make implementation

less effective. Most of the polygons clipping methods are used for convex polygons and these

convex polygons are restricted to rectangular in shape.

The term clip window is used to denote the rectangular parallelogram or polygon clipping

object. We can use any type of clipping window according to the requirement. Clipping denotes

the process of discarding unnecessary objects from the viewing plane. This unnecessary object

may be point, line, or polygon. In this paper our focus is on polygon clipping.

Received: 2021-03-29. Revised: 2021-09-07.
MR Subject Classification: 68U05.
Keywords: point clipping, polygon clipping, clip window, line segment, computational complexity.
Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-022-4556-0.



148 Appl. Math. J. Chinese Univ. Vol. 37, No. 1

Polygon clipping is one of the most useful operations in computer graphics. Applications

of polygon clipping are not limited to computer graphics only. Now days polygon clipping is

used in geographic information system domains, VLSI circuit designs, computational sciences,

and similar applications. In Figure 1, a rectangular clip window is shown where boundaries are

defined on 2D-XY plane as, x = xmin, x = xmax, y = ymin and y = ymax.

Figure 1. A clip window.

Eminent researchers proposed efficient methods for point clipping, line clipping and polygon

clipping. Most of the clipping methods are inspired or directly drawn from renowned algorithms

like Cohen Sutherland [1], Liang and Barsky [2], [3] and Cyrus Beck [4]. Most of the methods

available in literature have O (N) computational time complexity. Whereas the method suggest-

ed by Rappaport [5] and Skala [6], [7] have O(log N) computational time complexity. Structure

of the proposed work is as follows: Section 1 discusses the introduction of clipping especially in

the context of polygons. Section 2 discusses related works done by eminent researchers in the

field of clipping. Section 3 proposes a new clipping algorithm and discusses its computational

complexity. Section 4 presents a numerical illustration to implement the proposed algorithm

and finally conclusion of the work is given in Section 5.

§2 Related work

In this section we discuss some methods and algorithms available for clipping different shapes

including polygon, line and circle. Wijeweera et al. [8] proposed a line clipping method for

a convex polygon having computational time complexity of O(N). Authors argued that their

method can be used for any type of polygon having any number of vertices and the vertices

can follow any order. They compared their algorithm with existing and well known clipping

algorithms including Cyrus Beck, ECB, Rappaport, and Skala. Klamer [9] defines an algorithm

for clipping couple of concave polygons. Klamer used the concept of labelling of polygon edges

to classify the resultant polygons in the set. In his algorithm, Klamer classified three types of

edges in every polygon, inside, shared and outside. On the basis of edges, minimal polygons are



Sushil Chandra Dimri, et al. An efficient algorithm to clip a 2D-polygon against... 149

identified. Inputted 2D polygons in the clipping algorithm analyses the intersection and minus

of polygon sets. Klamer also suggested some improvements in the average time complexity.

Foster [10] proposed an extended version of GreinerCHormann clipping algorithm [11] to

improve the shortcomings of degenerate intersection in polygons. Foster uses the work of Kim

and Kim [12] as the base and proposes the extensions in GreinerCHormann algorithm. Foster

divided his algorithm into three phases; intersection, labelling and tracing. Authors work

focuses on the detection of degenerate intersections and providing mechanisms to handle them

properly in the first phase that is intersection phase. Foster categorizes intersections into three

types; X-intersections, T-intersections, and V-intersections. Further in the labelling phase,

three cases, left turn, straight, and right turn are identified.

Liua et al. [13] proposed a solution for clipping of concave polygons containing holes. In

their algorithm authors used single-linked list as the data structure. They verified their work

on different sets of polygons. Their algorithm consists of three main steps; i) intersection is

identified and entry/exit points are stored, ii) line clipping is applied on edges and iii) clipped

polygon is achieved by traversal of single-linked list. Authors argued that their clipping al-

gorithm requires only few arithmetic operations with basic data structure that results in fast

execution of the algorithm. Raja [14] defined an algorithm for clipping natural images. His

work is based on line clipping algorithms of Cohen Sutherland, Liang Barsky and Nicholl Lee

[15]. Raja also used the polygon clipping method suggested by Sutherland and Hodgman. Raja

analysed his clipping algorithm on three basic parameters; time complexity, space complexity

and the accuracy of the object. Author argued that algorithm performs better in all these three

parameters. Elliriki et al. [16] proposes a mathematical model based on integral computations

to evaluate the point of intersection. According to authors, proposed algorithm does not need

many computations to find the point of intersection. They analysed the algorithm using three

different cases; ”positive slope lines, negative slope lines and portion of line inside window apart

from completely accepted and rejected lines” [16].

Dimitrios and Vasileios [17] introduced a 2D line clipping for a window having rectangular

in shape. Authors claim that this algorithm is better in performance, simple and easy to

implement in comparison to other algorithms. Their algorithm consists of three major steps.

First step checks that if the end points lie outside the clipping window or it lies in the same

region. If any of the two are true then the line is discarded and algorithm halts. Second step is

used to compare the coordinates of points along with the clip window boundary. Finally third

step checks that whether the modified points lie inside the clipping area, if true, then the line is

drawn between the new points. In order to prove the efficiency of the algorithm they compared

it with six algorithms.

Dimri [18] suggested an algorithm that presents a line in parametric form. This parametric

representation denotes line as infinite point collection. Proposed algorithm checks coordinates

with the boundary as well as the intersection of boundary. During the process of checking, the

parameter value u is stored. Value of the parameter u lies within the range 0 and 1. Any point

outside this range is simply discarded. According to the author this algorithm can be extended

for polygon clipping.

Sharma and Jasmeen [19] proposed a polygon clipping algorithm for self intersecting and



150 Appl. Math. J. Chinese Univ. Vol. 37, No. 1

multi polygons. Their algorithm uses affine transformation that discards degeneracies. They

applied their algorithm on datasets and claim that the algorithm performs better in comparison

to available algorithms. Datasets used in the algorithm are real time datasets. They used stack

based approach to spit polygons having self-intersections and multi-polygons. To implement the

algorithm authors used JAVA programs and NetBeans IDE. They conducted 480 tests having

convex and concave polygons with varying number of vertices.

Dingding et al. [20] proposed a clipping algorithm for non-intersecting polygon on vector

graphics. Authors argued that their algorithm is comparatively fast and can process huge data

in limited period of time and consumes less space. They proposed clipping algorithm in three

steps. In first step they discard the non intersecting boundary with respect to vector graphics

as well as compute effective intersections. In second step they partition the graphics into parts.

Finally in third step the algorithm checks that each part belongs to the inner boundary. Authors

argue that the proposed algorithm is simple and comparatively fast. Joshi et al. [21] proposes

a modified algorithm for clipping loose polygons. Their algorithm is based on the modification

of renowned Weiler-Athertons algorithm. Authors suggested some modifications to deal with

clipping not only at intersections but also to deal with loose polygons at disjoints, contained

and surroundings.

Minghua et al. [22] proposed a circle clipping algorithm under hexagonal grid system. They

proposed their algorithm as a solution for poor time-effective and poor efficiency of polygon

clipping algorithms available in the literature. Their approach is to translate coordinates from

cartesian to hexadecimal grid. After translating coordinates, next step is to check the intersec-

tion with the help of vector operation. This checking is performed with the help of geometric

relations and tries to identify points of intersection. This process results in finding the arc. In

this way the clipping is achieved. Authors claim that this method consumes comparatively low

time and is effective.

Mingjun et al. [23] presented a line clipping algorithm and further extended it for polygon

clipping. They used Java applets to implement and compare their proposed algorithm. Authors

have not used the concept of the intersection points rather its sorting. They have implanted

the line clipping concept to clip a polygon. According to authors, clipping edges categorised

as ”no edge of subject polygon passes through the vertices of the clip polygon; and one or

more edges of subject polygon pass through the vertices of the clip polygon” [23]. Authors had

given computational complexity of their algorithms for worst, best average cases. Further, they

applied proposed algorithms on random test sets.

One of the most popular algorithms for polygon clipping is Sutherland–Hodgeman polygon

clipping which is based on line clipping and generates vertex output list at every step of clipping.

This property makes the algorithm computationally challengeable in terms of time and space

complexity.

§3 Proposed Polygon Clipping Algorithm

A polygon can be considered as a combination of different edges, for example, a triangle

has three edges. To describe a polygon we need vertex points. For an ’n’ vertex polygon we



Sushil Chandra Dimri, et al. An efficient algorithm to clip a 2D-polygon against... 151

have P1, P2, · · · , Pn, where Pi Pi+1 are the edges of polygon. Figure 2 shows a polygon with

8 vertices.

Figure 2. A Polygon with 8 vertices.

Each edge Pi Pi+1 of a polygon is a line segment. An ’n’ vertex polygon has ’n’ edges that are

line segments.

Figure 3. A Line Segment.

Line segment is continues geometrical point. But the parametric equation of a line segment

changes it into collection of infinite points that lie on the line. The parametric equation for the

line segment shown in Figure 2, can be given as-

x= xi + u.(xi+1 - xi), and y= yi + u.(yi+1 - yi), where 0 ≤ u ≤ 1

or x= xi+u.∆x, and y= yi+ u.∆y(v (x, y) is a varying point of line Pi Pi+1)

Each edge of polygon can be expressed by parametric equation. For each clip window (xmin,

ymin, xmax, ymax), a point (x, y) lies in or on clip window if it satisfies the following inequalities-

xmin ≤ x ≤ xmax, and ymin ≤ y ≤ ymax.

The point (x, y) be in or on clip window. To clip a polygon with respect to a given clip

window we clip each edge of the polygon one by one. Each edge of polygon can be identified

with the help of coordinates of end points. For an edge Pi Pi+1 of the polygon,

xmin ≤ xi, xiH ≤ xmax and ymin ≤ yi, yiH ≤ ymax (1)



152 Appl. Math. J. Chinese Univ. Vol. 37, No. 1

Then the edge is completely inside the clip window otherwise edge is either out of clip window

or clipping coordinates. Again if,

xi, xi+1 < xmin, yi, yi+1 < ymin, or

xi, xi+1 < xmax, yi, yi+1 < ymax

(2)

The line segment (edge) Pi Pi+1 is outside the clip window and hence discarded. In this case

both eq. (1) or eq. (2) is true and then the edge Pi Pi+1 is clipping coordinate.

Equation of edge Pi Pi+1 can be given as-

x= xi + u.(xi+1 - xi) and y = yi + u.(yi+1 - yi), where 0 ≤ u ≤ 1.

The clip window has 4 boundaries: if {xi < xmin / boundary x= xmax}, then at point of

intersection with u (xi+1 - xi = xmin - xi), or u={xmin - xi / (xi+1 - xi)}.
Similarly for the same edge Pi Pi+1, we will compute parameter values as-

uii for x = xmax (right boundary),

uiii for y = ymin (bottom boundary), and

uiv for y = ymax (upper boundary).

Then ignore those values of ’u’ that are either less than 0 or greater than 1. These values of u

denoted as uk belong to [0, 1]. We compute the point of intersection of edge with corresponding

boundary using equation:

[x’ = xi + uk . (xi+1 - xi)] / [y’ = yi + uk . (yi+1 - yi)], where 0 ≤ uk ≤ 1.

If point (x’, y’) satisfies the ’m’ equality:

xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax.

Then preserve only the intersection point (x’, y’) otherwise discard it. We repeat these steps

for other points of intersection one by one and collect the point of intersections. Once all the

edges have been processed, connect all points of intersection and ultimately gives the clipped

polygon.

3.1 Algorithm: Polygon Clipping

In this section we propose an algorithm for polygon clipping that takes a rectangular clip

window as an input and produces the clipped window.

Input: Rectangular clip window (xmin, ymin, xmax, ymax) and a polygon (P1, P2, · · · , Pn)

Output: The clipped polygon

S1: Read- (xmin, ymin, xmax, ymax)

S2: Read- (P1, P2, · · · , Pn)

For each edge Pi Pi+1 of polygon

S3: If either xi, xi+1 < xmin or yi, yi+1 < ymin

Print- edge Pi Pi+1 is out of clip window, discard both end points.

If xmin ≤ xi, xi+1 ≤ xmax and ymin ≤ yi, yi+1 ≤ ymax

Print- edge Pi Pi+1 is inside the clip window, keep both end points of edge.

Else the edge is clipping candidate.

The parametric equation of edge is-

x = xi + u.(xi+1 - xi) and y = yi + u.(yi+1 - yi), where 0 ≤ u ≤ 1

S4: Compute the value of parameter ’u’ for all four boundary x = xmin, y = ymin, x = xmax,



Sushil Chandra Dimri, et al. An efficient algorithm to clip a 2D-polygon against... 153

y = ymax of clip window; ignore those values of ’u’ which are not in closed set [0, 1].

For accepted values of ’u’ compute the point of intersection of edge with corresponding

boundary.

S5: Now if these points of intersections satisfy inequality-

xmin ≤ xi ≤ xmax and ymin ≤ yi ≤ ymax

Retain the point of intersection otherwise discard them.

S6: Connect all the retaining points of each other.

When all these edges of polygon are processed, connect retained points and the figure

obtained is clipped polygon.

Else repeat all the steps S1 to S6 for next consecutive edge.

3.2 Computational Complexity

The computational complexity of proposed algorithm is low in comparison to other polygon

clipping algorithms. Proposed algorithm computes value of parameter ’u’ for point of intersec-

tions and then easily compute the coordinates of point of intersection. Then this algorithm tests

these points in an equality to check whether these points could be retained or not. Once we get

the set of retained points we get the clipped polygon. The Sutherland-Hodgeman algorithm on-

ly determines the retaining points with respect to boundaries of clip window but not computes

the coordinates of points of intersection for which we need to apply a line clipping algorithm

separately. On the other hand a 2D polygon clipping algorithm suggested by WeilerCAtherton

form a list of point of intersections. This algorithm requires some preconditions to be fulfilled

like clock wise orientation and condition for candidate polygon.

§4 Numerical Illustration

Consider a clip window given by boundaries xmin = 2, xmax = 10, ymin = 4, ymax = 8, as

shown in Figure 4.

In Figure 4, polygon (P1, P2, P3, P4, P5, P6) has 6 edges and A, B, C, D denotes the clip

window. We apply the proposed algorithm to clip the given polygon. We take edges of polygon

one by one starting from edge P1P2. Parametric equation of this edge can be given as-

x = 1 + u (7 - 1) = 1 + 6u,

x = 6 + u (6 - 6) = 6,

0 ≤ u ≤ 1, ∆y = 0, therefore edge P1P2 is parallel to x axis.

xmin = 2 , xmax = 10 and ymin = 4, ymax = 8.

Point P1(1, 6) do not satisfy inequality xmin (2) ≤ 1 ≤ xmax (10), therefore P1 is not inside

the clip window. Point P2(7, 6) satisfies the inequality xmin ≤ 7 ≤ xmax and ymin ≤ 6 ≤ ymax.

So the point P2(7, 6) is inside the clip window, and edge P1P2 is clipping coordinate. The

parametric equation of P1P2 is given as-

x = 1 + 6u, where 0 ≤ u ≤ 1,

y = 6

Putting x = xmin = 2



154 Appl. Math. J. Chinese Univ. Vol. 37, No. 1

Figure 4. A polygon with six edges and clip window.

2 = 1 + 6u or 6u = 2 – 1 = 1 {u = 1/6}
x = xmax, that is, 10 = 1 + 6u

6u = 9 ⇒ u = 9 / 6 (discard)

Point of intersection

I1 ≡ (1 + 6 × 1 / 6, 6) = (2, 6), keep I1
Taking the edge P2P3: P2 (7, 6) and P3(5, 5) both end points of the edge satisfies the inequality,

that is 2 ≤ x ≤ 10 and 4 ≤ y ≤ 8. Hence this line P2P3 (edge) is inside the clip window. We

keep both the vertex points P2 and P3.

Now edge P3P4, point P3 is inside the clip window since satisfies inequality, 2 ≤ x ≤ 10 and 4

≤ y ≤ 8.

But point P4(8, 2) does not satisfy the inequality. So edge P3P4 is clipping candidate.

Parametric equation of P3P4 can be given as-

x = 5 + 4 (3), or x = 5 + 3u

y = 5 + 4 (-3), or y = 5 - 3u, where 0 ≤ u ≤ 1

Now with,

Left boundary: x = xmin = 2,

2 = 5 + 3u - 3 = 3u → u = -1 (discard)

Right boundary: x = xmax = 10

10 = 5 + 3u → 3u = 5 → u = 5/3 (discard)

Bottom boundary: y = ymin =4

4 = 5 - 3u → -1 = -3u → u = 1/3

Upper boundary: y = ymax = 8

8 = 5 - 3u → 3 = -3u → u = -1 (discard)

So valid value of u = 1/3 for bottom and point of intersection I2 is given as-



Sushil Chandra Dimri, et al. An efficient algorithm to clip a 2D-polygon against... 155

I2 ≡ (5 + 3 × 1 / 3, 5 - 3 × 1 / 3) ≡ (6, 4)

For edge P4P5, end point P4 is out of clip window but P5(7, 7) satisfies the inequality 2 ≤ x ≤
10 and 4 ≤ y ≤ 8.

Point P5(7, 7) is inside the clip window and therefore P4P5 is clipping candidate.

Now parametric equation of P4P5 can be given as-

x = 8 + u (-1) = 8 – u and y = 2 + 4 (5) = 2 + 5u, where 0 ≤ u ≤ 1

Left boundary: x = xmin = 2

2 = 8 - u → u = 6 (discard)

Right boundary: x = xmax = 10

10 = 8 - u → u = -2 (discard)

Bottom boundary: y = ymin = 4

4 = 2 + 5u → u = 2/5 (accept)

Upper boundary: y = ymax = 8

8 = 2 + 5u → u = 6/5 (discard)

So u = 2/5 only for bottom boundary. Point of intersection I3 with bottom boundary (u=2/5)

can be calculated as-

I3 ≡ (8 - 2/5 , 2 + 5 × 2/5) ≡ (38/5, 4) ≡ (7.6, 4)

Keep I3 and I5.

Taking the edge P5P6: Point P5 is inside the clip window but the point P6(8,10) does not satisfy

the inequality 2 ≤ x ≤ 10 and 4 ≤ y ≤ 8. Point P6 is out of clip window, therefore P5P6 is

clipping candidate.

Parametric equation of P5P6 is given as-

x = 7 + 1u and y = 7 + 3u, where 0 ≤ u ≤ 1.

Left boundary: x = 2,

2 = 7 + u → u = -5 (discard)

Right boundary: x = 10,

10 = 7 + u → u = 3 (discard)

Bottom boundary: y = 4,

4 = 7 + 3u → u = -1 (discard)

Upper boundary: y = 8,

8 = 7 + 3u → u = 1/3 (accepted)

Now point of intersection I4 with upper boundary y = 8 is calculated as-

I4 ≡ (7 + 1/3, 7 + 3 × 1/3) = (22/3, 8)

I4 ≡ (7.33,8)

We keep I4.

Taking edge P6P1 of polygon: The parametric equation of P6P1 is-

x = 8 + u (1 - 8) = 8 - 7u

and y = 10 + u (6 - 10) = 10 - 4u, where 0 ≤ u ≤ 1

Left boundary: x = 2

2 = 8 - 7u → u = 6/7 (accepted)

Right boundary: x =10

10 = 8 - 7u → u = -2/7 (discard)



156 Appl. Math. J. Chinese Univ. Vol. 37, No. 1

Bottom boundary: y = 4

4 = 10 - 4u → u = 6/4 (discard)

Upper boundary: y = 8

8 = 10 - 4u → u = 2/4 = 1/2 (accepted)

Now point intersection with upper boundary can be given as-

I5 ≡ (8 - 7 × 1/2, 10 - 4 × 6/7) = (2, 46/7) ≡ (2, 6.57)

We keep both I5 and I6.

Now all the edges are processed and obtained clipped polygon is (I1 P2 P3 I2 I3 P5 I4 I5
I6). Coordinates of these points are known to us and we join these points to get the clipped

polygon.

Figure 5 shows the clipped polygon as the output of the proposed clipping method. This

proposed clipping takes less time to compute and have comparatively lesser number of compar-

isons.

Figure 5. The clipped polygon.

§5 Conclusion

Numbers of algorithms are available in literature for polygon clipping. Most of these existing

algorithms use the concept of line clipping. One of the most popular algorithms for polygon

clipping is CohanCSutherland algorithm which is also based on line clipping and generates a

vertex output list. Further these line clipping algorithms are used to determine the coordinates

of vertices. If the number of edges in the polygon is high, the mathematical complexity of

the algorithm will be very high. The proposed algorithm is a comprehensive algorithm for

2D polygon clipping. Proposed polygon clipping algorithm computes the coordinates of point

of intersection of edges. This algorithm also computes the boundaries of clip window and



Sushil Chandra Dimri, et al. An efficient algorithm to clip a 2D-polygon against... 157

identifies the real intersection points and retains them to obtain the clipped polygon. Proposed

algorithm uses parametric equation of edges of polygon and the concept of point clipping.

Proposed algorithm is mathematically less expensive and can be useful in graphics and other

applications. The limitation of the algorithm is that it is only applicable for 2D rectangular

clip window.

References

[1] D Cohen. Incremental methods for computer graphics, PhD Thesis, University of Harvard,

Massachusetts, 1969.

[2] Y D Liang, B A Barsky. An analysis and algorithms for polygon clipping, CACM 26, 1983:

868-876.

[3] Y D Liang, B A Barsky. A new concept and method for line clipping, ACM Transactions on

Graphics, 1984, 3(1): 1-22.

[4] M Cyrus, J Beck. Generalized two and three-dimensional clipping, Computers and Graphics,

1978, 3(1): 23-28.

[5] M Rappaport. An efficient algorithm for line and polygon clipping, The Visual Computer, 1991,

7(1): 19-28.

[6] V Skala. An efficient algorithm for line clipping by convex polygon, Computers and Graphics,

1993, 17(4): 417-421.

[7] V Skala. O (lg N) line clipping algorithm in E2, Computers and Graphics, 1994, 18(4): 517-424.

[8] K R Wijeweera, S R Kodituwakku, M P Chamikara. A novel and efficient approach for line

segment clipping against a convex polygon, Ruhuna Journal of Science, 2019, 10(2): 161-173.

[9] K Schutte. An edge labelling approach to concave polygon clipping, ACM Transactions on Graph-

ics, 1995: 1-10.

[10] E L Foster, K Hormann, R T Popa. Clipping simple polygons with degenerate intersections,

Computers and Graphics, 2019, X(2).

[11] G Greiner, K Hormann. Efficient clipping of arbitrary polygons, ACM Transactions on Graphics,

1998, 17(2): 71-83.

[12] D H Kim, M J Kim. An extension of polygon clipping to resolve degenerate cases, Computer

Aided Design Appl., 2006, 3: 447-456.

[13] Y K Liu, X Q Wang, S Z Bao, M Gombos̆i, B Z̆alik. An algorithm for polygon clipping,

and for determining polygon intersections and unions, Computers and Geosciences, 2007, 33:

589-598.

[14] S P Raja. Line and Polygon Clipping Techniques on Natural Images: A Mathematical Solution

and Performance Evaluation, International Journal of Image and Graphics, 2019, 19(2).

[15] T M Nicholl, T Lee, R A Nicholl. An efficient new algorithm for 2D line clipping: Its develop-

ment and analysis, in Proc SIGGRAPH ’87, Comput Graph, 1987, 21(4): 253-262.

[16] E Mamatha, C Reddy, K Anand. An Efficient Line Clipping Algorithm in 2D Space, The

International Arab Journal of Information Technology, 2019, 16(5).



158 Appl. Math. J. Chinese Univ. Vol. 37, No. 1

[17] D Matthes, V Drakopoulos. Another Simple but Faster Method for 2D Line Clipping, Interna-

tional Journal of Computer Graphics and Animation, 2019, 9(1/2/3).

[18] S C Dimri. A Simple and Efficient Algorithm for Line and Polygon Clipping in 2-D Computer

Graphics, International Journal of Computer Applications, 2015, 127(3).

[19] M Sharma, J Kaur. An Improved Polygon Clipping Algorithm Based on Affine Transformation,

S C Satapathy, et al, in Proceedings of the Second International Conference on Computer and

Communication Technologies, Advances in Intelligent Systems and Computing, 2016, 379.

[20] D Yang, S Chen, Q Yang, Y Hu. A Clipping Algorithm on Vector Graphics Based on Non-

intersect Polygon Boundary, IEEE, 2019, 854-859.

[21] T Joshi, P Badoni, A Aggarwal. Modification of Weiler-Atherton Algorithm to Address Loose

Polygons, Journal of Scientific and Industrial Research, 2019, 78: 771-774.

[22] M Cao, H Zhang, C Zhou, Y Sun, H Yu. Vector Circle Clipping Algorithm Based on Polygon

Window of Hexagonal Grid System, IOP Conf Series: Journal of Physics: Conf Series, 2019,

1288(012006).

[23] M Zhang, C L Sabharwal. An Efficient Implementation of Parametric Line And Polygon Clip-

ping Algorithm, ACMSAC’02, 2002, 11-14.

Department of Computer Science and Engineering, Graphic Era (Deemed to be University), Dehradun,

Uttarakhand, India.

Email: umeshtiwari22@gmail.com


