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Demi-linear analysis II1

—demi-distributions with compact support

LI Rong-lut ZHONG Shu-hui? KIM Dohan? WU Jun-de?

Abstract. A series of detailed quantitative results is established for the family of demi-

distributions which is a large extension of the family of usual distributions.

81 Introduction

In [1] we show that there is an entirely original generalization of the basic theory of usual
distributions.

As was shown in [1] and [2], the family of demi-distributions is a large extension of the family
of usual distributions, that is, the family of demi-distributions includes nonlinear functionals as
many as usual distributions, at least.

The theory of demi-distributions not only contains the theory of usual distributions as a
special case but causes a series of essential changes in the distribution theory. For instance,
in the case of usual distributions the constant distributions are only solutions of the equation
3y’ = 0 but in the case of demi-distributions the equation 3’ = 0 has tremendous solutions
which are nonlinear functionals, and every constant is of course a solution of ¢y = 0 [1, Th.
2.3]. Moreover, the family of demi-distributions is closed with respect to extremely many of
nonlinear transformations such as |f(-)|, |f(-)[?/3, sin|f(-)[, elfI=1 etc.

In this paper we carry out a detailed quantitative analysis for demi-distributions. Our vivid
quantitative results show that the demi-linear mapping introduced in [2] is a very important
object and, indeed, since the basic principles such as the equicontinuity theorem and the uniform
boundedness principle hold for the family of demi-linear mappings [2, Th. 3.1, Th. 3.2, Th.
3.3, Th. 4.1] and a nice duality theory has established for demi-linear dual pairs [3, Th. 3.4,
Th. 3.12, Th. 3.14, Th. 3.22, Th. 3.24], it is trivial that the family of demi-linear mappings is

an important extension of the family of linear operators.
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Fix an n € N and a nonempty open set 2 C R". Let
C>(Q) = {¢ € C*: ¢ is infinitely differentiable in Q},
C5e(Q) = {€ € C>(Q) : supp& is compact },

where supp ¢ = {x € Q: &(x) # 0} NQ for every € € C and so if ¢ € C§°(2) then the compact
supp ={x €Q:&(x) #0}NQ={x€Q:&x)#0} C Q. Forevery M C Q, C®°(M) ={{ €
C>(Q) : supp& C M} and C§° (M) = {£ € C§°(Q) : supp& C M} [4, p.14].

Let K be a compact subset of €2, that is, K is bounded and closed in R™ and K C €2, and
ke€{0,1,2,3,---}. Then

I€lxr =Y sup|oE], £ € C=(Q)

lal<k
defines a seminorm on C*(Q), and the family {| - ||k, : K is compact, K C ©, k € {0} UN}
gives a locally convex Fréchet topology for C*°(£2), and C'*°(€2) has the Montel property, i.e.,
bounded sets in C*°(QQ) are relatively compact [5, 2.1].

For a compact K C € the sequence {|| -l Kvk}z.;o gives a locally convex Fréchet topology for
C*(K). Since 2 = U;il K; where each Kj is compact and Ky C Ky C -- -, with the inductive
topology using the inclusion maps, C§°() = ;2 C>°(K;) is a (LF) space which are both
barrelled and bornological. Then C§°(2) also has the montel property, and the inclusion map
I:C§(Q2) — C*(Q) is continuous [5, 2.2].

A distribution f in € is a continuous linear functional on C§°(f2), that is, f : C5°(2) — C
is linear and for every compact K C € there exist C' > 0 and k € {0} UN such that
(1.1) F(€)] <C D sup|av¢, € e CqP(K) = C®(K)

o<k
4, Def. 2.1.1, Th. 2.1.4].

Let C(0) = {y € C® : limy_,ov(t) = 7(0) = 0, |y(t)| > [t] if [t| < 1}. For a topological

vector space X, N(X) denotes the family of neighborhoods of 0 € X.

Definition 1.1. (/2, Def. 2.1]) Let X, Y be topological vector spaces over the scalar field K.
A mapping f : X — Y is said to be demi-linear if f(0) = 0 and there exist v € C(0) and
U € N(X) such that every x € X, u € U and t € {t € K: [t| < 1} yield r, s € K for which

[P =1 < y@), Is| < y(0)] and f(z +tu) = rf(z) + sf(u).

Let .2, v(X,Y) be the family of demi-linear mappings related to v € C'(0) and U € N (X)),
and let

A u(X,Y)={feLyu(X,Y):ifz € X, ueU and [t| <1, then
f(z+tu) = f(z) + sf(u) for some s with |s| < |y(t)[}.

If v(t) = Mt with M > 1, then we write that %, (X,Y) = Zyu(X,Y) and J, y(X,Y) =
v (X,Y). Moreover, if X is normed and U = {z € X : |lz|| < €} then Z, . (X,Y) =
Zyu(X,Y) and A, (X,Y) = #, y(X,Y). Thus, both Zu (R, R) and # (R, R) are fami-

lies of demi-linear functions in RE.
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Definition 1.2. ([1, Def. 1.1]) A function f : C§°(2) — C is called a demi-distribution if f
is continuous and f € £y y(C§° (), C) for some v € C(0) and U € N(C§°()).

Let C§°(Q2)0°Y) (resp., C5°(2):U]) be the family of demi-distributions which are functionals
in 2, (C3°(92),C) (vesp., Ho,u(C5°(92), C).

Let C§°(92)" be the family of usual distributions. Then

7'(Q) = C(Q) € C@ € GE@)), ¥y € C(0), U € N(C5(9)

and, in general, C§°(Q)""UI\Cg°(Q)" includes nonlinear functionals as many as usual distribu-
tions, at least (see [1-3]).

Notice that the notations Z, 7(X,Y), 4, (X,Y), C(Q)Y) and C5°(Q)Y] always
mean that v € C(0) and U € N(X) (resp., N(C§°(2))), automatically. We also have similar
understanding for 2 v(X,Y), #are(C,C), etc.

82 Continuity of Demi-distributions

Throughout this paper, n € N and 2 is a nonempty open set in R".

Definition 2.1. S C C%, S #0. Foré €S and f: S — C, let

supp& = {me Q:&(x) ;éO} naQ,
supp f = {x € Q:Vopen G CQ withx e GIE €S with supp& C G such that f(§) # O}.

Lemma 2.1. Let S € C® with S # 0. For ¢ € S and f € CS, both suppé and supp f are
closed in Q and so both Q\supp& and Q\supp f are open in R™.

Proof. Let xy, € supp f and x, — x € Q. If x & supp f then there is an open G C £ with
z € G such that f(§) = 0 for every £ € S with supp§ C G. But xp, € G eventually and so
xy & supp f eventually. This contradiction shows that x € supp f. O

Lemma 2.2. Let £ € C3°(Q) and f € £,y (C5°(Q2),C). If suppENsupp f =0, then f(&) = 0.
Proof. If € =0 then f(§) = f(0) =0 by Def. 1.1.

Let £ # 0. Since supp& # 0 and supp f Nsuppé =0, supp f ; Q. By Lemma 2.1, for every
x € supp& there is an open G C Q\supp f such that x € G, and f(n) =0 for alln € C§°(Gy).
Since supp& is compact, there exist 1, ,Tm € supp such that supp& C U;n:1 Gy, and so
e C'(‘)’O(U;n:1 Ga,;). By Th. 1.4.4 of [4], & = Z;"Zl & where & € C3°(Gy,), j =1,2,--- ,m.

Pick a p € N for which %ﬁj eU,j=1,2,---,m. But each %ﬁj € C5°(Gy,) so f(%fj) =0,
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j=1,2,--- 'm. Therefore,

o -1(36) - f(mlﬁj (0= 1)+ 26m)
j=1 j=1
- mf(:1 &+ (= 1)7¢n) +51/(56n)
— 1 1
= Tlf( 2 &+ (p— 2)5&7@ + };fm)
:m...rpf(’"igj):...:w...rmp_lf(lgl):0. o
= p

A linear functional f : C§°(£2) — C is continuous if and only if the condition (1.1) holds
for f [4, Th. 2.1.4]. However, for demi-linear functionals in .2, ;(C5°(€2),C) the relation
between continuity and the condition (1.1) is quite complicated. First, we show that many

demi-distributions satisfy the condition (1.1).

Example 2.1. (1) Let n = 1 and f(§) = fil |sin [€(x)||dz, € € CP(R). It is easy to see
that f is not linear but f € C§°(R)V] where y(t) = Zt fort € C and U = {¢ € C°(R) :
sup,i<1 [§(z)] < 1}. For every compact K C R and & € C§°(K),

1 1
5@ = [ [sle@lldr< [ Je@)]do <250 [¢(o)] = 250",

Thus, f is a demi-distribution of order 0. Moreover, the constant C = 2 in (1.1) is available
for all compact K C R.
(2) Pick a f € Lj, ,(R™) with sup,gcgn

loc

f@)| <M < +o00 and let
1@ = [ 1f@g@]de, ¢ecrE) =2

Then [f] is not linear but [f] € PV-7) for every v € C(0) [1, Exam. 1.1(1)].
Let K be a compact set in R™. Pick a cube L D K for which |L| = [, 1dx < 40c0. Then

= x T T x T su 0
1)@= [ 1f@e]do <1 [ |e@)do < MiLIsup|o%

Thus, the condition (1.1) holds for the demi-distribution [f]. If f(z) = |z| = /a2 + -+ 22
for all x = (21, ,x,) € R™, then supp[f] = R™ is not compact but the condition (1.1) holds
for [f] and [f] is of order 0.

, Ve CR(K).

For ~(t) = Mt where M > 1 we will show that if f € C5°(Q)"V] and supp f is compact,
then the condition (1.1) holds for f and, in fact, f has a more strong property (see §4, Th.
4.2), and Exam. 2.1(2) is interesting because this example shows that the condition (1.1)
can not imply compactness of support. Moreover, the condition (1.1) fails to hold for some
f € Cee()UN\Cse(Q)V]] though supp f is compact. We show that (1.1) can be false even
it supp f = {zo} is a singleton.
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Example 2.2. Fora >0 let H,(z) = 1/a when 0 < x < a and H,(x) =0 otherwise. Let
1>ag>ay >as > -+ be a positive sequence with Z;io aj =a < +oo and u = limy, (Hg, *
~-x Hg,). By Th. 1.3.5 of [4], u € C§°(R), suppu C [0,a], [udz =1 and

[u® (2 /|u<k+1 )| dz < 2%/(ag--ar), z€R, k=0,1,2---.

Pick an z¢ € (0, a) for which w(xo) = sup e u(z) > 0 and define a continuous f : C§°(R)
— R by f(&) = k&0l — 1, ¢ € Cg°(R). Letting v(t) = et fort € C and U = {¢ € C§°(R) -
SUDg< p<q |E(2)] < 1}, it is easy to see that f € L,y (CE°(R),R) and so f is a demi-distribution
in C§°(R)Y) . Clearly, supp f is compact and, in fact, supp f = {xo}.

Observe that u € CP(R). Then mu € C§°(R) and supp (mu) = suppu C [0,a] for all
m €N, and f(mu) = el™&0)l _ 1 = emulx0) _ ] = e®mmu(xg) where limy, e = +00. Now let
C >0 and k € NU{0}. There is an mg € N such that

ok
(Xo)aoa1 “ar’

apal---ak > CZ_] Omaoal faj CZ ‘(mu)(])(X”?

e > C(k+1) Ym > mj.

Then | f(mu)| = e*»mu(xg) > C(k+ 1)m
Vm > mg, x € R.

Thus, for every C > 0 and k € NU {0} there exists mg € N such that mu € C§°([0,a]) for
all m > mq and |f(mu)| > OZ?:O SUD,e(0,q) |(mu) D (x)], Ym > mo, that is, the condition
(1.1) fails to hold for f.

However, for demi-distributions there is a simple condition impling (1.1).

Theorem 2.1. Let f € C°(Q) V). If there is an € > 0 such that
(2.1) eltf(o)| < vVt >0, £€C(Q),
then the condition (1.1) holds for f.

Proof. If the conclusion fails, there is a compact K C € such that

(2.2) Vj € N3¢ € C5°(K) such that | f(&)] > ) sup |07¢].
K

lo<j

Then |f(&5)] >0, & #0, &(z;) # 0 for some x; € K and
D sup|0°;] = sup[0°6,] 2 [g5(ap)| > 0, 5 =1.2.3,--

o] <j

It follows from (2.1) and (2.2) that

f(&)
(23) °= 6’j2|a|<j SUJPK 0%

£
32 a)<) SUPK [09&;]

)7j:172733"'

< |1

Let 8 be a multi-index. Then sup,c g ‘85(].2‘ = ffl'pK Ia‘*&jl)(x)’ < %, Vi>18l,

. & -
2.4 lim sup ‘85 - ’ =0, Vmulti-indezx (.
24 j=o0 K (J 2jal<j SUPK |8a€j|)

Observing {fj/jngj supg |0°¢;|} € C§°(K), it follows from (2.4) that TYs f‘ipK a3
— 0 in C(Q). Since f € C()Y) is continuous, f(

& ; _
) SPTT \6a§j\) — 0 but this con
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tradicts (2.3). O

Theorem 2.2. FEvery nonzero usual distribution f € 2'(Q) produces uncountably many of
nonlinear demi-distributions satisfying the conditions (2.1) and (1.1).
Proof. Let f € 2'(Q), f #0. There is U € N(C§°(Q)) such that |f(n)| <1 for alln e U.

Pick a nonlinear continuous h : R — R such that h(z) = x when |z| < 1, § < W

IN

]

(SIS

1 when a < b. Clearly, R® includes uncountably many of this kind functions. For everye € (0,
and z € R we have elz| < |h(z)| < |z], elz| < |[h(|z])| = h(]z|) < |a].

By Th. 1.1 of [2], h € J11(R,R), that is, for x € R and u,t € [—1,1] we have that
h(z+tu) = h(zx)+sh(u) where |s| < |t|. Then for& € C°(N), n € U and |t| < 1, h(|f({+tn)|) =
ROF(E) + tFm)) = h(F©] + s|F () where |s| < [t] < 1 and, therefore, h(|f(& + tn)]) =
R(F©N) + Sh1FM), 18] < Is| < [t < (B, ¥ € C(0). This shows that h(f()]) €
Ce(Q)UN\NZ'(Q), Yy € C(0).

Let0 < e < 3. Thenelth(|f(&)])| <eltf(&)] =<|ft)] < |n(If(tE)])], VE R, £ € C§°(Q).
So (2.1) holds for h(|f(-)]). By Th. 2.1, h(|f(-)|) satisfies the condition (1.1), and the usual

distribution f produces uncountably many of this kind nonlinear demi-distributions. [

We also are interested in the converse implications.

Theorem 2.3. Let f € Z, y(C§°(Q),C). If the condition (1.1) holds for f, then f is sequen-
tially continuous.

Proof. Suppose §; — & in C§°(). Then £ —& — 0 and there is a compact K C Q such that
supp (&5 — &) C K for all j [4, p.35]. Moreover, there exist sequences t; — 0 in C and n; — 0
in C§°(2) such that & — & = t;n; for all j [6, Exam. 2]. We may assume that |t;] < 1 and
n; €U for all j. Then

(&) = &) = f(E+& —&) = f(&) = F(E+tm;) — f(&) = (r; = D f(E) + 55/ (),
where [r; — 1] < [7(t5)] - 0 and |s;] < |1 (t5)] — 0.

If t; = 0 then f(&) = f(E+tm;) = f(§) so we may assume that t; # O for all j. Then
suppn; = supp (tjn;) = supp(§; — &) C K for all j and by the condition (1.1) there exist
C >0 and k € NU{0} such that |f(n;)| < C > \a)<k SUPK |0°n;| = 0 as j — oo since n; —
0 in C§°(2), so f(n;) — 0. Thus, f(§) — f(&) = (rj = 1) f(§) +s;f(n;) = 0. O

Let 79 € C(0), y0(t) =t for t € C. For every U € N (C§°(€2)) the family 7 v (C5°(Q2),C) =
o, u(C3° (), C) includes all linear functionals and much more nonlinear functionals, e.g., for
every nonzero linear f : C5°(Q) — C, |f(+)| is nonlinear but |f(-)] € 1 v (C§(R),C), VU €
N(CE ().

Theorem 2.4. If f € 1 y(C° (), C) and the condition (1.1) holds for f, then f is continuous
and so f is a demi-distribution in CS°(Q)ho-Ul,

Proof. By Th. 2.3, f is sequentially continuous. Since C§°(Q) is bornological, C§° () is
C-sequential and f is continuous by Th. 1.1 of [1]. O
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In §4 we will improve this result (see Cor. 4.2).

83 Extensions of Demi-distributions

For every C' > 1 and € > 0, J#¢(C, C) includes uncountably many nonlinear functionals,
and ho f is a demi-distribution in 2 for every h € .Z, .(C,C) and f € 2'(Q) (see [1, Th. 1.5,
Cor. 1.1]).

Theorem 3.1. Ifh e 2, .(C,C), h# 0 and f € Z'(Q), then ho f is a demi-distribution in Q
and
supp (ho f) = supp f.

Proof. If x € Q\supp f then there is an open N, C ) such that x € N, and f(n) =0 for all
n € C(Ng). Then (ho f)(n) = h(f(n)) = h(0) =0 when n € C(Ny) and so x & supp (ho f).
Thus supp (ho f) C supp f.

If u € C such that 0 < |u| < e and h(u) = 0, then for every z € C there is ap € N
such that %|%| <1 and h(z) = h(pZu) = h((p— 1) Zu+ Zu) = rih((p — 1) Zu) + sih(u) =
rih((p—1)5u) = -+ = rira -+ rp_18ph(u) = 0. This contradicts that h # 0. Hence h(u) # 0
when 0 < |u| <e.

Let x € supp f and N, an open neighborhood of x such that N, C Q. Then f(n) # 0 for
some n € C§°(N,) and 0 < \%f(n)| < € for some p € N. Observing f is a usual distribution,
%77 € C§°(Ny) and (ho f)(%n) = h[f(%n)] = h[%f(n)] # 0. This shows that © € supp (ho f) so
supp f C supp(ho f). O

For M C Q let Co(M) = {§ € C% : ¢ is continuous, supp ¢ is compact}. We have an
analogue of Th. 1.4.4 of [4] as follows.

Lemma 3.1. Let Q4,---,Q be open sets in Q and let £ € C’O(UllC Q). Then one can find
& €Co(y),i7=1,2,--- ,k, such that £ = zlffj If € > 0 one can take all £ > 0.

Proof. If x € supp& then x € Q; for some j € {1,2,--- ,k} and there is a compact neigh-
borhood of x contained in §;. Since supp& is compact, a finite number of such neighborhoods
can be chosen which cover all of supp&. Hence supp& C Ulf K; where each K; is compact and
K; Q.

By Th. 1.4.1 of [4], there is X; € C§°(2;) such that 0 < &X; < 1 and X; = 1 in a
neighborhood of K;, j =1,2,--- k. Let

§1=E8X, & =8X(1-A), -, §=8X(1— A1) (1 — A1),
then each supp&; C supp X; C Q; and & = Z’f &. O

Let SC C(Q), M C Qand S(M) = {5 €S :supp€ C M} For a function f : S — C define

fau : S(M) = C by fau(§) = f(€), VE€ S(M), and fay is called the restriction of f to M.
We now improve Th. 2.2.1 of [4].
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Theorem 3.2. Let f € £, y(Co(R),C). If every point in Q has a neighborhood to which the
restriction of f is 0, then f =0. The same fact is valid for f € £, v(C§°(Q),C).

Proof. Let £ € Cy(QQ). Since supp& is compact, there exist 1, - , T, € suppé such that
supp& C UT" N; where Nj is an open neighborhood of z; such that In; =0,1<j<m. Then
€€ Co(U" Nj) and € = 37" & where each &; € Cy(N;) by Lemma 3.1.

Pick a p € N such that %5, %5]- eU, j=1,2,---,m. Then %f =>r %fj and f(%g) =
OOV 26) = mf(S0 T ) + s f(26m) = mf(T T 2g) = = mra o f(26) = 0
since cach 165 € Co(N;) and f(5)) = fi, (55) = 0. Thus, £(§) = F(p2€) = 1 f((p— 1) 36) =
cee=tyty - 'tpflf(%§> =0.

The same conclusion can be obtained for f € £, y(C°(Q),C) using Th. 1.4.4 of [4] instead
of Lemma 3.1. O

Theorem 3.3. If f € £, y(Co(R2),C) (resp., £, uv(C(R),C)) and § € Co(2) (resp., C°(Q))
such that supp f N supp & =0, then f(§) = 0.

Proof. Let x € supp&. Since x & supp f and supp f is closed in Q2 by Lemma 2.1, there is an
open neighborhood N, of x such that N, C Q\supp [ and the restriction fy, = 0. Since supp§
is compact, there exist x1, -+ , &y, € supp& such that suppé C JV" Ny, and mej =0,75 =
1,2,---,m. Then & € Co(Uy" Na,) (resp., C3°(Uy" Na,)) and & = >°1" &, where & € Co(N,,)
(resp., C§°(Ny;)) by Lemma 3.1 (resp., Th. 1.4.4 of [4]), j =1,2,--- ,m.

Now f(&) =0 as in the proof of Th. 3.2. O

Note that Th. 3.3 is not a consequence of Th. 3.2 because for f # 0 and x € supp f the

restriction fn, # 0 when NV, is a neighborhood of z.

Definition 3.1. Let f € J&, y(C3°(R2),C) and & € C®(Q). We say that £ = & + &1 is a
f-decomposition of & if & € C§ () and supp & Nsupp f = 0.

Observe that for every compact K C Q there is a X € C§°(€2) such that 0 < X <1 and
X =1 in a neighborhood of K.

Lemma 3.2. Let f € J, y(C5°(R2),C) and £ € C>(Q) such that supp& N supp f is compact.
If K is a compact subset of Q such that supp&Nsupp f C K and X € C§°(Q) for which X =1
in a neighborhood of K, then & = X+ (1 — X)¢ is a f-decomposition of £&: XE € C§°(Q),
supp [(1 — X)&] N supp f = 0.

Proof.  Since supp (X§) C supp X, X§ € C§(Q). There is an open G C Q such that
KCGand X =1inG. If[(1-X)¢](z) = (1 - X(x))¢(x) # 0, then x € suppEN(Q\G) and so
supp [(1=X)E] C supp EN(QN\G) C suppEN(Q\K) C supp EN[Q\ (supp ENsupp f)] C Q\supp f,
i.e., supp [(1 — X)é]Nsupp f =0. O

Corollary 3.1. Let f € 4, y(C5(Q),C) and § € C(Q2). If K is a compact subset of Q
such that supp& Nsupp f C K and X € C§°(Q) for which X =1 in a neighborhood of K, then

f(&) = F(X9).
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Theorem 3.4. Let f € J#, y(C5°(R2),C) and & € C(Q). If both & =& + & and & =no +m
are f-decompositions of &, where &, no € C§° () and supp & N supp f = suppny N supp [ =0,
then f(&) = f(no).

Proof. Let X = &y—no. Then supp X C supp&oUsupp g and so X € CF°(2). Since ny —&; =
§o—no =& s0 supp X C supp& Usuppn, supp X Nsupp f C (supp& N supp f) J(suppm N
supp f) = 0.

Pick a p € N for which %X € U. Then supp(%X) N (supp f) = 0 and so f(l%/'\,’) =0 by
Lemma 2.2. Then & =no + X and

f(&) = f(mo +p%/’l’) = f(mo+(p— 1)%?{) == f(no+ %X) = f(m). O
By Lemma 3.2 and Th. 3.4 we have

Corollary 3.2. Let f € #, y(C5°(Q2),C) and &,n € C§°(Q2). If supp (§—n)Nsupp f =0, then
f&)=rfn).

Definition 3.2. For f € J, y(C5°(Q2),C) let

S(f) ={€ € C>(Q) : supp& N supp f is compact},
and define f : S(f)—=C by

f(&) = f(&) when & =&y + &1 is a f-decomposition of & € S(f).

We say that f is the canonical extension of f. If supp f is compact then S(f) = C=(Q)
and f is defined on C>(€).

Theorem 3.5. Let f € J,y(C5(R2),C). Then S(f) is a vector subspace of C*() and
C2(Q) C S(f). Moreover, f(€) = f(&), € € C(Q), and f(€) = 0 when & € C®(Q) but
supp &N supp f = 0.

Proof. If &,n € S(f) and t € C, then (supp& N supp f)U(suppn N supp f) is compact and

supp (E+tn)Nsupp f C (supp&Usuppn) (\supp f. This shows that E+tn € S(f). If§ € C§°(Q)
then supp& N supp f C suppé so & € S(f), and f: f(&) since € =€+ 0 is a f-decomposition

of €.
If £ € C(Q) but supp& Nsupp f = 0, then & = 0+ & is a f-decomposition of & and
f(&) = f(0)=0 by Def. 1.1. O

Recall that C>°(Q) is a Fréchet space.

Lemma 3.3. Let n € C*(Q) and T,,(§) = n¢ for £ € C(Q). Then T, : C(Q) — C>*(Q) is
a continuous linear operator.

Proof. Let &, — 0 in C®(Q). For every compact K C Q and k € NU {0}, it follows from
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the Leibniz formula that
anvHK,k = Z sup |0%(n&,)| < C Z s%p|8a§1,||65n]

la|<k lal+IBI<k
< C max sup |9°n sup |0%¢,| — 0. O
BI<k K | ||§<:k 9°6.]

The topology of the inductive limit C§°(2) is strictly stronger than the topology of the

subspace C§°(Q2) of C*°(£2). So the following fact is interesting and useful for further discussions.

Lemma 3.4. Let X € C§°(Q) and Tx (&) = X¢ for £ € C°(Q). Then Ty : C*(2) — C§°(NQ)
s a continuous linear operator.

Proof. Let & — 0 in C*°(Q2). Since X € C§°(Q), supp X is compact and supp (X&) C
supp X for allv. By Lemma 3.3, X&, — 0 in C*°(Q) and so for every compact K C Q and every
multi-index o, lim, supg [0%(X&)| < limy 37 5 <0 SUPK |0°(X&,)| = limy |XE ]k ja) = O.
Thus X&, — 0 in CP() and Tx : C®(Q) — C§°(Q) is continuous because C® () is a
Fréchet space. O

Lemma 3.5. Let X, Y be topological vector spaces and f € £y y(X,Y). Then f is continuous
if and only if f is continuous at 0 € X.

Proof. Suppose that f is continuous at 0 € X. Let x € X and V € N(Y). Pick a balanced
W e N(Y) for which W +W C V.

There is a balanced Uy € N (X) such that Uy C U and f(Uy) C W. Since limy_07(t) = 0,
there is a p € N for which |fy(]%)| <1 and ’y(%)f(x) eW. Ifz e x+]%Uo, thenp(z—x) € Uy C U
and f() = f(z) = fo+2—2)— f(z) = flo+Lp(z— )| — F(@) = rf (@) +5flplz — )] — F(z) =
(r = 1) f(2) + sfp(z — 2)), where [r — 1] < |7(;)| <1 and |s| < |y(})] < L.

Ify(%) =0thenr—1=s=0s0 f(z) — flz) =0€ V. va(%) # 0, then (r — 1)f(z) =
,Y?%/lp)’y(l/p)f(x) € ,Y?%/lp)W C W and sf[p(z — x)] € sf(Up) C sW Cc W. So f(z) — f(z) €
W+ W C V. Thus, %Uo € N(X) and f(z + ;Us) C f(z) +V, i.e., f is continuous at x. [

Recall that C5°(Q)V) = {f € 2, y(C5°(Q),C) : f is continuous} is the family of demi-
distributions, and C§°(2)""V] is a large extension of the family 2/(Q)(= Cg°(Q)') of usual

distributions.

Theorem 3.6. Let f € C'(‘)’O(Q)[%U] such that supp f is compact. Then there is a V €
N(C>®(Q)) such that the canonical extension fe c=(Q)V1 and suppf: supp f.

Proof. Since supp f is compact, S(f) = C*(Q) and the canonical extension foff is defined
on C®(2). Pick a X € C§°(2) such that X =1 in a neighborhood of supp f. By Lemma 3.2
and Def. 3.2, f(€) = f(XE), VE € C®().

By Lemma 3.4, V. = {£ € C®(Q) : X§ € U} € N(C®(Q)). If£ € C®(Q), n €V and
1 <1, then F(€ +tn) = J(XE +tAn) = F(XE) + 57 (Xn) = (&) + sT(n) where |s| < (1)
Thus f € A, v(C>*(Q2),C).
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Let & — 0 in C™(Q). By Lemma 5.4, X&, — 0 in CP(Q) and so f(&) = f(X&) —
F(0) = 0 = f(0). This shows that [ is continuous at 0 € C*(Q) since C(Q) is a Fréchet
space. Thus f is continuous by Lemma 3.5.

Let x € Q\supp f. There is an open N, C Q\supp f such that x € N, and f(n) =0, Vn €
C§°(Ny). If & € C*(N,), then supp (X&) C supp& C Ny so f(f) = f(X¢ = 0. Thus,
r & suppf and so suppf C supp f. Conversely, if v € Q\suppf then there is an open
N, C supp f such that f(f) =0 for all £ € C*(N,) so f(n) = f(n) =0, Vn € C§°(N,). Then

x & supp f and so supp f C supp f ]

Theorem 3.7. Let f € C(Q)V] and define fo : C§°(Q) — C by fo(&) = f(&) for€ € C°(Q).
Then U = {n € Cg(Q) :n eV} eN(CE(Q) and fo € Co ()Yl

Proof. Let I : C§°(Q2) — C*°(Q), I(§) = & for & € C§°(Q). Then I is a continuous linear
operator. Hence U = I71(V) € N(C5°(2)).

Let £ € C§°(Q), n € U and |t| < 1. Then £ € C(Q) and n =1(n) € V so fo(§+tn) =
F(E+tn) = F(€) + 5F (1) = fol€) + sfo(n) where |s] < |1(t)]. Thus fy € 50 (CE(9),C).

If (Ex)aen is a net in C§°(Q) such that Ex — £ € C§P(Q). Then &y = 1(&x) = 1(€) =& in
C>(Q) and so fo(&x) = f(&Ex) — (&) = fo(§). This shows that fo : C§°(Q) — C is continuous,
i.e., fo € Ce(Q)MU O

§4 Demi-distributions with Compact Support

Definition 4.1. Let f € 2, y(C5°(R),C) (resp., Ly v(C>(R),C)) and k € NU{0}. If for
every compact K C Q) there is a C > 0 such that
(1.1) HGIEED> su2|5‘”‘£(x)|, V¢ e Cg°(K) (resp., § € CF(K)),
laf <k *
then we say that f is of order < k.

Let M > 1 and v(t) = Mt, Vt € C. Then v € C(0) and for every U € N(C§°(Q)) the
family of demi-distributions C§°(2)["U] is a very large extension of 2'(Q) (= C§°(Q)’), the
family of usual distributions (see [2, Th. 1.1, Th. 2.1]; [1, Th. 1.5, Cor. 1.3]). By Th. 3.6, if
f € ()] has compact support, then f has an extension fG C>*(Q)V] and, conversely,
every f € C°(Q)"V] has the restriction flege ) € Cee ()Y where the relations between
U and V are very simple.

For C*(Q)"V] we have a very nice result as follows.

Theorem 4.1. Let M > 1, v(t) = Mt, Vi € C, V € N(C*®(Q)). Then for every f €
C® ()Y there exist compact L € Q, C >0 and k € NU {0} such that
(4.1) fQl<c > sgp|a°‘§|, VE e C®(Q).
o] <k
Thus, supp f is compact, the condition (1.1) holds for f, and f is of order < k.
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Proof. Let P = {|| - |kx : K is a compact subset of Q, k € NU{0}}. The topology of
C>(Q) is just given by the seminorm family P.
There exist || - ||1,--- .|| - |lp € P and €1, - ,&p € (0,4+00) such that

N{ceo=@: el <&} c v

Since f is continuous and f(0) = 0, there exist || - ||pt1, - 5| - ||lm € P and epy1,--+ ,6m €
(0, +00) such that
£ <1, Vee () {neC™@):Inl; <&}
Jj=p+1
Say that || - |l; = || - &, ks § = 1,2,---,m, and 0 = minj<j<me;. Then 0 > 0. Letting
L=UjL Kj, k=321 kj and, simply, ||- || = || - ||k, L is compact and | - || € P.

If £ € C™(Q) such that ||E|| < 0, then
lell; = > supl0°¢l < D sup|0%¢| =€l <O <ej, j=1,2,-+,m
jal<k; ol <k
Thus W = {€ € C(Q) : ¢l < 0} C ML, {€ € C=(Q) = |lgll; < g5} and so W CV, |£(€)] <
1, VEe W.

If &£ € C™(Q) such that ||E|| = 0, then ||p€]l = pll&]] =0 for allp € N so p§ € W C V for
i p € N and |F(€)] = |£(2p€)] = Ispf(E)| < Iyl < IY(2)] = ML = 0 as p — +oo. Thus,
IF(EI=0< el
Let £ € C*(Q) with ||€|| > 0. Then 0 < ‘ H < 1 for some p € N, and || H&II'E”
|£ EWCV so \f(‘|§‘|§)| < 1. Hence

el o el el
7@ =|re wmn‘:m@‘ 3 (19 * o (g

RPN ]
*VW‘ 5 (ol JWm”

l€]

el
4” (Mn”+p”Wm) +1ﬂmn”
ﬁzkﬂﬁm ‘WZ

||€H ‘

p
M
Yl <3 (L) = LDy = par L
j=1 j=1

Thus we have that

M M
[FO] < Fliell =5 > sup|07¢, Ve e C=(9).

la|<k
If x € Q\L, then there is an € > 0 such that
Ngg:{yEQ:|y—z|:\/(yl_z1)2_|_..._|_(yn_xn)2Sa} CQ\L
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and |f(§)] < %ngk supy, [09¢] = 0 for all £ € C*°(N,). Thus supp f C L and so supp f is
compact.
If K is a compact subset of 2, then for every & € C*(K) we have that
M M M
1fO] < — Z sup [0%¢| = — Z sup |9°¢| < — Z sup [9°¢,
O sk & O kK b ¥
i.e., the condition (1.1) holds for f and f is of order < k. O

Now we can obtain many important facts by the help of Th. 4.1.

Theorem 4.2. Let M > 1, y(t) = Mt for t € C and U € N(C§(Q)). If f € C3(Q)Y] has
compact support, then there exist compact L C Q, C > 0 and k € NU {0} such that
(4.1)’ [F@)<C ) sup|ovg], VEe Q).
lal<k

Thus, the condition (1.1) holds for f, and f is of order < k.

Proof. By Th. 3.6 there is a V. € N(C*(Q)) such that the canonical extension f €
C>(Q)V1. By Th. 4.1, there exist compact L C Q, C > 0 and k € NU {0} such that

F@OI=1FQ=c > suloe|, vee i),
la|<k
As in the proof of Th. 4.1, (1.1) holds for f, and f is of order < k. O

For 4(t) = et € C(0) and U = {£ € C§°(R) : supg<,<, |£(2)| < 1} where a > 0, there
exists demi-distribution f € C§°(R)™Y) such that supp f = {xo} is compact but the condition
(1.1) fails to hold for f (see Exam. 2.2). However, Th. 4.2 shows that if f € C5°(Q)[""V] has
compact support then not only (1.1) holds for f but the more strong (4.1)’ holds for f. Thus,
the most important properties of demi-distributions heavily depend on the splitting degree of

demi-distributions.

Theorem 4.3. Let M > 1, 4(t) = Mt fort € C. If f € C(Q)V] and fo(€) = f(€)

for € € C§2(Q), then fo € C(Q)UI where U = V N C(Q) € N(CSL(RQ)), and there ewist

compact L C Q, C >0 and k € NU {0} such that
fo)<C > Stzp|8“£

|| <k

, VEeC5P(Q)

so supp fo is compact, supp fo = supp f and fq is of order < k. Moreover, f = fo, the canonical
extension of fo.
Proof. By Th. 3.7 and Th. 4.1, we only need to show ﬁ) = f.
By Th. 4.1, there exist compact L C Q, C > 0 and k € NU {0} such that
<> s%p|aag|, Ve e C®().

la|<k
If © € Q\supp f then there is an open N, C Q\supp f such that f(§) =0 for all £ € C*°(N,)
and so fo(€) = f(§) =0, V&€ € C°(N,) C C®(N,), that is, x & supp fo. Thus supp fo C
supp f C L.
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Pick a X € C§(R2) such that X =1 in a neighborhood of L. Then by Th. 3.4 and Def. 3.2
we have that fo(€) = fo(XE) = F(XE), VE € C=(Q).

Let £ € C*(Q) and pick a p € N such that %(lf)()f € V. Since 1—X = 0 in a neighborhood
of L, 0*[=(1 — X)¢|(x) =0 for all x € L and all multi-index . Then

1
FEA-XE|<C Y suploo[F(1— X)¢]| = 0, ice., F[-(1— )] =0,
D o<k D D
£6) = FIXE+ (1= 2)€] = F[XE+ (= 1) (1 = )+ (1= )]
= FXE+ (= 1) (1= 2)¢] + s/ (1= A)¢] = F[XE + (= D) (1 - X)]
= F(XE) = fo(XE) = fo(£).
Thus f = ﬁ) and supp fo = suppﬁ) =supp f by Th. 3.6. O

Corollary 4.1. Let M > 1, ~(t) = Mt, YVt € C. Then
U o)Vl = U {f fece@U supp f is compact}.
VEN(C>(Q)) UeN(CS(Q))

Now we can improve Th. 2.4 as follows.

Corollary 4.2. Let M > 1, v(t) = Mt fort € C. Let f € 4, y(C5°(R),C) for which supp f
is compact. Then f is continuous if and only if the condition (1.1) holds for f.

FOI‘QZ':(Il,“',ZL’n)GRn, |‘T|: LE%‘F‘FZ'?L

Lemma 4.1. Let K and F be nonempty subsets of Q. If K is compact and F is closed in

Q and KNF = 0, then there exist xg € K and yo € F such that inf e g yer |—y| = |z0—y0| > 0.
Proof. Let d = inf ek yer |x — y|. There exist sequences {z,} C K and {y,} C F such

that d = lim, |, — y,|. Since K is compact and {x, — y,} is bounded, we may assume that

T, = 29 € K and z, —y, — b € R™. Then y, = Yp — Ty + T, — g — b = yo and

|70 — Yol = |T0 — yol|, d = |vo — Yol If yo € F then yo € K so yo # xo and d = [x¢ — yo| > 0.

If yo € F then yo € Q s0 yo # xg and d = |xg — yo| > 0. O

We have a fact which is different from Lemma 2.2 as follows.

Theorem 4.4. Let M > 1, v(t) = Mt fort € C. If f € C°(Q)V] and ¢ € C=(Q) such that

supp f Nsuppé =0, then f(£) = 0.

Proof. By Th. 4.1, supp f is compact. Then inf {|33—y| rxesupp f, y € suppg} =d>00by
Lemma 4.1. Let fo(€) = f(€) for & € C§°(Q) and U = VNC(Q). By Th. 4.8, fo € C°(Q)V]
and the canonical extension fo = f, supp fo = supp f. Since d > 0, for e € (0,d/3) there is a
X € C3°(Q) suchthat0 < X <1landX =1in G={y € Q: |y—z| <e for some x € supp fo},

X =0 outside Bs. = {y € Q: |y — x| < 3¢ for some x € supp fo}.
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Then supp X C Bse, supp fo N supp (X&) C supp fNsuppé =0 and supp [(1— X)E| N supp fo C
(NG) Nsupp fo = 0. Hence € = X+ (1 — X)E is a fo-decomposition of & and supp (X&) N
supp fo =0. Then f(&) = }’5(5) = fo(X€) =0 by Lemma 2.2. O

Theorem 4.5. Let M > 1, v(t) = Mt fort € C. If f € C(Q)V] is of order < k and
£ € C™®(Q) such that 0%&(xz) = 0 when o] < k and x € supp f, then f(§) =0.

Proof. By Th. 4.1, supp f is compact so for sufficiently small € > 0 the set B, = {y eR™:
ly — x| < e for some x € supp f} is compact and contained in Q. There is a X. € C§°() with
0 < X. <1 such that X. = 1 in a neighborhood of supp f and X. = 0 outside B: [4, p.46].
Moreover, |0%X.| < Cne~ | where C,, is independent of € [4, p.5] so there is a C > 0 such that
|0°X.| < Ce~1el for all |a| < k and all € € (0,&0], where g9 > 0 and B, C Q.

For e € (0,e0] pick a p € N for which %(1 — X)) € V. Since supp [%(1 —X )€ Nsupp f =0,
IS~ Xo)E] = 0 by Th. 4.4. Then

1(6) = flex. +p%<1 C X = FlEX + (- 1)%(1 T

Since f is of order < k, there is an A > 0 such that [f(n)| < A}, < supp, [0%n], Vn €
C®(Be). If 0 <&’ < e andn € C*(B.), then n € C*(B:) and supp, |0°n| = supp_[0%7| for
all a so [f(n)| < AX2 < supp, [0%n] = A, <, supp, [0%n|. So the constant A is available
for all e € (0,e]. Since £EX. € CF°(B:) = C*(Be), it follows from the Leibniz formula that

FO] = [FEX)| <A D sup|o*(€x)[ < A D sup|0°¢]|0” AL
le|<k ¢ leel+1BI<k ¢
<A C la|—k “
<A c%ks sgsp|8 ¢l,
where both Ay and C are independent of . Observing 0*&(x) = 0 for all x € supp f and
la| < k, we have lim,_,ol*l=* supp_|0%¢| =0 for all |a| <k [4, p.46]. Thus f(§) =0. O

Notice that in the notation (e — a)® the symbol e denotes the variable, that is, (e — a)* is
a function such that [(e — a)*](z) = (z — a)* = (21 — a1)* -+ (xp — an)? [4, p.47].

Corollary 4.3. Let M > 1, y(t) = Mt fort € C. If f € C®(Q)V] is of order k and
supp | = {y}, a singleton, then we have F(€) = [ X< 0°E() (e )/ (a))], VE € C=(9),
where for 0 = (0,---,0) the term a¢(y)(e — y)°/(0!) = £(y) is the function n € C*(Q) for
which n(x) = £(y), Vo € Q.

Example 4.1. Let y € Q and f(§) = sin|{(y)| for £ € C°(Q). Clearly, V = {{ € C=(Q) :
€W < 1} € N(C¥(Q). If€ € C(Q), eV and |t] < 1, then f(€-+tn) = sin |¢(y) +t(y)] =
Ssin((E(y)| + sl)]) = sinl€()| + 8sin ln(y)] = F(€) + 0 (n) where 18] < Fls| < E|f. Letting
y(t) = 5t fort € C, f € C )V and supp f = {y}. For every compact K C Q and
£ € O®(K) = C5°(K) we have that |f(§)] = |sin|¢(y)l] = 0 < supg [0°¢] wheny ¢ K,
F(©)] = |sin €(w)]| < |E)] < supy €] = supyc |0%€] when y € K. Thus, f is of order 0.



16 Appl. Math. J. Chinese Univ. Vol. 37, No. 1

Corollary 4.4. Let M > 1, v(t) = Mt fort € C. If f € C®(Q)"V] is of order 0 and
supp f = {y}, then f(§) = f(f(y)), VE € C®(N), where £(y) is a function in C®°(Q) such
that £(y)(z) = &(y), Vo € Q.

In [2] we gave a very clear-cut characterization of demi-linear functions in %, (R, R) [2,

Th. 1.1]. We have a similar description for demi-linear functions in J#..(C, C) as follows.

Lemma 4.2. Let g : C — C be a function such that g(0) = 0 and ¢'(20) # 0 for some zy € C.
Let e > 0. Then g € H#p..(C,C) for some M > 1 if and only if

(1) g is continuous,

(2) g(z) #0 for 0 < |2z| <e,

(3) infocjuj<e \¥| >0,

(4) SUPz ueC, 0<|u|<e ’W| < +o0.

Proof. Suppose that g € Hare(C,C) where M > 1. If z, — z in C, then for sufficiently
large k € N we have that [2=| < 1 and g(zx) = g(z + 2"2¢) = g(2) + spg(e) where |sy| <

|2 — 0 so g(zr) — g(2), that is, g is continuous. Assume that g(u 0 for some

) =
0 <|u <eandz e C, z#0. Then |Z]| < 1 for some k € N and g(z) = g(kZu) =
ol(k — D)+ ol = gl(k — 1) ] + sag(u) = gl(k — )] = - = g(Zu) = ssg(u) = 0.
Thus g =0 but ¢'(z0) # 0. This contradiction shows that (2) holds for g.

If infocju<e ’¥| = 0, then H(UL:) — 0 for some {up} C {z € C:|z| < e} \{0}. May
assume that ur — ug. If ug # 0, then |%:)\ — \%00” >0 by (1) and (2), a contradiction.
So ug =0, up = 0. Then g(zo + ux) = g(20) + skg(ug) where |si| < M|1| = M, 0 # ¢'(20) =
limy, g(z()+uuk7]311(zo) = limy, %(:’“) = 0. This contradiction shows that (3) holds for g.

Let z,u € C, 0 < |u| < e. Since g(u) = g(%e) = sg(e) where |s| < M|%| = Yu| and
9(z +u) = g(2) + s1g(u) where |s1] < M|1| = M, |g(u)| < Y|g(e)u| and TM

2100 | < M2 6()|. Thus, (4) holds for g.
Conversely, assume that (1), (2), (3) and (4) hold for g. Since g(0) = 0 and info |, <. ’¥‘ -

. ) n(o e
infoju|<c |9(+“739()| < SUPg- fy|<e }W ’

z+u)—g(z

M= [ ap |2 = )H
z,u€C, 0<|u|<e u

Let z,u,t € C, 0 < Jul < e 0 < |t|] < 1. Then glu) # 0 by (2) and g(z + tu)

= 9(2) + gz +tu) — g(2) = g(=) + | L) St g(w), where

tu g(u)
g(z+tu) —g(z) u t) _ ’g(z + tu) —Q(Z)/g(u)
tu g(u) tu

Thus, g € #n.(C,C). O

inf |2 > 1.
o<lul<e ' U

“t’ < Mlt|.

We now have the following representation theorem.

Theorem 4.6. Let M > 1, v(t) = Mt fort € C. If f € C®(Q)V] is of order 0 and
supp f = {y}, then there exist e > 0 and g € H#ur,(C,C) such that

(4.2) f©) =g(&), vEe ().
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Conversely, every e > 0 and g € H#u.(C,C) give a V € N(C®(Q)) and a f € C®(Q)V]
through (4.2) such that f is of order 0 and supp f = {y}.

Proof. Suppose that f € C®(Q)"V] is of order 0 and suppf = {y}. For z € C let
C(x) =2 for all x € Q. Then ¢, € C*®(Q) and lim,_o(, = 0 in C*°(Q). Hence there is an
e > 0 such that (, € V when |z] < e. Define g : C — C by g(z) = f({.), Vz € C. Then
g(0) = f(¢o) = f(0) =0. For z,u,t € C with |u| <e and [t| <1, {, €V and

g(z + tu) = f(Coytu) = f(Cz + Gru) = f(Cz +1tCu) = f(CZ) +5f(Cu) = g(2) + 59(”)7
where |s| < |y(t)] = M|t|. Thus g € H#um.(C,C). By Cor. 4.4 we have f(&§) = f(&(y)) =
f(Ceqy)) = 9(€(y)), V& € C=().

Conversely, lete > 0, g € #p(C,C) and y € Q. Since the Dirac measure 8, : C°(2) — C,
6,(&) = &(y) is continuous and 5,(0) = 0, V = {£& € C=(Q) : [£(y)] < e} = 0, ([—¢,¢]) €
N(C=(9)). Then define f: C=(Q2) — C by f(§) = g({(y)), § € C=(Q). For { € C(Q), n €
Viand [t| < 1, [n(y)| < e and f(E+1tn) = g((E+tn)(y) = 9(§(y) +tn(y)) = 9(E(y)) +s9(n(y)) =
f(&)+sf(n) where |s| < |v(t)| = M|t|. Thus f € J,v(C>(),C) and f is continuous because
Ex = & in C(Q) implies Ex(y) — &(y) and f(§x) = g(éx(y)) — g(&(y)) = f(§) by Lemma 4.2,
that is, f € C=(Q)V],

Let yo € Q, yo # y. Pick a 0 > 0 such that K = {x €ER™: |z —yy| < 6‘} c N\{y}.
Then for every £ € C(K) we have £(y) =0 and f(§) = g(&(y)) = g(0) = 0. This shows that
yo & supp f, supp f C {y}. If G is an open set in R™ such that y € G C €, then there is a
X € C§°(G) such that 0 < |X(y)| <e. By Lemma 4.2, f(X)=g(X(y)) #0 soy € supp f and
supp f = {y}.

Let K C Q be compact. If y € K and § € C*(K) then there is a p € N such that \i()—g” <1

and

7€)1 = lote)] = loGE2e)] = ol - 1o+ £~ g - 1) 5] 1519

_ \g(iﬁ)a T sp1g(e) o+ 19(E)|

)

= [5p9(e) + $p-19(2) + -+ + s19(8)| = | D 50 |9(e)
v=1

where each |s,| < |y(£2)] = MEWL 50 | 570 5, | <30 |s,| < pMEWL = Mig(y)| Then

(6] < g{g(E)Hf(yH < ¥|g(€)|8111(p|§| = %|9(6)18111(p|5°§’~

Ifyg K, &€ C®(K) then &(y) = 0 and | f(§)] = |g(&())| = |9(0)] = 0 < & g(e)| supg [8°¢].
Thus, f is of order 0. Moreover, the constant %|g(s)| is available for all compact K C . O

Corollary 4.5. Let M > 1, v(t) = Mt fort € C. If f € C=(Q)V] is of order 0 and supp f
= {y}, then there exist e > 0 and g € H#ur-(C,C) such that f(&) = agM@f(y), VE e C™(Q),
where |ag| < 1. Hence, A= M|%S| > 0 and |f(€)] < Alé(y)], Y€ € C=(Q).
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Corollary 4.6. Let M > 1, (t) = Mt fort € C. If f € C®(Q)"V] is of order 0 and
supp f = {y}, then [ is Lipschitz, that is, there is a A > 0 such that

£ = f)| < Aley) —n(y)|, VEne C®(Q), and |f(§)] < Al¢ly)], VEe C®(Q).

For z = (21, ,2m) € C™ let |z| = \/[z1[2 + - + |2 [? and Hj.(C™,C) = {g € C*" :
g(0) = 0; for z,u € C™ with |u| < e and ¢t € C with [¢t| < 1, g(z + tu) = g(z) + sg(u) where
|s| < M|t|}. For g € #31(C™,C) and 1 < j < m define g; : C — C by g;(w) = g((0,--- ,0, @
,0,---,0)), Yw € C, then g; € #3,.(C,C).

If k¥ € N then {multi—index a: ol < k:} is a finite set {al,ag, e ,amk_} which is lexico-
graphically ordered such that ay = (0,---,0), ae = (0,---,0,1), -+, am, = (k,0,---,0), and
we can Write (2ay, Zags s Zam, ) = (2a)|aj<k in C™*.

Theorem 4.7. Let M > 1, v(t) = Mt fort € C. If f € C®(Q)V] is of order k and
supp f = {y}, then there exist € > 0 and g € Har,(C™,C) such that

1) = 9((0°€0) 0124 )» VE € CZ(9).
Proof. Letting 1o = (» = y)*/(al) for |a] < k, we have f(€) = f( o< 0°€W)na ), ¥€ €

(mg)
—fN—
C>*(Q) by Cor. 4.3. Pick aU € N(C*®(Q)) for whichU +U +---+UCV. Thereis ane >0
such that uny, € U when u € C with |u| <e and |a| < k. Hence

my
Z Uale €EUFU---+UCV, V(ua)jai<k € C™ with |(ua)|aj<k] < €.
|l <k
Define g : C™* — C by
g((ZO‘)m\gk) = f( Z zana>, V (2a)|a|<k € C™*.
|l <k

Then for (za)jaj<k: (Ua)jaj<k € C™* with |(ua)jaj<k| < € andt € Cwith [t| < 1,37, <) Ualla €
V and

9( () e + (1) <) = 9( (o 100) ) = F (D (2o trta) 1)
(

|| <Kk

Z Zala +1 Z uana) = ( Z zana) +Sf< Z uana)

la|<k || <k || <K || <E

=/

= 9((20) <) + 59((40) 1<)
where |s| < |y(t)] < M]¢t|.

Thus g € Ha1,o(C™,C) and £(€) = F()a1e O°€W)a) = 9((0°€(W)) wih), Y€ € C%(9). O
Theorem 4.8. Let M > 1, ~(t) = Mt fort € C. If f € C®(Q)MV] is of order k and
supp f = {y}, then there exists {gq : a is a multi-indez, || < k} C H.(C,C) such that

f[Z(° —y)*/( ')] —ga( ); Vla| <k, z€C,

=M Y aa 92(&) pag(y), we e (9),

la| <k
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where all |aq¢e| < 1.

Proof. Letting 1 = (o — ) /ol for o] < &, we have £(6) = F(5|cn 0°EW)na), VE €
C>°(Q) by Cor. 4.5. There is an € > 0 such that un, € V for allu € {z € C: |z| < &} and
la| < k. We write {a: |a| <k} = {1, a0, ,am}.

Let £ € C*(Q) and pick a p € N such that |m| < 1 when |a| < k. Then

(Za%f o) = 1( 5 0t + 7 Wy, )

j=1
p

:f(Za%f(y )+ (2 80 f (e,
j=1

v=1
oem gem o
where each |s,| < M|T§(y)| 50 | >0 syl SpM\Tfy” = M 1gome(y)|.
Define g, : C — C by ga,, (2) = f(2Na,,), Vz € C. For z,u,t € C with |u| <e and |t| <1,

UNy,, €V and go,, (z + tu) = f(2Na,, + tuna,,) = f(20a,,) + $f(WNa,,) = ga,, (2) + 59a,, (1)
where |s| < |y(t)| = M|t|. Thus, ga,, € H#m.e(C,C) and

P P
’(st)f(enam)’ = ‘(st)gam(g)' <M
v=1 v=1

Hence there is an aq,, ¢ € C such that |aq,, ¢ <1 and

(P 80)f (€M) = ey, e M2 E gome (y).

In this way, we have

m—1

76 = (X2 0w, ) + et 222Dy

gam( )804,,15( )

j=1
-2
S Jo, 1 (€)

= f( Z 30‘15(3/)77%-) + aamfl,ﬁMfao‘mflg(y) + aam,EMgamT(E)aamg(y)
j=1

_Z aJ’fM 8%5 Z

|| <k

(®);

where all \aa7§| <1. 0O
It is similar to Cor. 4.5 that we have

Corollary 4.7. Let M > 1, y(t) = Mt fort € C. If f € C*(Q)V] is of order k and
supp [ = {y}, then f has the following properties.

(1) If o] < k and flzo(® —y)*/(a!)] # 0 for some zy € C, then there exists an € > 0 such
that flzo(e—y)®/(a!)] # 0 when 0 < |z| < ¢, that is, the equation flzo(e—y)*/(a!)] =0, |z| <e
has the unique solution z = 0. Hence if |a| < k and there is {z,} C C such that each z, # 0,
zy — 0 and each flz,(e —y)*/(al)] =0, then flz(e —y)*/(a!)] =0 for all z € C.

(2) If |a] < k, then flz(e —y)*/(a!)] is Lipschitz, that is, there is an A, > 0 such that
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|flz(e —y)*/(a)] = flu(e —y)*/(a)]| < Aulz —ul|, Vz,u € C. In particular, we have
[F[0°6)(e = 1) /()] = [0 (e —1)*/(@D)]| < Aa|0°6(w) — 9*n(w)], ¥&n € C=(Q).
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