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Demi-linear analysis III

—demi-distributions with compact support

LI Rong-lu1 ZHONG Shu-hui2 KIM Dohan3 WU Jun-de4

Abstract. A series of detailed quantitative results is established for the family of demi-

distributions which is a large extension of the family of usual distributions.

§1 Introduction

In [1] we show that there is an entirely original generalization of the basic theory of usual

distributions.

As was shown in [1] and [2], the family of demi-distributions is a large extension of the family

of usual distributions, that is, the family of demi-distributions includes nonlinear functionals as

many as usual distributions, at least.

The theory of demi-distributions not only contains the theory of usual distributions as a

special case but causes a series of essential changes in the distribution theory. For instance,

in the case of usual distributions the constant distributions are only solutions of the equation

y′ = 0 but in the case of demi-distributions the equation y′ = 0 has tremendous solutions

which are nonlinear functionals, and every constant is of course a solution of y′ = 0 [1, Th.

2.3]. Moreover, the family of demi-distributions is closed with respect to extremely many of

nonlinear transformations such as |f(·)|, |f(·)|2/3, sin |f(·)|, e|f(·)|−1, etc.

In this paper we carry out a detailed quantitative analysis for demi-distributions. Our vivid

quantitative results show that the demi-linear mapping introduced in [2] is a very important

object and, indeed, since the basic principles such as the equicontinuity theorem and the uniform

boundedness principle hold for the family of demi-linear mappings [2, Th. 3.1, Th. 3.2, Th.

3.3 , Th. 4.1] and a nice duality theory has established for demi-linear dual pairs [3, Th. 3.4,

Th. 3.12, Th. 3.14, Th. 3.22, Th. 3.24], it is trivial that the family of demi-linear mappings is

an important extension of the family of linear operators.
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Fix an n ∈ N and a nonempty open set Ω ⊂ Rn. Let

C∞(Ω) =
{
ξ ∈ CΩ : ξ is infinitely differentiable in Ω

}
,

C∞
0 (Ω) =

{
ξ ∈ C∞(Ω) : supp ξ is compact

}
,

where supp ξ = {x ∈ Ω : ξ(x) ̸= 0} ∩Ω for every ξ ∈ CΩ and so if ξ ∈ C∞
0 (Ω) then the compact

supp ξ = {x ∈ Ω : ξ(x) ̸= 0} ∩ Ω = {x ∈ Ω : ξ(x) ̸= 0} ⊂ Ω. For every M ⊂ Ω, C∞(M) = {ξ ∈
C∞(Ω) : supp ξ ⊂ M} and C∞

0 (M) = {ξ ∈ C∞
0 (Ω) : supp ξ ⊂ M} [4, p.14].

Let K be a compact subset of Ω, that is, K is bounded and closed in Rn and K ⊂ Ω, and

k ∈ {0, 1, 2, 3, · · · }. Then

∥ξ∥K,k =
∑
|α|≤k

sup
K

|∂αξ|, ξ ∈ C∞(Ω)

defines a seminorm on C∞(Ω), and the family
{
∥ · ∥K,k : K is compact, K ⊂ Ω, k ∈ {0} ∪ N

}
gives a locally convex Fréchet topology for C∞(Ω), and C∞(Ω) has the Montel property, i.e.,

bounded sets in C∞(Ω) are relatively compact [5, 2.1].

For a compact K ⊂ Ω the sequence
{
∥ ·∥K,k

}∞
k=0

gives a locally convex Fréchet topology for

C∞(K). Since Ω =
∪∞

j=1 Kj where each Kj is compact and K1 ⊂ K2 ⊂ · · · , with the inductive

topology using the inclusion maps, C∞
0 (Ω) =

∪∞
j=1 C

∞(Kj) is a (LF) space which are both

barrelled and bornological. Then C∞
0 (Ω) also has the montel property, and the inclusion map

I : C∞
0 (Ω) → C∞(Ω) is continuous [5, 2.2].

A distribution f in Ω is a continuous linear functional on C∞
0 (Ω), that is, f : C∞

0 (Ω) → C
is linear and for every compact K ⊂ Ω there exist C > 0 and k ∈ {0} ∪ N such that

(1.1)
∣∣f(ξ)∣∣ ≤ C

∑
|α|≤k

sup
K

∣∣∂αξ
∣∣, ξ ∈ C∞

0 (K) = C∞(K)

[4, Def. 2.1.1, Th. 2.1.4].

Let C(0) =
{
γ ∈ CC : limt→0 γ(t) = γ(0) = 0, |γ(t)| ≥ |t| if |t| ≤ 1

}
. For a topological

vector space X, N (X) denotes the family of neighborhoods of 0 ∈ X.

Definition 1.1. ([2, Def. 2.1]) Let X, Y be topological vector spaces over the scalar field K.

A mapping f : X → Y is said to be demi-linear if f(0) = 0 and there exist γ ∈ C(0) and

U ∈ N (X) such that every x ∈ X, u ∈ U and t ∈
{
t ∈ K : |t| ≤ 1

}
yield r, s ∈ K for which

|r − 1| ≤ |γ(t)|, |s| ≤ |γ(t)| and f(x+ tu) = rf(x) + sf(u).

Let Lγ,U (X,Y ) be the family of demi-linear mappings related to γ ∈ C(0) and U ∈ N (X),

and let

Kγ,U (X,Y ) =
{
f ∈Lγ,U (X,Y ) : if x ∈ X, u ∈ U and |t| ≤ 1, then

f(x+ tu) = f(x) + sf(u) for some s with |s| ≤ |γ(t)|
}
.

If γ(t) = Mt with M ≥ 1, then we write that Lγ,U (X,Y ) = LM,U (X,Y ) and Kγ,U (X,Y ) =

KM,U (X,Y ). Moreover, if X is normed and U =
{
x ∈ X : ∥x∥ ≤ ε

}
then Lγ,ε(X,Y ) =

Lγ,U (X,Y ) and Kγ,ε(X,Y ) = Kγ,U (X,Y ). Thus, both LM,ε(R,R) and KM,ε(R,R) are fami-

lies of demi-linear functions in RR.
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Definition 1.2. ([1, Def. 1.1]) A function f : C∞
0 (Ω) → C is called a demi-distribution if f

is continuous and f ∈ Lγ,U (C
∞
0 (Ω),C) for some γ ∈ C(0) and U ∈ N (C∞

0 (Ω)).

Let C∞
0 (Ω)(γ,U) (resp., C∞

0 (Ω)[γ,U ]) be the family of demi-distributions which are functionals

in Lγ,U (C
∞
0 (Ω),C) (resp., Kγ,U (C

∞
0 (Ω),C)).

Let C∞
0 (Ω)′ be the family of usual distributions. Then

D ′(Ω) = C∞
0 (Ω)′ ⊂ C∞

0 (Ω)[γ,U ] ⊂ C∞
0 (Ω)(γ,U), ∀ γ ∈ C(0), U ∈ N (C∞

0 (Ω))

and, in general, C∞
0 (Ω)[γ,U ]\C∞

0 (Ω)′ includes nonlinear functionals as many as usual distribu-

tions, at least (see [1-3]).

Notice that the notations Lγ,U (X,Y ), Kγ,U (X,Y ), C∞
0 (Ω)(γ,U) and C∞

0 (Ω)[γ,U ] always

mean that γ ∈ C(0) and U ∈ N (X) (resp., N (C∞
0 (Ω))), automatically. We also have similar

understanding for LM,U (X,Y ), KM,ε(C,C), etc.

§2 Continuity of Demi-distributions

Throughout this paper, n ∈ N and Ω is a nonempty open set in Rn.

Definition 2.1. S ⊂ CΩ, S ̸= ∅. For ξ ∈ S and f : S → C, let

supp ξ =
{
x ∈ Ω : ξ(x) ̸= 0

}
∩ Ω,

supp f =
{
x ∈ Ω : ∀ open G ⊂ Ω with x ∈ G∃ ξ ∈ S with supp ξ ⊂ G such that f(ξ) ̸= 0

}
.

Lemma 2.1. Let S ⊂ CΩ with S ̸= ∅. For ξ ∈ S and f ∈ CS , both supp ξ and supp f are

closed in Ω and so both Ω\supp ξ and Ω\supp f are open in Rn.

Proof. Let xk ∈ supp f and xk → x ∈ Ω. If x ̸∈ supp f then there is an open G ⊂ Ω with

x ∈ G such that f(ξ) = 0 for every ξ ∈ S with supp ξ ⊂ G. But xk ∈ G eventually and so

xk ̸∈ supp f eventually. This contradiction shows that x ∈ supp f . �

Lemma 2.2. Let ξ ∈ C∞
0 (Ω) and f ∈ Lγ,U (C

∞
0 (Ω),C). If supp ξ ∩ supp f = ∅, then f(ξ) = 0.

Proof. If ξ = 0 then f(ξ) = f(0) = 0 by Def. 1.1.

Let ξ ̸= 0. Since supp ξ ̸= ∅ and supp f ∩ supp ξ = ∅, supp f $ Ω. By Lemma 2.1, for every

x ∈ supp ξ there is an open Gx ⊂ Ω\supp f such that x ∈ Gx and f(η) = 0 for all η ∈ C∞
0 (Gx).

Since supp ξ is compact, there exist x1, · · · , xm ∈ supp ξ such that supp ξ ⊂
∪m

j=1 Gxj and so

ξ ∈ C∞
0 (

∪m
j=1 Gxj ). By Th. 1.4.4 of [4], ξ =

∑m
j=1 ξj where ξj ∈ C∞

0 (Gxj ), j = 1, 2, · · · ,m.

Pick a p ∈ N for which 1
pξj ∈ U , j = 1, 2, · · · ,m. But each 1

pξj ∈ C∞
0 (Gxj ) so f( 1pξj) = 0,
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j = 1, 2, · · · ,m. Therefore,

f(ξ) = f
( m∑

j=1

ξj

)
= f

(m−1∑
j=1

ξj + (p− 1)
1

p
ξm +

1

p
ξm

)

= r1f
(m−1∑

j=1

ξj + (p− 1)
1

p
ξm

)
+ s1f

(1
p
ξm

)

= r1f
(m−1∑

j=1

ξj + (p− 2)
1

p
ξm +

1

p
ξm

)

= r1r2 · · · rpf
(m−1∑

j=1

ξj

)
= · · · = r1r2 · · · rmp−1f

(1
p
ξ1

)
= 0. �

A linear functional f : C∞
0 (Ω) → C is continuous if and only if the condition (1.1) holds

for f [4, Th. 2.1.4]. However, for demi-linear functionals in Lγ,U (C
∞
0 (Ω),C) the relation

between continuity and the condition (1.1) is quite complicated. First, we show that many

demi-distributions satisfy the condition (1.1).

Example 2.1. (1) Let n = 1 and f(ξ) =
∫ 1

−1
| sin |ξ(x)|| dx, ξ ∈ C∞

0 (R). It is easy to see

that f is not linear but f ∈ C∞
0 (R)[γ,U ] where γ(t) = π

2 t for t ∈ C and U =
{
ξ ∈ C∞

0 (R) :

sup|x|≤1 |ξ(x)| ≤ 1
}
. For every compact K ⊂ R and ξ ∈ C∞

0 (K),∣∣f(ξ)∣∣ = ∫ 1

−1

∣∣ sin |ξ(x)|∣∣ dx ≤
∫ 1

−1

∣∣ξ(x)∣∣ dx ≤ 2 sup
x∈K

∣∣ξ(x)∣∣ = 2 sup
K

∣∣∂0ξ
∣∣.

Thus, f is a demi-distribution of order 0. Moreover, the constant C = 2 in (1.1) is available

for all compact K ⊂ R.
(2) Pick a f ∈ L1

loc(Rn) with supx∈Rn |f(x)| ≤ M < +∞ and let[
f
]
(ξ) =

∫
Rn

∣∣f(x)ξ(x)∣∣ dx, ξ ∈ C∞
0 (Rn) = D .

Then [f ] is not linear but [f ] ∈ D [γ,D] for every γ ∈ C(0) [1, Exam. 1.1(1)].

Let K be a compact set in Rn. Pick a cube L ⊃ K for which |L| =
∫
L
1 dx < +∞. Then∣∣[f](ξ)∣∣ = ∫

Rn

∣∣f(x)ξ(x)∣∣ dx ≤ M

∫
L

∣∣ξ(x)∣∣ dx ≤ M |L| sup
K

∣∣∂0ξ
∣∣, ∀ ξ ∈ C∞

0 (K).

Thus, the condition (1.1) holds for the demi-distribution [f ]. If f(x) = |x| =
√
x2
1 + · · ·+ x2

n

for all x = (x1, · · · , xn) ∈ Rn, then supp [f ] = Rn is not compact but the condition (1.1) holds

for [f ] and [f ] is of order 0.

For γ(t) = Mt where M ≥ 1 we will show that if f ∈ C∞
0 (Ω)[γ,U ] and supp f is compact,

then the condition (1.1) holds for f and, in fact, f has a more strong property (see § 4, Th.
4.2), and Exam. 2.1(2) is interesting because this example shows that the condition (1.1)

can not imply compactness of support. Moreover, the condition (1.1) fails to hold for some

f ∈ C∞
0 (Ω)(γ,U)\C∞

0 (Ω)[γ,U ], though supp f is compact. We show that (1.1) can be false even

if supp f = {x0} is a singleton.
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Example 2.2. For a > 0 let Ha(x) = 1/a when 0 < x < a and Ha(x) = 0 otherwise. Let

1 ≥ a0 > a1 > a2 > · · · be a positive sequence with
∑∞

j=0 aj = a < +∞ and u = limk(Ha0 ∗
· · · ∗Hak

). By Th. 1.3.5 of [4], u ∈ C∞
0 (R), supp u ⊂ [0, a],

∫
u dx = 1 and∣∣u(k)(x)

∣∣ ≤ 1

2

∫ ∣∣u(k+1)(x)
∣∣ dx ≤ 2k/(a0 · · · ak), x ∈ R, k = 0, 1, 2 · · · .

Pick an x0 ∈ (0, a) for which u(x0) = supx∈R u(x) > 0 and define a continuous f : C∞
0 (R)

→ R by f(ξ) = e|ξ(x0)| − 1, ξ ∈ C∞
0 (R). Letting γ(t) = et for t ∈ C and U =

{
ξ ∈ C∞

0 (R) :
sup0≤x≤a |ξ(x)| ≤ 1

}
, it is easy to see that f ∈ Lγ,U (C

∞
0 (R),R) and so f is a demi-distribution

in C∞
0 (R)(γ,U). Clearly, supp f is compact and, in fact, supp f = {x0}.
Observe that u ∈ C∞

0 (R). Then mu ∈ C∞
0 (R) and supp (mu) = supp u ⊂ [0, a] for all

m ∈ N, and f(mu) = e|mu(x0)| − 1 = emu(x0) − 1 = ecmmu(x0) where limm ecm = +∞. Now let

C > 0 and k ∈ N ∪ {0}. There is an m0 ∈ N such that

ecm > C(k + 1)
2k

u(x0)a0a1 · · · ak
, ∀m ≥ m0.

Then |f(mu)| = ecmmu(x0) > C(k + 1)m 2k

a0a1···ak > C
∑k

j=0 m
2j

a0a1···aj ≥ C
∑k

j=0 |(mu)(j)(x)|,
∀m ≥ m0, x ∈ R.

Thus, for every C > 0 and k ∈ N ∪ {0} there exists m0 ∈ N such that mu ∈ C∞
0 ([0, a]) for

all m ≥ m0 and
∣∣f(mu)

∣∣ > C
∑k

j=0 supx∈[0,a]

∣∣(mu)(j)(x)
∣∣, ∀m ≥ m0, that is, the condition

(1.1) fails to hold for f .

However, for demi-distributions there is a simple condition impling (1.1).

Theorem 2.1. Let f ∈ C∞
0 (Ω)(γ,U). If there is an ε > 0 such that

(2.1) ε
∣∣tf(ξ)∣∣ ≤ ∣∣f(tξ)∣∣, ∀ t > 0, ξ ∈ C∞

0 (Ω),

then the condition (1.1) holds for f .

Proof. If the conclusion fails, there is a compact K ⊂ Ω such that

(2.2) ∀ j ∈ N ∃ ξj ∈ C∞
0 (K) such that

∣∣f(ξj)∣∣ > j
∑
|α|≤j

sup
K

∣∣∂αξj
∣∣.

Then |f(ξj)| > 0, ξj ̸= 0, ξj(xj) ̸= 0 for some xj ∈ K and∑
|α|≤j

sup
K

∣∣∂αξj
∣∣ ≥ sup

K

∣∣∂0ξj
∣∣ ≥ ∣∣ξj(xj)

∣∣ > 0, j = 1, 2, 3, · · · .

It follows from (2.1) and (2.2) that

(2.3) ε < ε
∣∣∣ f(ξj)

j
∑

|α|≤j supK |∂αξj |

∣∣∣ ≤ ∣∣∣f( ξj
j
∑

|α|≤j supK |∂αξj |
)
∣∣∣, j = 1, 2, 3, · · · .

Let β be a multi-index. Then supx∈K

∣∣∣∂β
( ξj
j
∑

|α|≤j supK |∂αξj |
)
(x)

∣∣∣ ≤ 1
j , ∀ j ≥ |β|,

(2.4) lim
j→∞

sup
K

∣∣∣∂β
( ξj
j
∑

|α|≤j supK |∂αξj |
)∣∣∣ = 0, ∀multi-index β.

Observing
{
ξj/j

∑
|α|≤j supK |∂αξj |

}
⊂ C∞

0 (K), it follows from (2.4) that
ξj

j
∑

|α|≤j supK |∂αξj |

→ 0 in C∞
0 (Ω). Since f ∈ C∞

0 (Ω)(γ,U) is continuous, f
( ξj
j
∑

|α|≤j supK |∂αξj |
)
→ 0 but this con-
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tradicts (2.3). �

Theorem 2.2. Every nonzero usual distribution f ∈ D ′(Ω) produces uncountably many of

nonlinear demi-distributions satisfying the conditions (2.1) and (1.1).

Proof. Let f ∈ D ′(Ω), f ̸= 0. There is U ∈ N (C∞
0 (Ω)) such that |f(η)| ≤ 1 for all η ∈ U .

Pick a nonlinear continuous h : R → R such that h(x) = x when |x| ≤ 1, 1
2 ≤ h(b)−h(a)

b−a ≤
1 when a < b. Clearly, RR includes uncountably many of this kind functions. For every ε ∈ (0, 1

2 ]

and x ∈ R we have ε|x| ≤
∣∣h(x)∣∣ ≤ |x|, ε|x| ≤

∣∣h(|x|)∣∣ = h
(
|x|

)
≤ |x|.

By Th. 1.1 of [2], h ∈ K1,1(R,R), that is, for x ∈ R and u, t ∈ [−1, 1] we have that

h(x+tu) = h(x)+sh(u) where |s| ≤ |t|. Then for ξ ∈ C∞
0 (Ω), η ∈ U and |t| ≤ 1, h(|f(ξ+tη)|) =

h(|f(ξ) + tf(η)|) = h(|f(ξ)| + s|f(η)|) where |s| ≤ |t| ≤ 1 and, therefore, h
(
|f(ξ + tη)|

)
=

h
(
|f(ξ)|

)
+ s′h

(
|f(η)|

)
, |s′| ≤ |s| ≤ |t| ≤ |γ(t)|, ∀ γ ∈ C(0). This shows that h(|f(·)|) ∈

C∞
0 (Ω)[γ,U ]\D ′(Ω), ∀ γ ∈ C(0).

Let 0 < ε ≤ 1
2 . Then ε

∣∣th(|f(ξ)|)∣∣ ≤ ε
∣∣tf(ξ)∣∣ = ε

∣∣f(tξ)∣∣ ≤ ∣∣h(|f(tξ)|)∣∣, ∀ t ∈ R, ξ ∈ C∞
0 (Ω).

So (2.1) holds for h(|f(·)|). By Th. 2.1, h(|f(·)|) satisfies the condition (1.1), and the usual

distribution f produces uncountably many of this kind nonlinear demi-distributions. �

We also are interested in the converse implications.

Theorem 2.3. Let f ∈ Lγ,U (C
∞
0 (Ω),C). If the condition (1.1) holds for f , then f is sequen-

tially continuous.

Proof. Suppose ξj → ξ in C∞
0 (Ω). Then ξj − ξ → 0 and there is a compact K ⊂ Ω such that

supp (ξj − ξ) ⊂ K for all j [4, p.35]. Moreover, there exist sequences tj → 0 in C and ηj → 0

in C∞
0 (Ω) such that ξj − ξ = tjηj for all j [6, Exam. 2]. We may assume that |tj | ≤ 1 and

ηj ∈ U for all j. Then

f(ξj)− f(ξ) = f(ξ + ξj − ξ)− f(ξ) = f(ξ + tjηj)− f(ξ) = (rj − 1)f(ξ) + sjf(ηj),

where |rj − 1| ≤ |γ(tj)| → 0 and |sj | ≤ |γ(tj)| → 0.

If tj = 0 then f(ξj) = f(ξ + tjηj) = f(ξ) so we may assume that tj ̸= 0 for all j. Then

supp ηj = supp (tjηj) = supp (ξj − ξ) ⊂ K for all j and by the condition (1.1) there exist

C > 0 and k ∈ N ∪ {0} such that
∣∣f(ηj)∣∣ ≤ C

∑
|α|≤k supK

∣∣∂αηj
∣∣ → 0 as j → ∞ since ηj →

0 in C∞
0 (Ω), so f(ηj) → 0. Thus, f(ξj)− f(ξ) = (rj − 1)f(ξ) + sjf(ηj) → 0. �

Let γ0 ∈ C(0), γ0(t) = t for t ∈ C. For every U ∈ N (C∞
0 (Ω)) the family K1,U (C

∞
0 (Ω),C) =

Kγ0,U (C
∞
0 (Ω),C) includes all linear functionals and much more nonlinear functionals, e.g., for

every nonzero linear f : C∞
0 (Ω) → C, |f(·)| is nonlinear but |f(·)| ∈ K1,U (C

∞
0 (Ω),C), ∀U ∈

N (C∞
0 (Ω)).

Theorem 2.4. If f ∈ K1,U (C
∞
0 (Ω),C) and the condition (1.1) holds for f , then f is continuous

and so f is a demi-distribution in C∞
0 (Ω)[γ0,U ].

Proof. By Th. 2.3, f is sequentially continuous. Since C∞
0 (Ω) is bornological, C∞

0 (Ω) is

C-sequential and f is continuous by Th. 1.1 of [1]. �
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In § 4 we will improve this result (see Cor. 4.2).

§3 Extensions of Demi-distributions

For every C ≥ 1 and ε > 0, KC,ε(C,C) includes uncountably many nonlinear functionals,

and h ◦ f is a demi-distribution in Ω for every h ∈ Lγ,ε(C,C) and f ∈ D ′(Ω) (see [1, Th. 1.5,

Cor. 1.1]).

Theorem 3.1. If h ∈ Lγ,ε(C,C), h ̸= 0 and f ∈ D ′(Ω), then h ◦ f is a demi-distribution in Ω

and

supp
(
h ◦ f

)
= supp f.

Proof. If x ∈ Ω\supp f then there is an open Nx ⊂ Ω such that x ∈ Nx and f(η) = 0 for all

η ∈ C∞
0 (Nx). Then (h◦f)(η) = h(f(η)) = h(0) = 0 when η ∈ C∞

0 (Nx) and so x ̸∈ supp (h◦f).
Thus supp (h ◦ f) ⊂ supp f .

If u ∈ C such that 0 < |u| < ε and h(u) = 0, then for every z ∈ C there is a p ∈ N
such that 1

p |
z
u | ≤ 1 and h(z) = h(p z

puu) = h((p − 1) z
puu + z

puu) = r1h((p − 1) z
puu) + s1h(u) =

r1h((p− 1) z
puu) = · · · = r1r2 · · · rp−1sph(u) = 0. This contradicts that h ̸= 0. Hence h(u) ̸= 0

when 0 < |u| < ε.

Let x ∈ supp f and Nx an open neighborhood of x such that Nx ⊂ Ω. Then f(η) ̸= 0 for

some η ∈ C∞
0 (Nx) and 0 < | 1pf(η)| < ε for some p ∈ N. Observing f is a usual distribution,

1
pη ∈ C∞

0 (Nx) and (h ◦ f)( 1pη) = h[f( 1pη)] = h[ 1pf(η)] ̸= 0. This shows that x ∈ supp (h ◦ f) so
supp f ⊂ supp (h ◦ f). �

For M ⊂ Ω let C0(M) =
{
ξ ∈ CΩ : ξ is continuous, supp ξ is compact

}
. We have an

analogue of Th. 1.4.4 of [4] as follows.

Lemma 3.1. Let Ω1, · · · ,Ωk be open sets in Ω and let ξ ∈ C0(
∪k

1 Ωj). Then one can find

ξj ∈ C0(Ωj), j = 1, 2, · · · , k, such that ξ =
∑k

1 ξj. If ξ ≥ 0 one can take all ξj ≥ 0.

Proof. If x ∈ supp ξ then x ∈ Ωj for some j ∈ {1, 2, · · · , k} and there is a compact neigh-

borhood of x contained in Ωj. Since supp ξ is compact, a finite number of such neighborhoods

can be chosen which cover all of supp ξ. Hence supp ξ ⊂
∪k

1 Kj where each Kj is compact and

Kj ⊂ Ωj.

By Th. 1.4.1 of [4], there is Xj ∈ C∞
0 (Ωj) such that 0 ≤ Xj ≤ 1 and Xj = 1 in a

neighborhood of Kj, j = 1, 2, · · · , k. Let

ξ1 = ξX1, ξ2 = ξX2(1−X1), · · · , ξk = ξXk(1−X1) · · · (1−Xk−1),

then each supp ξj ⊂ suppXj ⊂ Ωj and ξ =
∑k

1 ξj. �

Let S ⊂ C(Ω), M ⊂ Ω and S(M) =
{
ξ ∈ S : supp ξ ⊂ M

}
. For a function f : S → C define

fM : S(M) → C by fM (ξ) = f(ξ), ∀ ξ ∈ S(M), and fM is called the restriction of f to M .

We now improve Th. 2.2.1 of [4].
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Theorem 3.2. Let f ∈ Lγ,U (C0(Ω),C). If every point in Ω has a neighborhood to which the

restriction of f is 0, then f = 0. The same fact is valid for f ∈ Lγ,U (C
∞
0 (Ω),C).

Proof. Let ξ ∈ C0(Ω). Since supp ξ is compact, there exist x1, · · · , xm ∈ supp ξ such that

supp ξ ⊂
∪m

1 Nj where Nj is an open neighborhood of xj such that fNj = 0, 1 ≤ j ≤ m. Then

ξ ∈ C0(
∪m

1 Nj) and ξ =
∑m

1 ξj where each ξj ∈ C0(Nj) by Lemma 3.1.

Pick a p ∈ N such that 1
pξ,

1
pξj ∈ U , j = 1, 2, · · · ,m. Then 1

pξ =
∑m

1
1
pξj and f( 1pξ) =

f(
∑m

1
1
pξj) = r1f(

∑m−1
1

1
pξj) + s1f(

1
pξm) = r1f(

∑m−1
1

1
pξj) = · · · = r1r2 · · · rm−1f(

1
pξ1) = 0

since each 1
pξj ∈ C0(Nj) and f( 1pξj) = fNj (

1
pξj) = 0. Thus, f(ξ) = f(p 1

pξ) = t1f((p− 1) 1pξ) =

· · · = t1t2 · · · tp−1f(
1
pξ) = 0.

The same conclusion can be obtained for f ∈ Lγ,U (C
∞
0 (Ω),C) using Th. 1.4.4 of [4] instead

of Lemma 3.1. �

Theorem 3.3. If f ∈ Lγ,U (C0(Ω),C) (resp., Lγ,U (C
∞
0 (Ω),C)) and ξ ∈ C0(Ω) (resp., C

∞
0 (Ω))

such that supp f ∩ supp ξ = ∅, then f(ξ) = 0.

Proof. Let x ∈ supp ξ. Since x ̸∈ supp f and supp f is closed in Ω by Lemma 2.1, there is an

open neighborhood Nx of x such that Nx ⊂ Ω\supp f and the restriction fNx = 0. Since supp ξ

is compact, there exist x1, · · · , xm ∈ supp ξ such that supp ξ ⊂
∪m

1 Nxj and fNxj
= 0, j =

1, 2, · · · ,m. Then ξ ∈ C0(
∪m

1 Nxj ) (resp., C∞
0 (

∪m
1 Nxj )) and ξ =

∑m
1 ξj where ξj ∈ C0(Nxj )

(resp., C∞
0 (Nxj

)) by Lemma 3.1 (resp., Th. 1.4.4 of [4]), j = 1, 2, · · · ,m.

Now f(ξ) = 0 as in the proof of Th. 3.2. �

Note that Th. 3.3 is not a consequence of Th. 3.2 because for f ̸= 0 and x ∈ supp f the

restriction fNx ̸= 0 when Nx is a neighborhood of x.

Definition 3.1. Let f ∈ Kγ,U (C
∞
0 (Ω),C) and ξ ∈ C∞(Ω). We say that ξ = ξ0 + ξ1 is a

f -decomposition of ξ if ξ0 ∈ C∞
0 (Ω) and supp ξ1 ∩ supp f = ∅.

Observe that for every compact K ⊂ Ω there is a X ∈ C∞
0 (Ω) such that 0 ≤ X ≤ 1 and

X = 1 in a neighborhood of K.

Lemma 3.2. Let f ∈ Kγ,U (C
∞
0 (Ω),C) and ξ ∈ C∞(Ω) such that supp ξ ∩ supp f is compact.

If K is a compact subset of Ω such that supp ξ ∩ supp f ⊆ K and X ∈ C∞
0 (Ω) for which X = 1

in a neighborhood of K, then ξ = X ξ + (1 − X )ξ is a f -decomposition of ξ: X ξ ∈ C∞
0 (Ω),

supp [(1−X )ξ] ∩ supp f = ∅.
Proof. Since supp (X ξ) ⊂ suppX , X ξ ∈ C∞

0 (Ω). There is an open G ⊂ Ω such that

K ⊂ G and X = 1 in G. If [(1−X )ξ](x) = (1−X (x))ξ(x) ̸= 0, then x ∈ supp ξ∩ (Ω\G) and so

supp [(1−X )ξ] ⊂ supp ξ∩(Ω\G) ⊂ supp ξ∩(Ω\K) ⊂ supp ξ∩ [Ω\(supp ξ∩supp f)] ⊂ Ω\supp f ,
i.e., supp [(1−X )ξ] ∩ supp f = ∅. �

Corollary 3.1. Let f ∈ Kγ,U (C
∞
0 (Ω),C) and ξ ∈ C∞

0 (Ω). If K is a compact subset of Ω

such that supp ξ ∩ supp f ⊆ K and X ∈ C∞
0 (Ω) for which X = 1 in a neighborhood of K, then

f(ξ) = f(X ξ).
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Theorem 3.4. Let f ∈ Kγ,U (C
∞
0 (Ω),C) and ξ ∈ C∞(Ω). If both ξ = ξ0 + ξ1 and ξ = η0 + η1

are f -decompositions of ξ, where ξ0, η0 ∈ C∞
0 (Ω) and supp ξ1 ∩ supp f = supp η1 ∩ supp f = ∅,

then f(ξ0) = f(η0).

Proof. Let X = ξ0−η0. Then suppX ⊂ supp ξ0∪supp η0 and so X ∈ C∞
0 (Ω). Since η1−ξ1 =

ξ0 − η0 = X so suppX ⊂ supp ξ1 ∪ supp η1, suppX ∩ supp f ⊂ (supp ξ1 ∩ supp f)
∪
(supp η1 ∩

supp f) = ∅.

Pick a p ∈ N for which 1
pX ∈ U . Then supp ( 1pX ) ∩ (supp f) = ∅ and so f( 1pX ) = 0 by

Lemma 2.2. Then ξ0 = η0 + X and

f
(
ξ0
)
= f

(
η0 + p

1

p
X
)
= f

(
η0 + (p− 1)

1

p
X
)
= · · · = f

(
η0 +

1

p
X
)
= f

(
η0
)
. �

By Lemma 3.2 and Th. 3.4 we have

Corollary 3.2. Let f ∈ Kγ,U (C
∞
0 (Ω),C) and ξ, η ∈ C∞

0 (Ω). If supp (ξ− η)∩ supp f = ∅, then
f(ξ) = f(η).

Definition 3.2. For f ∈ Kγ,U (C
∞
0 (Ω),C) let

S(f) =
{
ξ ∈ C∞(Ω) : supp ξ ∩ supp f is compact

}
,

and define f̃ : S(f) → C by

f̃(ξ) = f(ξ0) when ξ = ξ0 + ξ1 is a f -decomposition of ξ ∈ S(f).

We say that f̃ is the canonical extension of f . If supp f is compact then S(f) = C∞(Ω)

and f̃ is defined on C∞(Ω).

Theorem 3.5. Let f ∈ Kγ,U (C
∞
0 (Ω),C). Then S(f) is a vector subspace of C∞(Ω) and

C∞
0 (Ω) ⊂ S(f). Moreover, f̃(ξ) = f(ξ), ξ ∈ C∞

0 (Ω), and f̃(ξ) = 0 when ξ ∈ C∞(Ω) but

supp ξ ∩ supp f = ∅.

Proof. If ξ, η ∈ S(f) and t ∈ C, then (supp ξ ∩ supp f)
∪
(supp η ∩ supp f) is compact and

supp (ξ+tη)∩supp f ⊂ (supp ξ∪supp η)
∩

supp f . This shows that ξ+tη ∈ S(f). If ξ ∈ C∞
0 (Ω)

then supp ξ ∩ supp f ⊂ supp ξ so ξ ∈ S(f), and f̃ = f(ξ) since ξ = ξ + 0 is a f -decomposition

of ξ.

If ξ ∈ C∞(Ω) but supp ξ ∩ supp f = ∅, then ξ = 0 + ξ is a f -decomposition of ξ and

f̃(ξ) = f(0) = 0 by Def. 1.1. �

Recall that C∞(Ω) is a Fréchet space.

Lemma 3.3. Let η ∈ C∞(Ω) and Tη(ξ) = ηξ for ξ ∈ C∞(Ω). Then Tη : C∞(Ω) → C∞(Ω) is

a continuous linear operator.

Proof. Let ξv → 0 in C∞(Ω). For every compact K ⊂ Ω and k ∈ N ∪ {0}, it follows from
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the Leibniz formula that∥∥ηξv∥∥K,k
=

∑
|α|≤k

sup
K

∣∣∂α(ηξv)
∣∣ ≤ C

∑
|α|+|β|≤k

sup
K

∣∣∂αξv
∣∣∣∣∂βη

∣∣
≤ C max

|β|≤k
sup
K

∣∣∂βη
∣∣ ∑
|α|≤k

sup
K

∣∣∂αξv
∣∣ → 0. �

The topology of the inductive limit C∞
0 (Ω) is strictly stronger than the topology of the

subspace C∞
0 (Ω) of C∞(Ω). So the following fact is interesting and useful for further discussions.

Lemma 3.4. Let X ∈ C∞
0 (Ω) and TX (ξ) = X ξ for ξ ∈ C∞(Ω). Then TX : C∞(Ω) → C∞

0 (Ω)

is a continuous linear operator.

Proof. Let ξv → 0 in C∞(Ω). Since X ∈ C∞
0 (Ω), suppX is compact and supp (X ξv) ⊂

suppX for all v. By Lemma 3.3, X ξv → 0 in C∞(Ω) and so for every compact K ⊂ Ω and every

multi-index α, limv supK |∂α(X ξv)| ≤ limv

∑
|β|≤|α| supK |∂β(X ξv)| = limv ∥X ξv∥K,|α| = 0.

Thus X ξv → 0 in C∞
0 (Ω) and TX : C∞(Ω) → C∞

0 (Ω) is continuous because C∞(Ω) is a

Fréchet space. �

Lemma 3.5. Let X, Y be topological vector spaces and f ∈ Lγ,U (X,Y ). Then f is continuous

if and only if f is continuous at 0 ∈ X.

Proof. Suppose that f is continuous at 0 ∈ X. Let x ∈ X and V ∈ N (Y ). Pick a balanced

W ∈ N (Y ) for which W +W ⊂ V .

There is a balanced U0 ∈ N (X) such that U0 ⊂ U and f(U0) ⊂ W . Since limt→0 γ(t) = 0,

there is a p ∈ N for which |γ( 1p )| < 1 and γ( 1p )f(x) ∈ W . If z ∈ x+ 1
pU0, then p(z−x) ∈ U0 ⊂ U

and f(z)−f(x) = f(x+z−x)−f(x) = f [x+ 1
pp(z−x)]−f(x) = rf(x)+sf [p(z−x)]−f(x) =

(r − 1)f(x) + sf [p(z − x)], where |r − 1| ≤ |γ( 1p )| < 1 and |s| ≤ |γ( 1p )| < 1.

If γ( 1p ) = 0 then r − 1 = s = 0 so f(z) − f(x) = 0 ∈ V . If γ( 1p ) ̸= 0, then (r − 1)f(x) =
r−1

γ(1/p)γ(1/p)f(x) ∈ r−1
γ(1/p)W ⊂ W and sf [p(z − x)] ∈ sf(U0) ⊂ sW ⊂ W . So f(z) − f(x) ∈

W +W ⊂ V . Thus, 1
pU0 ∈ N (X) and f(x+ 1

pU0) ⊂ f(x) + V , i.e., f is continuous at x. �

Recall that C∞
0 (Ω)[γ,U ] =

{
f ∈ Kγ,U (C

∞
0 (Ω),C) : f is continuous

}
is the family of demi-

distributions, and C∞
0 (Ω)[γ,U ] is a large extension of the family D ′(Ω)(= C∞

0 (Ω)′) of usual

distributions.

Theorem 3.6. Let f ∈ C∞
0 (Ω)[γ,U ] such that supp f is compact. Then there is a V ∈

N (C∞(Ω)) such that the canonical extension f̃ ∈ C∞(Ω)[γ,V ] and supp f̃ = supp f .

Proof. Since supp f is compact, S(f) = C∞(Ω) and the canonical extension f̃ of f is defined

on C∞(Ω). Pick a X ∈ C∞
0 (Ω) such that X = 1 in a neighborhood of supp f . By Lemma 3.2

and Def. 3.2, f̃(ξ) = f(X ξ), ∀ ξ ∈ C∞(Ω).

By Lemma 3.4, V =
{
ξ ∈ C∞(Ω) : X ξ ∈ U

}
∈ N (C∞(Ω)). If ξ ∈ C∞(Ω), η ∈ V and

|t| ≤ 1, then f̃(ξ + tη) = f(X ξ + tXη) = f(X ξ) + sf(Xη) = f̃(ξ) + sf̃(η) where |s| ≤ |γ(t)|.
Thus f̃ ∈ Kγ,V (C

∞(Ω),C).
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Let ξv → 0 in C∞(Ω). By Lemma 3.4, X ξv → 0 in C∞
0 (Ω) and so f̃(ξv) = f(X ξv) →

f(0) = 0 = f̃(0). This shows that f̃ is continuous at 0 ∈ C∞(Ω) since C∞(Ω) is a Fréchet

space. Thus f̃ is continuous by Lemma 3.5.

Let x ∈ Ω\supp f . There is an open Nx ⊂ Ω\supp f such that x ∈ Nx and f(η) = 0, ∀ η ∈
C∞

0 (Nx). If ξ ∈ C∞(Nx), then supp (X ξ) ⊂ supp ξ ⊂ Nx so f̃(ξ) = f(X ξ) = 0. Thus,

x ̸∈ supp f̃ and so supp f̃ ⊂ supp f . Conversely, if x ∈ Ω\supp f̃ then there is an open

Nx ⊂ supp f̃ such that f̃(ξ) = 0 for all ξ ∈ C∞(Nx) so f(η) = f̃(η) = 0, ∀ η ∈ C∞
0 (Nx). Then

x ̸∈ supp f and so supp f ⊂ supp f̃ . �

Theorem 3.7. Let f ∈ C∞(Ω)[γ,V ] and define f0 : C∞
0 (Ω) → C by f0(ξ) = f(ξ) for ξ ∈ C∞

0 (Ω).

Then U =
{
η ∈ C∞

0 (Ω) : η ∈ V
}
∈ N (C∞

0 (Ω)) and f0 ∈ C∞
0 (Ω)[γ,U ].

Proof. Let I : C∞
0 (Ω) → C∞(Ω), I(ξ) = ξ for ξ ∈ C∞

0 (Ω). Then I is a continuous linear

operator. Hence U = I−1(V ) ∈ N (C∞
0 (Ω)).

Let ξ ∈ C∞
0 (Ω), η ∈ U and |t| ≤ 1. Then ξ ∈ C∞(Ω) and η = I(η) ∈ V so f0(ξ + tη) =

f(ξ + tη) = f(ξ) + sf(η) = f0(ξ) + sf0(η) where |s| ≤ |γ(t)|. Thus f0 ∈ Kγ,U (C
∞
0 (Ω),C).

If (ξλ)λ∈∆ is a net in C∞
0 (Ω) such that ξλ → ξ ∈ C∞

0 (Ω). Then ξλ = I(ξλ) → I(ξ) = ξ in

C∞(Ω) and so f0(ξλ) = f(ξλ) → f(ξ) = f0(ξ). This shows that f0 : C∞
0 (Ω) → C is continuous,

i.e., f0 ∈ C∞
0 (Ω)[γ,U ]. �

§4 Demi-distributions with Compact Support

Definition 4.1. Let f ∈ Lγ,U (C
∞
0 (Ω),C) (resp., Lγ,V (C

∞(Ω),C)) and k ∈ N ∪ {0}. If for

every compact K ⊂ Ω there is a C > 0 such that

(1.1)
∣∣f(ξ)∣∣ ≤ C

∑
|α|≤k

sup
x∈K

∣∣∂αξ(x)
∣∣, ∀ ξ ∈ C∞

0 (K) (resp., ξ ∈ C∞(K)),

then we say that f is of order ≤ k.

Let M ≥ 1 and γ(t) = Mt, ∀ t ∈ C. Then γ ∈ C(0) and for every U ∈ N (C∞
0 (Ω)) the

family of demi-distributions C∞
0 (Ω)[γ,U ] is a very large extension of D ′(Ω) (= C∞

0 (Ω)′), the

family of usual distributions (see [2, Th. 1.1, Th. 2.1]; [1, Th. 1.5, Cor. 1.3]). By Th. 3.6, if

f ∈ C∞
0 (Ω)[γ,U ] has compact support, then f has an extension f̃ ∈ C∞(Ω)[γ,V ] and, conversely,

every f ∈ C∞(Ω)[γ,V ] has the restriction f |C∞
0 (Ω) ∈ C∞

0 (Ω)[γ,U ], where the relations between

U and V are very simple.

For C∞(Ω)[γ,U ] we have a very nice result as follows.

Theorem 4.1. Let M ≥ 1, γ(t) = Mt, ∀ t ∈ C, V ∈ N (C∞(Ω)). Then for every f ∈
C∞(Ω)[γ,V ] there exist compact L ⊂ Ω, C > 0 and k ∈ N ∪ {0} such that

(4.1)
∣∣f(ξ)∣∣ ≤ C

∑
|α|≤k

sup
L

∣∣∂αξ
∣∣, ∀ ξ ∈ C∞(Ω).

Thus, supp f is compact, the condition (1.1) holds for f , and f is of order ≤ k.
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Proof. Let P =
{
∥ · ∥K,k : K is a compact subset of Ω, k ∈ N ∪ {0}

}
. The topology of

C∞(Ω) is just given by the seminorm family P .

There exist ∥ · ∥1, · · · , ∥ · ∥p ∈ P and ε1, · · · , εp ∈ (0,+∞) such that
p∩

j=1

{
ξ ∈ C∞(Ω) : ∥ξ∥j ≤ εj

}
⊂ V.

Since f is continuous and f(0) = 0, there exist ∥ · ∥p+1, · · · , ∥ · ∥m ∈ P and εp+1, · · · , εm ∈
(0,+∞) such that ∣∣f(ξ)∣∣ < 1, ∀ ξ ∈

m∩
j=p+1

{
η ∈ C∞(Ω) : ∥η∥j ≤ εj

}
.

Say that ∥ · ∥j = ∥ · ∥Kj ,kj , j = 1, 2, · · · ,m, and θ = min1≤j≤m εj. Then θ > 0. Letting

L =
∪m

j=1 Kj, k =
∑m

j=1 kj and, simply, ∥ · ∥ = ∥ · ∥L,k, L is compact and ∥ · ∥ ∈ P .

If ξ ∈ C∞(Ω) such that ∥ξ∥ ≤ θ, then

∥ξ∥j =
∑

|α|≤kj

sup
Kj

|∂αξ| ≤
∑
|α|≤k

sup
L

|∂αξ| = ∥ξ∥ ≤ θ ≤ εj , j = 1, 2, · · · ,m.

Thus W =
{
ξ ∈ C∞(Ω) : ∥ξ∥ ≤ θ

}
⊂

∩m
j=1

{
ξ ∈ C∞(Ω) : ∥ξ∥j ≤ εj

}
and so W ⊂ V,

∣∣f(ξ)∣∣ <
1, ∀ ξ ∈ W.

If ξ ∈ C∞(Ω) such that ∥ξ∥ = 0, then ∥pξ∥ = p∥ξ∥ = 0 for all p ∈ N so pξ ∈ W ⊂ V for

all p ∈ N and |f(ξ)| = |f( 1ppξ)| = |spf(pξ)| ≤ |sp| ≤ |γ( 1p )| = M 1
p → 0 as p → +∞. Thus,

|f(ξ)| = 0 ≤ M
θ ∥ξ∥.

Let ξ ∈ C∞(Ω) with ∥ξ∥ > 0. Then 0 < ∥ξ∥
pθ ≤ 1 for some p ∈ N, and ∥ θ

∥ξ∥ξ∥ = θ,
θ

∥ξ∥ξ ∈ W ⊂ V so |f( θ
∥ξ∥ξ)| < 1. Hence∣∣f(ξ)∣∣ = ∣∣∣f(p∥ξ∥

pθ

θ

∥ξ∥
ξ
)∣∣∣ = ∣∣∣f[(p− 1)

∥ξ∥
pθ

( θ

∥ξ∥
ξ
)
+

∥ξ∥
pθ

( θ

∥ξ∥
ξ
)]∣∣∣

=
∣∣∣f[(p− 1)

∥ξ∥
pθ

( θ

∥ξ∥
ξ
)]

+ s1f
( θ

∥ξ∥
ξ
)∣∣∣

· · · · · ·

=
∣∣∣f[∥ξ∥

pθ

( θ

∥ξ∥
ξ
)]

+ sp−1f
( θ

∥ξ∥
ξ
)
+ · · ·+ s1f

( θ

∥ξ∥
ξ
)∣∣∣

=
∣∣∣ p∑
j=1

sjf
( θ

∥ξ∥
ξ
)∣∣∣ = ∣∣∣ p∑

j=1

sj

∣∣∣∣∣∣f( θ

∥ξ∥
ξ
)∣∣∣

≤
p∑

j=1

∣∣sj∣∣ ≤ p∑
j=1

∣∣γ(∥ξ∥
pθ

)∣∣ = p
∣∣γ(∥ξ∥

pθ
)
∣∣ = pM

∥ξ∥
pθ

=
M

θ

∥∥ξ∥∥.
Thus we have that ∣∣f(ξ)∣∣ ≤ M

θ
∥ξ∥ =

M

θ

∑
|α|≤k

sup
L

∣∣∂αξ
∣∣, ∀ ξ ∈ C∞(Ω).

If x ∈ Ω\L, then there is an ε > 0 such that

Nx =
{
y ∈ Ω : |y − x| =

√
(y1 − x1)2 + · · ·+ (yn − xn)2 ≤ ε

}
⊂ Ω\L
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and |f(ξ)| ≤ M
θ

∑
|α|≤k supL |∂αξ| = 0 for all ξ ∈ C∞(Nx). Thus supp f ⊂ L and so supp f is

compact.

If K is a compact subset of Ω, then for every ξ ∈ C∞(K) we have that∣∣f(ξ)∣∣ ≤ M

θ

∑
|α|≤k

sup
L

∣∣∂αξ
∣∣ = M

θ

∑
|α|≤k

sup
L∩K

∣∣∂αξ
∣∣ ≤ M

θ

∑
|α|≤k

sup
K

∣∣∂αξ
∣∣,

i.e., the condition (1.1) holds for f and f is of order ≤ k. �

Now we can obtain many important facts by the help of Th. 4.1.

Theorem 4.2. Let M ≥ 1, γ(t) = Mt for t ∈ C and U ∈ N (C∞
0 (Ω)). If f ∈ C∞

0 (Ω)[γ,U ] has

compact support, then there exist compact L ⊂ Ω, C > 0 and k ∈ N ∪ {0} such that

(4.1)′
∣∣f(ξ)∣∣ ≤ C

∑
|α|≤k

sup
L

∣∣∂αξ
∣∣, ∀ ξ ∈ C∞

0 (Ω).

Thus, the condition (1.1) holds for f , and f is of order ≤ k.

Proof. By Th. 3.6 there is a V ∈ N (C∞(Ω)) such that the canonical extension f̃ ∈
C∞(Ω)[γ,V ]. By Th. 4.1, there exist compact L ⊂ Ω, C > 0 and k ∈ N ∪ {0} such that∣∣f(ξ)∣∣ = ∣∣f̃(ξ)∣∣ ≤ C

∑
|α|≤k

sup
L

∣∣∂αξ
∣∣, ∀ ξ ∈ C∞

0 (Ω).

As in the proof of Th. 4.1, (1.1) holds for f , and f is of order ≤ k. �

For γ(t) = et ∈ C(0) and U =
{
ξ ∈ C∞

0 (R) : sup0≤x≤a |ξ(x)| ≤ 1
}

where a > 0, there

exists demi-distribution f ∈ C∞
0 (R)(γ,U) such that supp f = {x0} is compact but the condition

(1.1) fails to hold for f (see Exam. 2.2). However, Th. 4.2 shows that if f ∈ C∞
0 (Ω)[γ,U ] has

compact support then not only (1.1) holds for f but the more strong (4.1)′ holds for f . Thus,

the most important properties of demi-distributions heavily depend on the splitting degree of

demi-distributions.

Theorem 4.3. Let M ≥ 1, γ(t) = Mt for t ∈ C. If f ∈ C∞(Ω)[γ,V ] and f0(ξ) = f(ξ)

for ξ ∈ C∞
0 (Ω), then f0 ∈ C∞

0 (Ω)[γ,U ] where U = V ∩ C∞
0 (Ω) ∈ N (C∞

0 (Ω)), and there exist

compact L ⊂ Ω, C > 0 and k ∈ N ∪ {0} such that∣∣f0(ξ)∣∣ ≤ C
∑
|α|≤k

sup
L

∣∣∂αξ
∣∣, ∀ ξ ∈ C∞

0 (Ω)

so supp f0 is compact, supp f0 = supp f and f0 is of order ≤ k. Moreover, f = f̃0, the canonical

extension of f0.

Proof. By Th. 3.7 and Th. 4.1, we only need to show f̃0 = f .

By Th. 4.1, there exist compact L ⊂ Ω, C > 0 and k ∈ N ∪ {0} such that∣∣f(ξ)∣∣ ≤ C
∑
|α|≤k

sup
L

∣∣∂αξ
∣∣, ∀ ξ ∈ C∞(Ω).

If x ∈ Ω\supp f then there is an open Nx ⊂ Ω\supp f such that f(ξ) = 0 for all ξ ∈ C∞(Nx)

and so f0(ξ) = f(ξ) = 0, ∀ ξ ∈ C∞
0 (Nx) ⊂ C∞(Nx), that is, x ̸∈ supp f0. Thus supp f0 ⊂

supp f ⊂ L.
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Pick a X ∈ C∞
0 (Ω) such that X = 1 in a neighborhood of L. Then by Th. 3.4 and Def. 3.2

we have that f̃0(ξ) = f0(X ξ) = f(X ξ), ∀ ξ ∈ C∞(Ω).

Let ξ ∈ C∞(Ω) and pick a p ∈ N such that 1
p (1−X )ξ ∈ V . Since 1−X = 0 in a neighborhood

of L, ∂α[ 1p (1−X )ξ](x) = 0 for all x ∈ L and all multi-index α. Then∣∣f[1
p
(1−X )ξ

]∣∣ ≤ C
∑
|α|≤k

sup
L

∣∣∂α
[1
p
(1−X )ξ

]∣∣ = 0, i.e., f
[1
p
(1−X )ξ

]
= 0,

f(ξ) = f
[
X ξ + (1−X )ξ

]
= f

[
X ξ + (p− 1)

1

p
(1−X )ξ +

1

p
(1−X )ξ

]
= f

[
X ξ + (p− 1)

1

p
(1−X )ξ

]
+ sf

[1
p
(1−X )ξ

]
= f

[
X ξ + (p− 1)

1

p
(1−X )ξ

]
· · · · · ·

= f(X ξ) = f0(X ξ) = f̃0(ξ).

Thus f = f̃0 and supp f0 = supp f̃0 = supp f by Th. 3.6. �

Corollary 4.1. Let M ≥ 1, γ(t) = Mt, ∀ t ∈ C. Then∪
V ∈N (C∞(Ω))

C∞(Ω)[γ,V ] =
∪

U∈N (C∞
0 (Ω))

{
f̃ : f ∈ C∞

0 (Ω)[γ,U ], supp f is compact
}
.

Now we can improve Th. 2.4 as follows.

Corollary 4.2. Let M ≥ 1, γ(t) = Mt for t ∈ C. Let f ∈ Kγ,U (C
∞
0 (Ω),C) for which supp f

is compact. Then f is continuous if and only if the condition (1.1) holds for f .

For x = (x1, · · · , xn) ∈ Rn, |x| =
√
x2
1 + · · ·+ x2

n.

Lemma 4.1. Let K and F be nonempty subsets of Ω. If K is compact and F is closed in

Ω and K∩F = ∅, then there exist x0 ∈ K and y0 ∈ F such that infx∈K,y∈F |x−y| = |x0−y0| > 0.

Proof. Let d = infx∈K,y∈F |x − y|. There exist sequences {xv} ⊂ K and {yv} ⊂ F such

that d = limv |xv − yv|. Since K is compact and {xv − yv} is bounded, we may assume that

xv → x0 ∈ K and xv − yv → b ∈ Rn. Then yv = yv − xv + xv → x0 − b = y0 and

|xv − yv| → |x0 − y0|, d = |x0 − y0|. If y0 ∈ F then y0 ̸∈ K so y0 ̸= x0 and d = |x0 − y0| > 0.

If y0 ̸∈ F then y0 ̸∈ Ω so y0 ̸= x0 and d = |x0 − y0| > 0. �

We have a fact which is different from Lemma 2.2 as follows.

Theorem 4.4. Let M ≥ 1, γ(t) = Mt for t ∈ C. If f ∈ C∞(Ω)[γ,V ] and ξ ∈ C∞(Ω) such that

supp f ∩ supp ξ = ∅, then f(ξ) = 0.

Proof. By Th. 4.1, supp f is compact. Then inf
{
|x−y| : x ∈ supp f, y ∈ supp ξ

}
= d > 0 by

Lemma 4.1. Let f0(ξ) = f(ξ) for ξ ∈ C∞
0 (Ω) and U = V ∩C∞

0 (Ω). By Th. 4.3, f0 ∈ C∞
0 (Ω)[γ,U ]

and the canonical extension f̃0 = f , supp f0 = supp f . Since d > 0, for ε ∈ (0, d/3) there is a

X ∈ C∞
0 (Ω) such that 0 ≤ X ≤ 1 and X = 1 in G =

{
y ∈ Ω : |y−x| < ε for some x ∈ supp f0

}
,

X = 0 outside B3ε =
{
y ∈ Ω : |y − x| ≤ 3ε for some x ∈ supp f0

}
.
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Then suppX ⊂ B3ε, supp f0 ∩ supp (X ξ) ⊂ supp f ∩ supp ξ = ∅ and supp [(1−X )ξ]∩ supp f0 ⊂
(Ω\G) ∩ supp f0 = ∅. Hence ξ = X ξ + (1 − X )ξ is a f0-decomposition of ξ and supp (X ξ) ∩
supp f0 = ∅. Then f(ξ) = f̃0(ξ) = f0(X ξ) = 0 by Lemma 2.2. �

Theorem 4.5. Let M ≥ 1, γ(t) = Mt for t ∈ C. If f ∈ C∞(Ω)[γ,V ] is of order ≤ k and

ξ ∈ C∞(Ω) such that ∂αξ(x) = 0 when |α| ≤ k and x ∈ supp f , then f(ξ) = 0.

Proof. By Th. 4.1, supp f is compact so for sufficiently small ε > 0 the set Bε =
{
y ∈ Rn :

|y − x| ≤ ε for some x ∈ supp f
}
is compact and contained in Ω. There is a Xε ∈ C∞

0 (Ω) with

0 ≤ Xε ≤ 1 such that Xε = 1 in a neighborhood of supp f and Xε = 0 outside Bε [4, p.46].

Moreover, |∂αXε| ≤ Cαε
−|α| where Cα is independent of ε [4, p.5] so there is a C > 0 such that

|∂αXε| ≤ Cε−|α| for all |α| ≤ k and all ε ∈ (0, ε0], where ε0 > 0 and Bε0 ⊂ Ω.

For ε ∈ (0, ε0] pick a p ∈ N for which 1
p (1−Xε)ξ ∈ V . Since supp [ 1p (1−Xε)ξ]∩ supp f = ∅,

f [ 1p (1−Xε)ξ] = 0 by Th. 4.4. Then

f(ξ) = f
[
ξXε + p

1

p
(1−Xε)ξ

]
= f

[
ξXε + (p− 1)

1

p
(1−Xε)ξ

]
= · · · = f(ξXε).

Since f is of order ≤ k, there is an A > 0 such that |f(η)| ≤ A
∑

|α|≤k supBε
|∂αη|, ∀ η ∈

C∞(Bε). If 0 < ε′ < ε and η ∈ C∞(Bε′), then η ∈ C∞(Bε) and supB′
ε
|∂αη| = supBε

|∂αη| for
all α so |f(η)| ≤ A

∑
|α|≤k supBε

|∂αη| = A
∑

|α|≤k supB′
ε
|∂αη|. So the constant A is available

for all ε′ ∈ (0, ε]. Since ξXε ∈ C∞
0 (Bε) = C∞(Bε), it follows from the Leibniz formula that∣∣f(ξ)∣∣ = ∣∣f(ξXε)

∣∣ ≤ A
∑
|α|≤k

sup
Bε

∣∣∂α(ξXε)
∣∣ ≤ A1

∑
|α|+|β|≤k

sup
Bε

∣∣∂αξ
∣∣∣∣∂βXε

∣∣
≤ A1C

∑
|α|≤k

ε|α|−k sup
Bε

∣∣∂αξ
∣∣,

where both A1 and C are independent of ε. Observing ∂αξ(x) = 0 for all x ∈ supp f and

|α| ≤ k, we have limε→0 ε
|α|−k supBε

|∂αξ| = 0 for all |α| ≤ k [4, p.46]. Thus f(ξ) = 0. �

Notice that in the notation (• − a)α the symbol • denotes the variable, that is, (• − a)α is

a function such that [(• − a)α](x) = (x− a)α = (x1 − a1)
α1 · · · (xn − an)

α
n [4, p.47].

Corollary 4.3. Let M ≥ 1, γ(t) = Mt for t ∈ C. If f ∈ C∞(Ω)[γ,V ] is of order k and

supp f = {y}, a singleton, then we have f(ξ) = f
[∑

|α|≤k ∂
αξ(y)(•− y)α/(α!)

]
, ∀ ξ ∈ C∞(Ω),

where for 0 = (0, · · · , 0) the term α0ξ(y)(• − y)0/(0!) = ξ(y) is the function η ∈ C∞(Ω) for

which η(x) = ξ(y), ∀x ∈ Ω.

Example 4.1. Let y ∈ Ω and f(ξ) = sin |ξ(y)| for ξ ∈ C∞(Ω). Clearly, V =
{
ξ ∈ C∞(Ω) :

|ξ(y)| ≤ 1
}
∈ N (C∞(Ω)). If ξ ∈ C∞(Ω), η ∈ V and |t| ≤ 1, then f(ξ+tη) = sin |ξ(y)+tη(y)| =

sin(|ξ(y)| + s|η(y)|) = sin |ξ(y)| + θ sin |η(y)| = f(ξ) + θf(η) where |θ| ≤ π
2 |s| ≤

π
2 |t|. Letting

γ(t) = π
2 t for t ∈ C, f ∈ C∞(Ω)[γ,V ] and supp f = {y}. For every compact K ⊂ Ω and

ξ ∈ C∞(K) = C∞
0 (K) we have that |f(ξ)| = | sin |ξ(y)|| = 0 ≤ supK |∂0ξ| when y ̸∈ K,

|f(ξ)| = | sin |ξ(y)|| ≤ |ξ(y)| ≤ supK |ξ| = supK |∂0ξ| when y ∈ K. Thus, f is of order 0.
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Corollary 4.4. Let M ≥ 1, γ(t) = Mt for t ∈ C. If f ∈ C∞(Ω)[γ,V ] is of order 0 and

supp f = {y}, then f(ξ) = f
(
ξ(y)

)
, ∀ ξ ∈ C∞(Ω), where ξ(y) is a function in C∞(Ω) such

that ξ(y)(x) = ξ(y), ∀x ∈ Ω.

In [2] we gave a very clear-cut characterization of demi-linear functions in KM,ε(R,R) [2,

Th. 1.1]. We have a similar description for demi-linear functions in KM,ε(C,C) as follows.

Lemma 4.2. Let g : C → C be a function such that g(0) = 0 and g′(z0) ̸= 0 for some z0 ∈ C.
Let ε > 0. Then g ∈ KM,ε(C,C) for some M ≥ 1 if and only if

(1) g is continuous,

(2) g(z) ̸= 0 for 0 < |z| ≤ ε,

(3) inf0<|u|≤ε

∣∣ g(u)
u

∣∣ > 0,

(4) supz,u∈C, 0<|u|≤ε

∣∣ g(z+u)−g(z)
u

∣∣ < +∞.

Proof. Suppose that g ∈ KM,ε(C,C) where M ≥ 1. If zk → z in C, then for sufficiently

large k ∈ N we have that | zk−z
ε | < 1 and g(zk) = g(z + zk−z

ε ε) = g(z) + skg(ε) where |sk| ≤
M | zk−z

ε | → 0 so g(zk) → g(z), that is, g is continuous. Assume that g(u) = 0 for some

0 < |u| ≤ ε and z ∈ C, z ̸= 0. Then | z
ku | < 1 for some k ∈ N and g(z) = g(k z

kuu) =

g[(k − 1) z
kuu + z

kuu] = g[(k − 1) z
kuu] + s1g(u) = g[(k − 1) z

kuu] = · · · = g( z
kuu) = skg(u) = 0.

Thus g = 0 but g′(z0) ̸= 0. This contradiction shows that (2) holds for g.

If inf0<|u|≤ε

∣∣ g(u)
u

∣∣ = 0, then g(uk)
uk

→ 0 for some {uk} ⊂
{
z ∈ C : |z| ≤ ε

}
\ {0}. May

assume that uk → u0. If u0 ̸= 0, then | g(uk)
uk

| → | g(u0)
u0

| > 0 by (1) and (2), a contradiction.

So u0 = 0, uk → 0. Then g(z0 + uk) = g(z0) + skg(uk) where |sk| ≤ M |1| = M , 0 ̸= g′(z0) =

limk
g(z0+uk)−g(z0)

uk
= limk

skg(uk)
uk

= 0. This contradiction shows that (3) holds for g.

Let z, u ∈ C, 0 < |u| ≤ ε. Since g(u) = g
(
u
ε ε

)
= sg(ε) where |s| ≤ M

∣∣u
ε

∣∣ = M
ε |u| and

g(z + u) = g(z) + s1g(u) where |s1| ≤ M |1| = M , |g(u)| ≤ M
ε |g(ε)u| and

∣∣∣ g(z+u)−g(z)
u

∣∣∣ =∣∣∣ s1g(u)u

∣∣∣ ≤ M2

ε |g(ε)|. Thus, (4) holds for g.

Conversely, assume that (1), (2), (3) and (4) hold for g. Since g(0) = 0 and inf0<|u|≤ε

∣∣ g(u)
u

∣∣ =
inf0<|u|≤ε

∣∣ g(0+u)−g(0)
u

∣∣ ≤ sup0<|u|≤ε

∣∣ g(0+u)−g(0)
u

∣∣,
M =

[
sup

z,u∈C, 0<|u|≤ε

∣∣g(z + u)− g(z)

u

∣∣]/ inf
0<|u|≤ε

∣∣g(u)
u

∣∣ ≥ 1.

Let z, u, t ∈ C, 0 < |u| ≤ ε, 0 < |t| ≤ 1. Then g(u) ̸= 0 by (2) and g(z + tu)

= g(z) + g(z + tu)− g(z) = g(z) +
[
g(z+tu)−g(z)

tu
u

g(u) t
]
g(u), where∣∣∣g(z + tu)− g(z)

tu

u

g(u)
t
∣∣∣ = ∣∣∣g(z + tu)− g(z)

tu
/
g(u)

u

∣∣∣∣∣t∣∣ ≤ M
∣∣t∣∣.

Thus, g ∈ KM,ε(C,C). �

We now have the following representation theorem.

Theorem 4.6. Let M ≥ 1, γ(t) = Mt for t ∈ C. If f ∈ C∞(Ω)[γ,V ] is of order 0 and

supp f = {y}, then there exist ε > 0 and g ∈ KM,ε(C,C) such that

(4.2) f(ξ) = g
(
ξ(y)

)
, ∀ ξ ∈ C∞(Ω).
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Conversely, every ε > 0 and g ∈ KM,ε(C,C) give a V ∈ N (C∞(Ω)) and a f ∈ C∞(Ω)[γ,V ]

through (4.2) such that f is of order 0 and supp f = {y}.
Proof. Suppose that f ∈ C∞(Ω)[γ,V ] is of order 0 and supp f = {y}. For z ∈ C let

ζz(x) = z for all x ∈ Ω. Then ζz ∈ C∞(Ω) and limz→0 ζz = 0 in C∞(Ω). Hence there is an

ε > 0 such that ζz ∈ V when |z| ≤ ε. Define g : C → C by g(z) = f(ζz), ∀ z ∈ C. Then

g(0) = f(ζ0) = f(0) = 0. For z, u, t ∈ C with |u| ≤ ε and |t| ≤ 1, ζu ∈ V and

g(z + tu) = f(ζz+tu) = f(ζz + ζtu) = f(ζz + tζu) = f(ζz) + sf(ζu) = g(z) + sg(u),

where |s| ≤ |γ(t)| = M |t|. Thus g ∈ KM,ε(C,C). By Cor. 4.4 we have f(ξ) = f(ξ(y)) =

f(ζξ(y)) = g(ξ(y)), ∀ ξ ∈ C∞(Ω).

Conversely, let ε > 0, g ∈ KM,ε(C,C) and y ∈ Ω. Since the Dirac measure δy : C∞(Ω) → C,
δy(ξ) = ξ(y) is continuous and δy(0) = 0, V =

{
ξ ∈ C∞(Ω) : |ξ(y)| ≤ ε

}
= δ−1

y ([−ε, ε]) ∈
N (C∞(Ω)). Then define f : C∞(Ω) → C by f(ξ) = g(ξ(y)), ξ ∈ C∞(Ω). For ξ ∈ C∞(Ω), η ∈
V and |t| ≤ 1, |η(y)| ≤ ε and f(ξ+ tη) = g((ξ+ tη)(y)) = g(ξ(y)+ tη(y)) = g(ξ(y))+sg(η(y)) =

f(ξ)+ sf(η) where |s| ≤ |γ(t)| = M |t|. Thus f ∈ Kγ,V (C
∞(Ω),C) and f is continuous because

ξλ → ξ in C∞(Ω) implies ξλ(y) → ξ(y) and f(ξλ) = g(ξλ(y)) → g(ξ(y)) = f(ξ) by Lemma 4.2,

that is, f ∈ C∞(Ω)[γ,V ].

Let y0 ∈ Ω, y0 ̸= y. Pick a θ > 0 such that K =
{
x ∈ Rn : |x − y0| ≤ θ

}
⊂ Ω\{y}.

Then for every ξ ∈ C∞(K) we have ξ(y) = 0 and f(ξ) = g(ξ(y)) = g(0) = 0. This shows that

y0 ̸∈ supp f , supp f ⊂ {y}. If G is an open set in Rn such that y ∈ G ⊂ Ω, then there is a

X ∈ C∞
0 (G) such that 0 < |X (y)| ≤ ε. By Lemma 4.2, f(X ) = g(X (y)) ̸= 0 so y ∈ supp f and

supp f = {y}.
Let K ⊂ Ω be compact. If y ∈ K and ξ ∈ C∞(K) then there is a p ∈ N such that | ξ(y)pε | < 1

and∣∣f(ξ)∣∣ = ∣∣g(ξ(y))∣∣ = ∣∣g(pξ(y)
pε

ε
)∣∣ = ∣∣g[(p− 1)

ξ(y)

pε
ε+

ξ(y)

pε
ε
]∣∣ = ∣∣g[(p− 1)

ξ(y)

pε
ε
]
+ s1g(ε)

∣∣
· · · · · ·

=
∣∣g(ξ(y)

pε
ε) + sp−1g(ε) + · · ·+ s1g(ε)

∣∣
=

∣∣spg(ε) + sp−1g(ε) + · · ·+ s1g(ε)
∣∣ = ∣∣ p∑

v=1

sv
∣∣∣∣g(ε)∣∣,

where each |sv| ≤ |γ( ξ(y)pε )| = M |ξ(y)|
pε so |

∑p
v=1 sv| ≤

∑p
v=1 |sv| ≤ pM |ξ(y)|

pε = M
ε |ξ(y)|. Then∣∣f(ξ)∣∣ ≤ M

ε

∣∣g(ε)∣∣∣∣ξ(y)∣∣ ≤ M

ε

∣∣g(ε)∣∣ sup
K

∣∣ξ∣∣ = M

ε

∣∣g(ε)∣∣ sup
K

∣∣∂0ξ
∣∣.

If y ̸∈ K, ξ ∈ C∞(K) then ξ(y) = 0 and
∣∣f(ξ)∣∣ = ∣∣g(ξ(y))∣∣ = ∣∣g(0)∣∣ = 0 ≤ M

ε

∣∣g(ε)∣∣ supK ∣∣∂0ξ
∣∣.

Thus, f is of order 0. Moreover, the constant M
ε |g(ε)| is available for all compact K ⊂ Ω. �

Corollary 4.5. Let M ≥ 1, γ(t) = Mt for t ∈ C. If f ∈ C∞(Ω)[γ,V ] is of order 0 and supp f

= {y}, then there exist ε > 0 and g ∈ KM,ε(C,C) such that f(ξ) = aξM
g(ε)
ε ξ(y), ∀ ξ ∈ C∞(Ω),

where |aξ| ≤ 1. Hence, A = M | g(ε)ε | > 0 and |f(ξ)| ≤ A|ξ(y)|, ∀ ξ ∈ C∞(Ω).
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Corollary 4.6. Let M ≥ 1, γ(t) = Mt for t ∈ C. If f ∈ C∞(Ω)[γ,V ] is of order 0 and

supp f = {y}, then f is Lipschitz, that is, there is a A > 0 such that∣∣f(ξ)− f(η)
∣∣ ≤ A

∣∣ξ(y)− η(y)
∣∣, ∀ ξ, η ∈ C∞(Ω), and

∣∣f(ξ)∣∣ ≤ A
∣∣ξ(y)∣∣, ∀ ξ ∈ C∞(Ω).

For z = (z1, · · · , zm) ∈ Cm let |z| =
√
|z1|2 + · · ·+ |zm|2 and KM,ε(Cm,C) =

{
g ∈ CCm

:

g(0) = 0; for z, u ∈ Cm with |u| ≤ ε and t ∈ C with |t| ≤ 1, g(z + tu) = g(z) + sg(u) where

|s| ≤ M |t|
}
. For g ∈ KM,ε(Cm,C) and 1 ≤ j ≤ m define gj : C → C by gj(w) = g((0, · · · , 0,

(j)
w

, 0, · · · , 0)), ∀w ∈ C, then gj ∈ KM,ε(C,C).
If k ∈ N then

{
multi-index α : |α| ≤ k

}
is a finite set

{
α1, α2, · · · , αmk

}
which is lexico-

graphically ordered such that α1 = (0, · · · , 0), α2 = (0, · · · , 0, 1), · · · , αmk
= (k, 0, · · · , 0), and

we can write (zα1 , zα2 , · · · , zαmk
) = (zα)|α|≤k in Cmk .

Theorem 4.7. Let M ≥ 1, γ(t) = Mt for t ∈ C. If f ∈ C∞(Ω)[γ,V ] is of order k and

supp f = {y}, then there exist ε > 0 and g ∈ KM,ε(Cmk ,C) such that

f(ξ) = g
((

∂αξ(y)
)
|α|≤k

)
, ∀ ξ ∈ C∞(Ω).

Proof. Letting ηα = (• − y)α/(α!) for |α| ≤ k, we have f(ξ) = f
(∑

|α|≤k ∂
αξ(y)ηα

)
, ∀ ξ ∈

C∞(Ω) by Cor. 4.3. Pick a U ∈ N (C∞(Ω)) for which

(mk)︷ ︸︸ ︷
U + U + · · ·+ U⊂ V . There is an ε > 0

such that uηα ∈ U when u ∈ C with |u| ≤ ε and |α| ≤ k. Hence∑
|α|≤k

uαηα ∈
mk︷ ︸︸ ︷

U + U · · ·+ U⊂ V, ∀ (uα)|α|≤k ∈ Cmk with |(uα)|α|≤k| ≤ ε.

Define g : Cmk → C by

g
((

zα
)
|α|≤k

)
= f

( ∑
|α|≤k

zαηα

)
, ∀ (zα)|α|≤k ∈ Cmk .

Then for (zα)|α|≤k, (uα)|α|≤k ∈ Cmk with |(uα)|α|≤k| ≤ ε and t ∈ C with |t| ≤ 1,
∑

|α|≤k uαηα ∈
V and

g
((

zα
)
|α|≤k

+ t
(
uα

)
|α|≤k

)
= g

((
zα + tuα

)
|α|≤k

)
= f

( ∑
|α|≤k

(
zα + tuα

)
ηα

)
= f

( ∑
|α|≤k

zαηα + t
∑
|α|≤k

uαηα

)
= f

( ∑
|α|≤k

zαηα

)
+ sf

( ∑
|α|≤k

uαηα

)
= g

((
zα

)
|α|≤k

)
+ sg

((
uα

)
|α|≤k

)
,

where |s| ≤ |γ(t)| ≤ M |t|.
Thus g ∈ KM,ε(Cmk ,C) and f(ξ) = f(

∑
|α|≤k ∂

αξ(y)ηα) = g((∂αξ(y))|α|≤k), ∀ ξ ∈ C∞(Ω). �

Theorem 4.8. Let M ≥ 1, γ(t) = Mt for t ∈ C. If f ∈ C∞(Ω)[γ,V ] is of order k and

supp f = {y}, then there exists
{
gα : α is a multi-index, |α| ≤ k

}
⊂ KM,ε(C,C) such that

f
[
z(• − y)α/(α!)

]
= gα(z), ∀ |α| ≤ k, z ∈ C,

f(ξ) = M
∑
|α|≤k

aα,ξ
gα(ε)

ε
∂αξ(y), ∀ ξ ∈ C∞(Ω),
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where all |aα,ξ| ≤ 1.

Proof. Letting ηα = (• − y)α/α! for |α| ≤ k, we have f(ξ) = f
(∑

|α|≤k ∂
αξ(y)ηα

)
, ∀ ξ ∈

C∞(Ω) by Cor. 4.3. There is an ε > 0 such that uηα ∈ V for all u ∈
{
z ∈ C : |z| ≤ ε

}
and

|α| ≤ k. We write
{
α : |α| ≤ k

}
=

{
α1, α2, · · · , αm

}
.

Let ξ ∈ C∞(Ω) and pick a p ∈ N such that |∂
αξ(y)
pε | < 1 when |α| ≤ k. Then

f(ξ) = f
( m∑

j=1

∂αjξ(y)ηαj

)
= f

(m−1∑
j=1

∂αjξ(y)ηαj + p
∂αmξ(y)

pε
εηαm

)

= f
(m−1∑

j=1

∂αjξ(y)ηαj

)
+
( p∑
v=1

sv
)
f(εηαm),

where each |sv| ≤ M |∂
αmξ(y)
pε | so |

∑p
v=1 sv| ≤ pM |∂

αmξ(y)
pε | = M

ε |∂αmξ(y)|.

Define gαm : C → C by gαm(z) = f(zηαm), ∀ z ∈ C. For z, u, t ∈ C with |u| ≤ ε and |t| ≤ 1,

uηαm ∈ V and gαm(z + tu) = f(zηαm + tuηαm) = f(zηαm) + sf(uηαm) = gαm(z) + sgαm(u)

where |s| ≤ |γ(t)| = M |t|. Thus, gαm ∈ KM,ε(C,C) and∣∣∣( p∑
v=1

sv
)
f(εηαm

)
∣∣∣ = ∣∣∣( p∑

v=1

sv
)
gαm

(ε)
∣∣∣ ≤ M

∣∣∣gαm(ε)

ε
∂αmξ(y)

∣∣∣.
Hence there is an aαm,ξ ∈ C such that |aαm,ξ| ≤ 1 and

(
∑p

v=1 sv)f(εηαm) = aαm,ξM
gαm (ε)

ε ∂αmξ(y).

In this way, we have

f(ξ) = f
(m−1∑

j=1

∂αjξ(y)ηαj

)
+ aαm,ξM

gαm(ε)

ε
∂αmξ(y)

= f
(m−2∑

j=1

∂αjξ(y)ηαj

)
+ aαm−1,ξM

gαm−1(ε)

ε
∂αm−1ξ(y) + aαm,ξM

gαm(ε)

ε
∂αmξ(y)

· · · · · ·

=

m∑
j=1

aαj ,ξM
gαj (ε)

ε
∂αjξ(y) = M

∑
|α|≤k

aα,ξ
gα(ε)

ε
∂αξ(y),

where all |aα,ξ| ≤ 1. �

It is similar to Cor. 4.5 that we have

Corollary 4.7. Let M ≥ 1, γ(t) = Mt for t ∈ C. If f ∈ C∞(Ω)[γ,V ] is of order k and

supp f = {y}, then f has the following properties.

(1) If |α| ≤ k and f [z0(• − y)α/(α!)] ̸= 0 for some z0 ∈ C, then there exists an ε > 0 such

that f [z0(•−y)α/(α!)] ̸= 0 when 0 < |z| ≤ ε, that is, the equation f [z0(•−y)α/(α!)] = 0, |z| ≤ ε

has the unique solution z = 0. Hence if |α| ≤ k and there is {zv} ⊂ C such that each zv ̸= 0,

zv → 0 and each f [zv(• − y)α/(α!)] = 0, then f [z(• − y)α/(α!)] = 0 for all z ∈ C.

(2) If |α| ≤ k, then f [z(• − y)α/(α!)] is Lipschitz, that is, there is an Aα > 0 such that
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|f [z(• − y)α/(α!)]− f [u(• − y)α/(α!)]| ≤ Aα|z − u|, ∀ z, u ∈ C. In particular, we have∣∣∣f[∂αξ(y)(• − y)α/(α!)
]
− f

[
∂αη(y)(• − y)α/(α!)

]∣∣∣ ≤ Aα

∣∣∂αξ(y)− ∂αη(y)
∣∣, ∀ ξ, η ∈ C∞(Ω).
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