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Recent advances in statistical methodologies in evaluating

program for high-dimensional data

ZHAN Ming-feng1 CAI Zong-wu2 FANG Ying1,3 LIN Ming1,3,∗

Abstract. The era of big data brings opportunities and challenges to developing new statistical

methods and models to evaluate social programs or economic policies or interventions. This

paper provides a comprehensive review on some recent advances in statistical methodologies and

models to evaluate programs with high-dimensional data. In particular, four kinds of methods

for making valid statistical inferences for treatment effects in high dimensions are addressed. The

first one is the so-called doubly robust type estimation, which models the outcome regression

and propensity score functions simultaneously. The second one is the covariate balance method

to construct the treatment effect estimators. The third one is the sufficient dimension reduction

approach for causal inferences. The last one is the machine learning procedure directly or

indirectly to make statistical inferences to treatment effect. In such a way, some of these methods

and models are closely related to the de-biased Lasso type methods for the regression model

with high dimensions in the statistical literature. Finally, some future research topics are also

discussed.

§1 Introduction

With the availability and development of statistical methodologies and models, it has be-

come more and more important to evaluate the effect of social and economic policies. Indeed, an

accurate policy evaluation can improve the pre-design, implementation, and post-adjustment

of the policies. Modern policy evaluation methods basically rely on the potential outcome

framework developed by Rubin (1973, 1974, 1977). The difficulty of the treatment effect es-

timation under Rubin’s framework lies in the fact that one can not observe the two potential
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outcomes simultaneously. To solve this problem, one would generally follow the unconfound-

edness assumption (Rosenbaum and Rubin, 1983) stating that given the observed covariates,

whether the individuals participate in the treated or control group is not affected by the val-

ues of potential outcomes. So far, many estimation methods for treatment effects have been

proposed by researchers, including but not limited to, outcome regression (OR), inverse proba-

bility weighting (IPW), doubly robust (DR) estimation, matching, covariate balance weighting

(CBW), difference-in-differences and regression discontinuity design. To have an overview of

the methodology, the reader is referred to the survey paper by Imbens and Wooldrige (2009),

Liu et al. (2020), and the book by Cerulli (2015), among many others.

Benefiting from the advances of modern statistics and computing technology, it is easier

than ever for researchers to obtain massive amounts of data, which brings new opportunities

and challenges to developing new policy evaluation methods. On the one hand, the emergence

and utilization of rich data sets provide new sources and materials to obtain more accurate

policy evaluation, for example, rich sets of covariates make the unconfoundedness assumption

more credible and help to improve the accuracy of the identification. On the other hand, the

emergence of big data has not fundamentally solved the dilemma that counterfactual outcomes

of the individuals can not be directly observed in policy evaluation and raises more challenges

to the statistical inference of treatment effect, for example, which covariate (or which functional

form of the covariate) should be included in the underlying models.

It is well known that making valid statistical inference under high-dimensional settings,

where there are possibly more covariates than the sample size, is a nontrivial task in both

the statistics and econometrics literature. Due to the high dimensionality effect, the tradi-

tional estimators would perform poorly when the dimension of the covariates is greater than

or/and increasing with the sample size. Recently, there have been some breakthroughs made by

researchers in statistics and econometrics for high-dimensional inference. For example, Javan-

mard and Montanari (2014), Van de Geer et al. (2014), and Zhang and Zhang (2014) propose

the de-biased least absolute shrinkage and selection operator (Lasso) methods from differen-

t perspectives to construct confidence intervals for the coefficients in regression models with

high-dimensional data. The main idea within the de-biased Lasso methods is to add a compen-

sation part to the classical Lasso estimator as in Tibshirani (1996) to remove the bias caused

by the regularization. Meanwhile, Belloni, Chernozhukov and Hansen (2014), Farrell (2015),

and Belloni et al. (2017) construct valid inference of treatment effects relying on the estimation

of both the outcome regression (capturing the relationship between the outcome variables and

the covariates) and propensity score (capturing the relationship between the treatment variable

and the covariates) models in high-dimensional settings.

In addition to the unconfoundedness assumption, sparsity assumption, permitting to apply

model selection methods, is needed in high dimensions. Generally, researchers would adopt the

approximate sparsity assumptions for the regression models. The approximate sparsity assump-

tions allow for imperfect model selection that the true regression functions can be represented

by a linear combination of a set of covariates (or functional transforms of the covariates), whose
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number is much smaller than the sample size, with a small nonzero approximate error. In

contrast to perfect model selection, the approximate sparsity is less restrictive in the sense that

it contains the situation where there are some moderate but nonzero covariates.

Typically, the existing methods of making causal inference in high dimensions can be di-

vided into four classes. The first class is to make inference of treatment effect based on the

doubly robust type estimation, which needs to model the outcome regression and propensity

score (PS) functions simultaneously. For example, Belloni, Chernozhukov, and Hansen (2014)

propose the double selection method, applying the Lasso method to two equations, respectively,

to make valid inference of the treatment effect under the framework of partially linear model,

Farrell (2015) focuses on the doubly robust average treatment effect (ATE) estimators with

multivalued treatments and applies the group Lasso method as in Yuan and Lin (2006) to both

the outcome regression and propensity score models to make robust inference on ATE, and

Belloni et al. (2017) provide inferential procedures for a variety of treatment effect parame-

ters via the Neyman orthogonality assumption, implicitly containing the doubly robust ATE

estimator as a special case. The second class is to involve the idea of covariate balance in the

procedure of making causal inferences. For example, Athey, Imbens and Wager (2018) propose

the approximate residual balancing method to make valid inference by assigning the stable

balance weight as in Zubizarreta (2015) to the regression residuals, Ning, Peng and Imai (2020)

propose the high-dimensional covariate balancing propensity score (CBPS) method to combine

the model selection method with the CBPS method as in Imai and Ratkovic (2014), and Tan

(2020b) proposes the model-assisted inference for treatment effects by applying regularization

to the calibrated loss function. The third class lies in the utilization of the sufficient dimension

reduction (SDR) method. For example, Ma et al. (2019) propose the sparse SDR method

to estimate the outcome regression and propensity score models and use the DR estimator to

make causal inferences. The last one is to make causal inferences by ingeniously exploiting

machine learning methods directly or indirectly. For example, Wager and Athey (2018) adopt

the random forest algorithm to estimate the treatment effect by thinking of the individuals in

the same leaf of a causal tree as having come from randomization experiment and derive the

large sample theories, and Athey et al. (2019) propose the generalized random forest method

to estimate any quantity that can be identified via local moment conditions and derive the

asymptotic consistency and normality results. Finally, high-dimensionality settings within the

panel data framework proposed by Hsiao, Ching and Wan (2012) are also considered by Car-

valho, Masini and Medeiros (2018), and Shi and Huang (2021). The reader is referred to Cai

(2021) and the references therein to have a comprehensive review on recent developments in

estimating treatment effects for panel data.

The rest of the paper is organized as follows. Section 2 presents the notations of the treat-

ment effect and introduces the DR estimators which are popular for both the low-dimensional

and high-dimensional settings. Section 3 gives a brief review on causal inference methods based

on the outcome regression and propensity score models in high dimensions. Section 4 is devoted
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to introducing inferential methods of adopting the covariate balance methodology to estimate

treatment effect with high-dimensional data. Section 5 investigates the utilization of SDR meth-

ods for causal inferences. Section 6 describes the machine learning methods that are directly

or indirectly used to estimate treatment effects. Section 7 concludes the paper.

§2 Treatment Effect Estimators with Unconfoundedness

Suppose that we have a binary treatment variable D taking the value of 1 if the individual

is in the treated group and taking the value of 0 if the individual is in the control group. Let

Y (1) and Y (0) be two potential outcomes corresponding to the treated and untreated status of

the individual, respectively. The observed outcome of interest Y is defined as

Y = DY (1) + (1−D)Y (0).

The ATE is defined as the mean difference between the two potential outcomes, ∆ = E[Y (1)]−
E[Y (0)]. It is supposed that there is also a p × 1 vector of covariates X representing the

characteristics of the individual. The propensity score determining the conditional probability

of receiving treatment is defined as π(x) = P (D = 1|X = x). To identify the ATE, the so-

called unconfoundedness and overlap assumptions (Rosenbaum and Rubin, 1983) are commonly

adopted; that is,

(a) (Unconfoundedness) (Y (0), Y (1)) ⊥ D | X;

(b) (Overlap) for some ϵ > 0 and all x ∈ X, ϵ ≤ π(x) ≤ 1− ϵ,

where X ⊂ Rp is the support of X. Assume that
{
(Xi, Di, Yi)

}n

i=1
is a random sample from

the population (X,D, Y ), where n is the sample size.

In this section, it is devoted to briefly introducing the three types of widely-used ATE

estimators; that is, the OR estimator, the IPW estimator and the DR estimator. The OR

estimator is based on the relationship between the outcome variable and the covariates. Under

the assumption of unconfoundedness, the ATE can be identified by

∆ = E
[
µ1(X)− µ0(X)

]
,

where µj(X) = E
[
Y (j)|X

]
= E

[
Y |X,D = j

]
for j = 0 and 1, and the corresponding OR

estimator for ATE is given as

∆̂or =
1

n

n∑
i=1

[
µ̂1(Xi)− µ̂0(Xi)

]
, (1)

where µ̂j(Xi) is a consistent estimate of µj(Xi) for j = 0 and 1.

It is clear that the IPW estimator is based on the relationship between the treatment variable

and the covariates. Under the identification assumptions, the ATE can be identified by

∆ = E

[
DY

π(X)

]
− E

[
(1−D)Y

1− π(X)

]
,

and the corresponding IPW estimator for ATE is defined as

∆̂ipw =
1

n

n∑
i=1

(
Di

π̂ (Xi)
Yi

)
− 1

n

n∑
i=1

(
1−Di

1− π̂ (Xi)
Yi

)
, (2)
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where π̂(Xi) is a consistent estimate of π(Xi). Furthermore, the ATE can also be identified by

∆ = E

[
DY

π(X)
+

(
1− D

π(X)

)
µ1(X)

]
− E

[
(1−D)Y

1− π(X)
+

(
1− 1−D

1− π(X)

)
µ0(X)

]
= E

[
µ1(X) +

D

π(X)
(Yi − µ1(X))

]
− E

[
µ0(X) +

1−D

1− π(X)
(Y − µ0(Xi))

]
.

(3)

Note that when π(x) is correctly specified, E
[(

1− D
π(X)

)
µ1(X)

]
= E

[(
1− 1−D

1−π(X)

)
µ0(X)

]
=0

even if µj(X), j = 0, 1, are misspecified. Meanwhile, when µj(X), j = 0, 1, are correctly speci-

fied, E
[

D
π(X) (Y − µ1(X))

]
= E

[
1−D

1−π(X) (Y − µ0(X))
]
= 0 even if π(x) is misspecified. There-

fore, (3) holds if at least one of the OR and PS models is correctly specified. By combining the

OR model µj(X), j = 0, 1 and the PS model π(X), the DR estimator for ATE is constructed

as

∆̂dr

=
1

n

n∑
i=1

[
Di

π̂(Xi)
Yi +

(
1− Di

π̂(Xi)

)
µ̂1(Xi)

]
− 1

n

n∑
i=1

[
1−Di

1− π̂(Xi)
Yi +

(
1− 1−Di

1− π̂(Xi)

)
µ̂0(Xi)

]

=
1

n

n∑
i=1

[
µ̂1(Xi) +

Di

π̂(Xi)
(Yi − µ̂1(Xi))

]
− 1

n

n∑
i=1

[
µ̂0(Xi) +

1−Di

1− π̂(Xi)
(Yi − µ̂0(Xi))

]
.

(4)

The DR estimator is robust in the sense that if at least one of the OR and PS models is

correctly specified, the resulting estimator is consistent. Among all the three types of treatment

effect estimators, one can see that the DR estimator plays an important role in the statistical

inferences of the ATE in high-dimensional settings in the next section.

§3 Inference of Treatment Effects Based on OR and PS Models

3.1 Double Selection Method

Belloni, Chernozhukov and Hansen (2014) propose the so-called double selection method

under the framework of partially linear model

Yi = αDi + f(Xi) + ui,

with E(ui|Xi, Di) = 0, Di = h(Xi)+vi, and E(vi|Xi) = 0, where f(·) and h(·) are two unknown

functions, and ui and vi are unobserved disturbances. To combine the high-dimensional settings

with the partially linear model, the approximate sparsity assumptions are made to the two

functions f(·) and h(·); that is,

f(Xi) =

p∑
j=1

Xijβor,j + eor,i, and h(Xi) =

q∑
j=1

Xijβps,j + eps,i,

where the numbers of non-zero components in βor and βps are less than s, an integer much

smaller than the sample size n, and eor,i and eps,i are small non-zero approximation error

terms. For this structural model, Belloni, Chernozhukov and Hansen (2014) introduce the

“post-double-selection” (Post-DS) procedure to make valid inference of the treatment effect α.

Three steps are included in the Post-DS procedure: (i) apply the feasible Lasso model selection
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method to regress Yi on Xi in the first step; (ii) apply the feasible Lasso model selection method

to regress Di on Xi in the second step; (iii) run the OLS procedure by regressing Yi on Di and

the combination of the selected covariates Xi in the previous two steps. More generally, Belloni,

Chernozhukov and Hansen (2014) apply the Post-DS procedure to study the ATE and average

treatment effect on the treated (ATT) in the data-rich environment based on the DR estimators

in Section 5 of their paper, with the main idea similar to the paper by Belloni et al. (2017).

Remark 1: Note that at the second step above, it is assumed that Di is a linear probability

model of Xi, which might be inappropriate. Also, other forms of f(x) can be considered.

3.2 Robust Inference Based on DR Estimators

Under the unconfoundedness and overlap assumptions, Farrell (2015) focuses on the DR ATE

estimators in the framework of multivalued treatments and proposes a procedure for making

robust inference arguing that the DR estimators are not only robust to model misspecification

but also robust to model selection. The robustness property in high-dimensional settings per-

mits the existence of the selection errors in modeling both the outcome regression functions

and propensity scores without affecting the valid inference of the ATE estimators. Similar to

Belloni, Chernozhukov and Hansen (2014), the approximate sparsity assumptions, allowing for

imperfect model section, are made in the model selection stage. Robust inference on the ATE

is then obtained via a model selection procedure similar to the Post-DS as in Belloni, Cher-

nozhukov and Hansen (2014). First, apply the group Lasso method1 to the regression functions

and propensity scores, respectively, and then, refit the generalized linear regression model for

the regression functions and propensity scores with the union of the selected covariates in the

previous step.

3.3 Valid Inference Based on Neyman Orthogonality Condition

Belloni et al. (2017) provide a more general framework to make causal inference for a variety

of treatment effect parameters such as (local) ATE and (local) quantile treatment effects. As

argued by Belloni et al. (2017), perfect model selection may be too restrictive to be satisfied in

some real applications, and in order to provide valid inference for the treatment effect, the ap-

proximate sparsity assumptions allowing for small nonzero approximation error are made for the

outcome regression and propensity score functions. With these assumptions, machine learning

techniques, such as Lasso and Post-Lasso2 (Belloni and Chernozhukov, 2013) methods, can be

used to conduct the model selection. Furthermore, two conditions are required to proceed. One

is the so-called Neyman orthogonality condition, which ensures that the estimating equations

are first-order insensitive to the perturbations in the nuisance components, for instance, the

outcome regression and propensity score functions. The other one is no overfitting condition

1Group Lasso is a method that generalizes the Lasso procedure to jointly select groups of covariates into or
out of a model, see Yuan and Lin (2006) for more details.

2Apply the Lasso model section method first, and then, run the OLS regression to the selected variables.
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requiring that the nuisance components should be estimated at a relatively slower o(n−1/4)

rate to insure small estimation bias. As a concrete example of this general framework, it can

be verified that the DR ATE estimator (4) satisfies the Neyman orthogonality condition, and

the estimated outcome regression and propensity score functions via Lasso or Post-Lasso model

selection method satisfy the no overfitting condition automatically. In other words, to estimate

and infer the ATE in data-rich environment, one can use the DR estimator with the nuisance

components estimated via Lasso or Post-Lasso method and rely on the multiplier bootstrap

procedure as described in Section 3.2 of Belloni et al. (2017) to make inferences.

The causal inference method based on DR estimators needs to model both the outcome

regression and propensity score functions and the consistency assumptions for the model selec-

tion stage of both models are required. To relax these restrictions, several methods have been

proposed recently, described in Sections 4 and 5, respectively.

§4 Inference of Treatment Effects Via Covariate Balance with

High-dimensional Data

4.1 CBW Methods

In recent years, some CBW methods have been proposed by researchers to improve the finite

sample size performance of the traditional IPW estimators. Broadly speaking, there are two

ways to achieve the covariate balance among different groups: one depends on modeling the

propensity score; see, e.g., the papers by Imai and Ratkovic (2014) and Sant’Anna, Song and

Xu (2020), and the other directly aims at the balance weights via optimization designs; see,

e.g., the papers by Zubizarreta (2015) and Chan, Yam and Zhang (2016). To have a general

idea of the CBW method, by the definition of the propensity score and the law of iterated

expectations, it can be shown that

E

[
Dg(X)

π(X)

]
= E

[
(1−D)g(X)

1− π(X)

]
= E[g(X)], (5)

where g(·) : Rp → Rm for some m ≥ 1 is a continuous and integrable function. It can be

seen from (5) that the propensity score has the property of balancing the moment of any

functional form of the covariates among the treated, control and combined groups. Imai and

Ratkovic (2014) exploit the finite moment conditions of (5) and propose the CBPS method,

while Sant’Anna, Song and Xu (2020) make full use of (5) to consider the infinite moment

conditions and propose the integrated propensity score procedure. For example, Imai and

Ratkovic (2014) first assume a logistic model for the propensity score as

πβ(X) = π(X⊤β) =
exp(X⊤β)

1 + exp(X⊤β)
,

where β ∈ Θ ⊆ Rp is a p-dimensional vector of parameters. Then, the unknown parameter β is

estimated by

β̂ = argmin
β

ḡβ(D,X)′Hḡβ(D,X),
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where H is an m×m positive definite matrix and

ḡβ(D,X) =
1

n

n∑
i=1

(
Di

πβ(Xi)
− 1−Di

1− πβ(Xi)

)
g(Xi).

Once the propensity score is estimated, the ATE estimator based on the CBPS method can be

obtained via (2).

Viewing the inverse propensity score of (5) as a weight, through careful optimization designs,

Zubizarreta (2015) proposes the stable balance weighting (SBW) method to choose the mini-

mum sample variance of the weights that balance the covariates, while Chan, Yam and Zhang

(2016) propose the calibration balance weighting method to choose the weights that minimize

the calibration distance and balance the covariates as well. Specifically, the SBW weights in

Zubizarreta (2015) can be obtained by solving the following optimization problem for j = 0

and 1,

minwji

∑
i:Di=j

(wji − 1/nj)
2

subject to wji > 0,
∑

i:Di=j wji = 1 and
∣∣∑

i:Di=j wjiXik − X̄k

∣∣ ≤ δjk, 1 ≤ k ≤ p, where

n0 and n1 are the numbers of units in the control and treated groups, respectively, Xik is the

k-th covariate of unit i, X̄k is the mean of the k-th covariate in the combined group, and δjk,

j = 0, 1; k = 1, · · · , p, are pre-specified small positive numbers. Once the stable balance weights

w1i and w0i are obtained, the weighted estimator of the ATE based on SBW method is given

by

∆̂SBW =
∑

i:Di=1

w1iYi −
∑

i:Di=0

w0iYi.

In high-dimensional settings, another line of making valid inferences of treatment effects is to

take the idea of covariate balancing into the construction of the estimators.

4.2 Approximate Residual Balancing Method

For high-dimensional linear model under unconfoundedness setup, Athey, Imbens and Wager

(2018) propose the approximate residual balancing method which combines the penalized linear

outcome regression model, Lasso or elastic net (Zou and Hastie, 2005), with the stable balance

weights (Zubizarreta, 2015) assigned to the regression residuals. Particularly, suppose that

µj(X) = X⊤αj , j = 0, 1, the ATE estimator based on the approximate residual balancing

method is constructed as

∆̂ARB = X̄T (α̂1 − α̂0) +
∑

i:Di=1

γ1i
(
Yi −X⊤

i α̂1

)
−

∑
i:Di=0

γ0i
(
Yi −X⊤

i α̂0

)
,

where

α̂j = argmin
α

 ∑
i:Di=j

(
Yi −X⊤

i α
)2

+ λ
{
(1− ρ)∥α∥22 + ρ∥α∥1

} ,

and

γj = argmin
b

(1− ζ)∥b∥22 + ζ
∥∥X̄ − X̄⊤

j b
∥∥2
∞ subject to

∑
i:Di=j

bi = 1 and 0 6 bi 6 n
−2/3
j


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with X̄ = 1
n

∑n
i=1 Xi and X̄j =

1
nj

∑
i:Di=j Xi, j = 0, 1. Here, 0 < ζ < 1, 0 < ρ < 1, and λ > 0

are tuning parameters.

As argued by Athey, Imbens and Wager (2018), the penalized linear regression step can

be effective at capturing the main effects while the weighting regression residuals step can be

effective at capturing additional small effects and makes compensations to the previous step,

leading to an effective procedure for estimating the ATE in high-dimensional cases. Different

from the methods discussed in Section 3, the approximate residual balancing method does not

rely on modeling the relationship between the treatment variable and the covariates, so that the

sparsity assumption for the propensity score is not required. The ATE estimator considered in

Athey, Imbens and Wager (2018) is closely related to the DR estimators if one views the inverse

propensity score in the DR estimator of (4) as a covariate balance weight. Also, as argued by

Athey, Imbens and Wager (2018), the approximate residual balancing method is closely related

to the de-biased Lasso studies for the regression model of high dimensions in the statistical

literature.

4.3 High-Dimensional CBPS

Ning, Peng and Imai (2020) generalize the CBPS method by Imai and Ratkovic (2014)

to introduce model selection methods into covariate balancing procedures, termed as high-

dimensional CBPS (HD-CBPS). The CBPS method does not rely on modeling the outcome

regression, while the HD-CBPS method requires the sparsity assumptions for both the outcome

regression and the propensity score models to allow for model selections. To adjust for the bias

caused by regularized estimation, Ning, Peng and Imai (2020) apply the covariate balancing

procedure to the covariates selected from the penalized outcome regression model to obtain

calibrated propensity score estimators. For the estimation of µ1 = E[Y (1)], Ning, Peng and

Imai (2020) first estimate the propensity score function via penalized logistic regression model

β̃ = argmin
β

1

n

n∑
i=1

[
Di ·

(
X⊤

i β
)
− log

(
1 + exp

(
X⊤

i β
))]

+ λ∥β∥1,

where λ > 0 is a tuning parameter, and estimate the outcome regression function by penalized

regression model

α̃ = argmin
α

1

n

n∑
i=1

Di(Yi −X⊤
i α)2 + λ′∥α∥1,

where λ′ > 0 is a tuning parameter, and then, they calibrate the estimated propensity score by

balancing the covariates selected in the outcome regression model as follows,

γ̃ = argmin
γ∈R|S|

∥∥∥∥∥∥ 1n
n∑

i=1

 Di

π
(
X⊤

iSγ +X⊤
iSc β̃Sc

) − 1

XiS

∥∥∥∥∥∥
2

2

,

where S = {1 ≤ k ≤ p : |α̃k| > 0} and Sc = {1 ≤ k ≤ p : |α̃k| = 0}. Finally, µ1 is estimated by

the IPW estimator

µ̂HD−CBPS
1 =

1

n

n∑
i=1

DiYi

π(X⊤
iS γ̃ +X⊤

iSc β̃Sc)
.
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Although the strong covariate balance property as in Imai and Ratkovic (2014) may not be

held with high dimensions, Ning, Peng and Imai (2020) argue that once the outcome regression

model is properly estimated, the HD-CBPS method would still approximately satisfy weak

covariate balancing property in the sense that the covariate balancing property holds for the

linear combination of the covariates. Ning, Peng and Imai (2020) also show that the HD-CBPS

procedure is robust to the misspecification of either the outcome regression or the propensity

score model and extend the linear outcome regression model to generalized linear cases.

Finally, Fan et al. (2021) propose a new method to combine the GMM-Lasso type estima-

tion with the covariate balancing procedure under the framework of the CBPS method. The

proposed method can not only balance the covariates but also select the relevant ones. Under

sparsity conditions, Fan et al. (2021) explore the effectiveness of the proposed method via

simulation studies.

4.4 Model-Assisted Inference for Treatment Effects with Regularized

Calibrated Estimation

Tan (2020a) proposes a calibrated estimation procedure for the propensity score from the

perspective of the loss function. Similar to the CBW method based on the propensity score

model, a logistic regression model is assumed to the propensity score. Tan (2020a) argues that

solving the covariate balance equation between the treated (or control) and combined groups is

equivalent to minimizing the calibrated loss function, which is a key component in Tan (2020a,

2020b). To derive an ATE estimator in the high-dimensional settings, Tan (2020a) adds a Lasso

penalty to the calibrated loss function. By plugging the minimal solution of the regularized

calibrated loss function into the logistic regression model, one obtains the calibrated propensity

score estimator and leads to a regularized calibrated IPW estimator for the ATE. Finally, Tan

(2020a) illustrates the advantages of the proposed methods over the conventional maximum

likelihood method via a simulation study.

Tan (2020b) proposes a DR type regularized calibrated estimation procedure for the ATE

with high-dimensional data. The regularized calibrated ATE estimator provides not only DR

point estimators but also model-assisted confidence intervals. The term “model-assisted” means

that the confidence intervals are valid when the propensity score function is correctly specified or

when a linear outcome regression model is assumed and correctly specified. The model-assisted

confidence intervals property makes the proposed method in Tan (2020b) one step further when

compared with the methods introduced in Section 3. Under the unconfoundedness and overlap

assumptions, the DR ATE estimators are used in Tan (2020b) and the calibrated loss function

with a Lasso penalty as in Tan (2020a) is used for the propensity score model while a carefully

chosen weighted least-square loss function with Lasso penalty is used for the outcome regression

model.

Clearly, causal inference with covariate balance can either circumvent the modeling of

propensity score function or make inference robust to the misspecification of the propensity

score model. This is certainly an advantage over the methods based on the DR estimators in



ZHAN Ming-feng, et al. Recent advances in statistical methodologies in evaluating... 141

Section 3.

§5 Causal Inference Based on SDR

A third line of making causal inference with high dimensions is the SDR method, which

captures full information of covariates through a linear combination of the whole covariates.

Indeed, Huang and Chan (2017) propose the joint SDR method for the ATE, where the “joint”

means that the proposed method aims at finding a linear combination B⊤X to simultaneously

satisfy

D⊥X |B⊤X, Y (0)⊥X |B⊤X and Y (1)⊥X |B⊤X,

where B is p × r unknown parameter matrix with r ≤ p. Once the parameter matrix B

is estimated, denoted as B̂, the ATE is then estimated by the outcome regression estimator

(1), where the outcome regression model is estimated by sieve approach with respect to B̂Xi.

Furthermore, Luo, Zhu and Ghosh (2017) propose regression-based SDR to estimate the ATE,

where the focus is to find B⊤
0 X and B⊤

1 X such that

E(Y (0)|X)⊥X |B⊤
0 X and E(Y (1)|X)⊥X |B⊤

1 X,

where Bj is p× r(j) unknown parameter matrix with r(j) ≤ p, j = 0, 1. The minimum average

variance estimation method as in Xia et al. (2002) is adopted to estimate the parameter matrix

Bj , j = 0, 1 and to recover the outcome regression function simultaneously.

However, the theoretical results in Huang and Chan (2017) and Luo, Zhu and Ghosh (2017)

are derived only for fixed dimensions. Recently, Ma et al. (2019) propose the sparse SDR

method for causal inference of ATE with high dimensions. Notice that both the outcome

regression and propensity score models can be viewed as conditional expectations. Let W be a

random variable that can be taken as the potential outcomes Y (j), j = 0, 1 or the treatment

variable D. The goal of the sparse SDR method is to find a p × r sparse parameter matrix B

such that

E(W |X) = E(W |B⊤X),

where B⊤X = (B⊤
R,0⊤

(p−sR)×r)
⊤X = B⊤

RXR, R denotes as the set of indices of relevant

covariates, and sR is the number of the relevant covariates. To estimate the sparse parameter

matrix B, Ma et al. (2019) adopt the sparse reduced-rank regression method proposed by Chen

and Huang (2012). Then, the conditional expectation E(W |X) is estimated by multivariate

kernel method and the ATE is estimated by the DR estimator (4). Finally, Ma et al. (2019) show

that the proposed ATE estimator is
√
n consistent, asymptotic normal and semi-parametrically

efficient.

Although the inference of the ATE is based on the DR estimator, the sparse SDR method

does not rely on the restrictive parametric modeling assumptions on the outcome regression and

propensity score functions. In this regard, the modeling strategy is similar to the generalized

random forest method introduced in the next section.
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§6 Machine Learning Methods

The fourth line for making valid inference of treatment effects lies in the machine learning,

especially the random forest methods. Random forest, firstly introduced by Breiman (2001),

is known as one of the most attractive machine learning methods. Similar to the bagging

method, developed by Breiman (1996), random forest is an ensemble algorithm consisting of

many decision or regression trees and making an average of the results produced by different

trees. In the bagging method, all covariates are used to generate a single tree while in the

random forest method, only a fraction of covariates are used to generate a single tree. This

small modification makes the trees in the random forest more diverse than those in the bagging

algorithm and improves the generalization property of the resulting model.

It is well known that the traditional machine learning methods are good at prediction

rather than inference. However, Wager and Athey (2018) propose the causal forest method to

introduce the random forest method into the causal inference and derive the consistency and

asymptotical normality results as well as asymptotic confidence intervals for the treatment effect

estimators. The treatment effects are estimated via the causal forest consisting of many causal

trees which can be viewed as the nearest-neighbor methods with the leaves in the causal tree

as the neighborhood metrics. An important advantage of the causal forest over the nearest-

neighbor methods is that the weights in the causal forest are data-driven allowing for more

flexibility. Thinking of the leaves in a causal tree as small enough, the individuals in the same

leaf can be treated as randomly assigned so that the simple calculation between the treated

and control individuals as in the randomization experiment can be applied. The causal forest

then averages the results produced by the causal trees to obtain the treatment effect estimate.

Recently, Athey, Tibshirani andWager (2019) propose the generalized random forest method

that adopts the random forest algorithm to estimate various types of conditional expectations.

Obviously, the causal forest method by Wager and Athey (2018) directly aims at the treatment

effect estimation while the generalized random forest method is indirectly used to estimate

the treatment effect through intermediate parameters. Estimating conditional expectations

via the random forest algorithm can be viewed as the nonparametric method. In classical

nonparametric kernel methods, a series of weights are determined by the kernel function whose

values vary with the distance to the given conditional variable. In practice, these classical

methods suffer from the “curse of dimensionality” problem and may lead to poor performance as

the dimensions of the covariates increase. However, the weights assigned to the response variable

in Athey, Tibshirani and Wager (2019) are determined by the random forest method, making

it possible to deal with the high-dimensional settings. The basic idea in Athey, Tibshirani

and Wager (2019) is similar to that in Wager and Athey (2018) by viewing the leaves in the

generating trees as the closeness metrics. Furthermore, the large sample theories of consistency

and asymptotic normality are derived in Athey, Tibshirani and Wager (2019). Although the

theoretical results in both Wager and Athey (2018) and Athey, Tibshirani and Wager (2019) are

derived for low-dimensional settings, as long as the sparsity assumptions are made to the true

model, the algorithms would still work for the high dimensions since the irrelevant covariates
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would be ignored by the forests, which is implicitly pointed out in Section 3 of Wager and Athey

(2018).

The advantage of the random forest methods is that they are flexible and do not rely

on postulating specific models for the outcome regression and potential outcome functions.

Specifically, the random forest-based methods can be viewed as nonparametric estimations

that can deal with the curse of dimensionality issue.

Remark 2: In addition to the random forest or the generalized random forest as mentioned

above, it should be very attractive and demanding to develop other machine learning methods

to study causal inferences, which is clearly warranted to investigate.

§7 Conclusion

In the big data environment, on the one hand, it can make the unconfoundedness assump-

tion more credible, on the other hand, one needs to determine which covariate (or its functional

form) should be included in the true model. The inference of treatment effects based on the

DR estimators is valid in high-dimensional settings, indicating that the DR estimator has the

self de-biased property. Another line of making valid inference of treatment effects with high-

dimensional data is to exploit the covariate balance property. The utilization of the covariate

balance property can either circumvent modeling the propensity score or relax the model spec-

ification assumptions. Furthermore, one can base on the SDR method to make causal inference

in high dimensions and one advantage of this method is that it does not require consistency for

variable selection. Finally, one can directly or indirectly make inference of treatment effect via

the machine learning algorithms such as random forest. The approximate residual balancing

method and the inference of treatment effects based on the DR estimators are closely related

to the de-biased Lasso method for the regression model with high dimensions in the statistical

literature.

The DR estimators for causal inference need to consider model selection in both the outcome

regression and propensity score functions. However, the estimators based on the covariate

balance methods can ease the dependence on the PS models by using the auxiliary information.

The estimators based on the SDR method do not rely on restrictive assumptions on OR and

PS models. The methods to estimate the treatment effects via the random forest algorithm are

flexible and do not rely on modeling the OR and PS functions. For empirical applications, the

first two methods are recommended when one believes that it is reasonable to model the OR

and PS functions in parametric forms, while if one has no idea of what functional forms of the

OR and PS models should be, it is better to try the last two methods.

Currently, the causal inference in high dimensions mainly focuses on the ATE estimate.

How to make valid inference for quantile treatment effects besides the Neyman orthogonality

condition? Can one generalize the existing methods to the other setups, such as, difference-

in-differences, local average treatment effects and regression discontinuity design? Do other

machine learning methods such as support vector machines work for causal inferences in high-



144 Appl. Math. J. Chinese Univ. Vol. 37, No. 1

dimensional settings? These questions are left as future research topics.
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