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Gompertz PSO variants for Knapsack and
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Abstract. Particle Swarm Optimization, a potential swarm intelligence heuristic, has been

recognized as a global optimizer for solving various continuous as well as discrete optimization

problems. Encourged by the performance of Gompertz PSO on a set of continuous problems,

this works extends the application of Gompertz PSO for solving binary optimization problems.

Moreover, a new chaotic variant of Gompertz PSO namely Chaotic Gompertz Binary Particle

Swarm Optimization (CGBPSO) has also been proposed. The new variant is further analysed for

solving binary optimization problems. The new chaotic variant embeds the notion of chaos into

GBPSO in later stages of searching process to avoid stagnation phenomena. The efficiency of

both the Binary PSO variants has been tested on different sets of Knapsack Problems (KPs): 0-1

Knapsack Problem (0-1 KP) and Multidimensional Knapsack Problems (MKP). The concluding

remarks have made on the basis of detailed analysis of results, which comprises the comparison of

results for Knapsack and Multidimensional Knapsack problems obtained using BPSO, GBPSO

and CGBPSO.

§1 Introduction

Many of the real world problems such as scheduling, assignment, ordering of discrete ele-

ments, planning and selection etc. encountered in engineering and industrial fields are often

formulated as combinatorial optimization problems. In general, the combinatorial problems are

formulated as NP-hard problems which due to their complex nature require extra computa-

tional efforts to obtain the desired solution. The basic PSO was designed to solve optimization

problems having continuous variables but later on the research has also been extended to the

discrete or binary valued problem spaces. As an initiative, [7] proposed the first discrete version

of PSO for binary problems. In the basic binary PSO, the search process remains same as in

the continuous version but the position update rule turns to a binary number generator in the
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case of a binary PSO. The velocity is used as a probability threshold to determine whether xid,

the dth component of xi, should be evaluated as 0 or as 1. To get the required value of variables

as 0 or 1, a mapping rule is need to be defined between each νid to probability in the range [0,

1]. The above need is fulfilled by utilizing a function called sigmoid function ‘which generates

values in the range [0,1]. The position updating rule for binary PSO is given by

xid (t+ 1) =

1, if U(0, 1) < sigm(νid(t))

0, otherwise
(1)

where

sigm (νid) =
1

1 + exp (−νid)
is sigmoid function, U(0, 1) is a quasi random number in the range [0, 1]. It is obvious from

equation (1) that xid will remain 0 if sigm(νid) = 0 (for convenience the time scripts are

dropped). This happens when either νid < −10 or νid > 10. To overcome this situation it is

suggested to set νid ∈ [−4, 4] and to use velocity clamping with Vmax = 4.

Literature Review: Several studies have proposed new amendments by integrating bi-

nary PSO with different concepts for solving binary optimization problems. In the variant,

suggested by [11], rather than directly encoding bit strings within the particles, every particle

hold on the small range of trigonometric coefficients (angle modulation) that was then run to

get bit strings. An amalgamation of Binary PSO and continuous PSO with real encoding was

introduced by [12] for solving unit commitment problem. The part of unit comment problem

was handled by binary PSO and the other part of problem, economic load dispatch problem,

was dealt with real PSO. [8] proposed a new velocity updating rule by defining it as the prob-

ability to change in particles state from its previous state to its complement value. It was

observed that the new proposed model provided better interpretation of continuous PSO into

discrete version as compared to older studies. Many of the real world problems are modeled

as combinatorial optimization problems which attracted the attention of researchers towards

the timely modifications in Binary PSO. [6] studied and analyzed the behavior of Binary PSO

with the motive of paving a path for creating a faster and simpler discrete version by making

changes in representation. They disassemble the algorithm qualitatively, breaking it into its

essential additives and then reinterpreting them in different approaches as new easy and reliable

algorithm namely Essential Particle Swarm. [5] inserted the concept of mutation to propose

a new variant namely generalized binary PSO which exploits the benefits of sigmoid as well

as linear function and a logical mutation operator was also proposed to escape local optima.

The concept of chaos is not new as the randomness produced by chaotic maps was observed

as a good alternative to introduce randomness in the algorithm whenever required. So far,

many studies have reported the implementation of chaotic maps into PSO for solving problems

from various fields such as science, engineering and industries. These studies shows that the

concept of chaos is helping PSO algorithm in different ways to enhance its performance. The

robustness of PSO keeps motivating researchers at times to explore its applications in dealing

the complexity involved in feature selection problems. [10] embedded logistic map and tent map
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for selecting inertia weight to develop a new chaotic BPSO variant and solving feature selection

problem successfully. [14] presented a new Chaotic PSO by introducing mutation operator and

chaotic sequences for overcoming the problem of stagnation when the algorithm explores local

search valleys and got stuck there only causing faster convergence to a false or local optima. [2]

developed a new chaotic PSO MOPSO for solving the optimization of pavement maintenance

management. They had considered multiple objectives as minimizing the maintenance cost

while maximizing the pavement performance. The study claimed to be the first method who

combined crossover operation with velocity rule and embedded multi objective PSO algorithm

with position updating rule. A study by [15] investigates chaotic PSO namely Chaotic Restart

Binary Particle Swarm PSO (ChResBPSO) to the problem of feature selection. This study

suggested the addition of new particles using prior information about global best particle to

avoid the stagnation phenomena. Further, the best chaotic map was found by replacing the

main parameters of PSO from various chaotic systems. The problem of biometric identification

system was addressed by [21]. The authors incorporated chaos in binary PSO and developed a

new modified chaotic binary particle swarm optimization for selecting features.

The present study analyses the efficiency of Gompertz PSO for solving binary (0-1) op-

timization Problems. Gompertz PSO was proposed by [4] with a new concept of replacing

the regular sigmoid function by a more qualitative function namely Gompertz function. The

diversified nature of Gompertz function and embodiment in PSO fascinated researchers for ap-

plication of Gompertz PSO for dealing problems arising in different fields e.g. process plans

scheduling [3], Automobile engineering [1] etc. Moreover, the present study also proposes a new

chaotic variant of Gompertz by embedding the idea of chaos at later stages of search when the

algorithm works on solution refinement and thus the chance of being stucked in the local vallies

becomes higher. The organization of rest of the paper is as: Section 2 presents Gompertz PSO

and Chaotic Gompertz PSO. The Numerical studies are presented in Section 3. Results are

discussed and analyzed in Section 4. The paper ends with concluding remarks in Section 5.

§2 PROPOSED BINARY PSO VARIANTS

This section provides a brief introduction to Gompertz PSO and a detailed description of

newly proposed chaotic variant namely Chaotic Gompertz PSO.

2.1 Gompertz Binary Particle Swarm Optimization (GBPSO)

The Gompertz PSO was developed by [4] to overcome the drawbacks of basic binary PSO.

The main drawback of BPSO is the shape of the sigmoid function trajectory which serves the

purpose of a probability generating function for deciding the bit change from 0 to 1 or vice-

versa. Due to the S-shape of sigmoid function, for some larger velocity (νid ) values the changing

probability decreases for one bit and increases for the other bit. The biased probabilities result

in the generation of new particles with almost same pattern. This results in the decrease of

population diversity and provides low exploration for bigger velocity values. Thus for a more
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Figure 1. Behaviour of Gompertz function with a = 1 and varying parameters b and c.

diversified search, there is a scope for improving the searching capability of BPSO. Gompertz

function is a special type of function that can be made to behave as a sigmoid function as

well as a linear function by controlling its parameters. The basic sigmoid function in BPSO

leads to explore the search space thoroughly in initial stages, but also has the drawback of

being stagnated in later stages. This is because as the search progresses, there is a decrease

in diversity which restricts its capability of finding efficient new solutions. Furthermore, the

linear function provides fair chances to search the space in later stages and producing a more

diversified population. It is observed that we can control the parameters of Gompertz function

to exploit the benefits of sigmoid as well as linear function as per the requirement of algorithm.

The basic expression of Gompertz function is as:

Gmpz(x) = a ∗ exp(b ∗ exp(cx)) (2)

where, a : upper asymptote; b: (controls) the displacement of x; c: controls the growth rate

(x scaling) or steepness of graph; a: upper asymptote. The parameters b and c are negative

numbers and the a=1 (to produce values in range [0,1]). The parameters b and c are variables

and fine tuned to exploit the attributes of sigmoid, semi-sigmoid and linear functions. The

change in behaviour of Gompertz function with the variation of parameters b, c with a = 1

is demonstrated in Figure 1. Variation of Parameter b: In BPSO, it is observed that the

probability for changing a bit from 0 to 1 or vice-versa, at the velocities near zero is 0.5.

While in Gompertz function this probability can be increased or decreased in the range (0, 1)

by manipulating parameter b appropriately. It is observed that by changing b while keeping

other parameters fixed as: a=1 and c= -1, the scale of the function trajectories changes, which

represent the change in probability of generating binary numbers 0, 1. The parameter b could

be increased in the [-2.0. -0.2] or decreased in the range [-0.2, -2.0]. The value of parameter b

depends on the chosen problem. The following relation controls the variation of parameter b.

b(t) = −

{
0.2 + (2.0− 0.2) ∗ Current iteration

Maximum no of iterations

}
(3)



Pinkey Chauhan, et al. Gompertz PSO variants for Knapsack and Multi-Knapsack... 615

Variation of Parameter c: The suggested variation of parameter c is based on the effect of c

on the steepness of the function i.e., the shape of function changes from sigmoid to linear as c

varies. The value of parameter c is changed in the range [−0.2,−1.5] using the relation given

below:

c(t) = −

{
0.2 + (1.5− 0.2) ∗ Current iteration

Maximum no of iterations

}
(4)

2.2 CHAOTIC GOMPERTZ BINARY PSO (CGBPSO)

In the present study, GBPSO is further modified by exploiting the properties of chaotic

dynamic systems into GBPSO. GBPSO has two parameters to handle with, which sometimes

slows down the searching process and decreases the convergence rate. In order to maintain

a good convergence rate, chaos is embedded into GBPSO and the resultant variant is called

CGBPSO.

2.2.1 Chaos Generation

Chaotic maps are known for their unpredictable behavior and ergodic properties which can

disturb any given system by producing chaotic randomness. In general terms Chaos refers to a

state of disorder. A dynamical system is said to exhibit chaotic characteristics if it is sensitive

to its initial conditions and parameters. Sensitivity to the initial condition signifies that each

point in such a system is closely approximated by other points. Thus, an arbitrarily small

perturbation in the initial conditions may lead to significantly different future behaviour. This

entails that the nature of chaos is apparently random and unpredictable. Many chaotic maps

have been described in literature so far, but here in the present study Logistic map is selected

to produce chaos in particle positions. In the present work, different chaotic maps like logistic,

tent, Henon and piecewise linear map were analysed and it was observed that logistic map gave

best results for dealing with binary variables considered in this chapter.

Logistic Map: The Logistic map can be expressed as:

Xn+1 = αXn ∗ (1−Xn) (5)

where, Xn ∈ (0, 1) and α is a positive number which is also known as bifurcation parameter.

The system displays different behaviors such as stable, periodic, non-periodic and chaotic for

distinct values of α. The chaotic behavior of logistic map for α = 4 is of our interest.

2.2.2 Chaos Embedded Binary PSO

The chaos generated using Logistic map is embedded in GBPSO after certain number of

iterations have been elapsed. The rationale of applying chaos is to prevent swarm particles

from getting entrapped in a local optimizer and accelerating the convergence rate as search

progresses. It is expected that perturbing the particles with the help of chaos after a certain

number of iterations, will prevent the particles from getting stuck in some region (probably a
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local optimizer). In CGBPSO, chaos is introduced after 75% of the max number of iterations

have elapsed. The modified searching procedure of CGBPSO is described Algorithm 1.

Algorithm 1 Chaotic Gompertz Binary PSO

BEGIN
Create and Initialize a D-dimensional swarm, S
for t = 1 to the maximum bound on the number of iterations do

for i = 1 to S do
for d = 1 to D do

Apply the velocity using basic velocity update equation
Update Position using equation as:
Calculate b iteration wise using equation (3.2)
Calculate c iteration wise using equation (3.3)
Calculate Gmpz(νid) using equation (3.1)
if t ≤ 75% of Max iter then

Generate Binary positions as:

xid (t+ 1) =

{
1, if U(0, 1) < Gmpz(νid(t))

0, otherwise

else if no improvement is observed in global best position for 10% of left iterations
then

Create Chaos using equation (3.4)
Add Perturbation to particles positions as
Perturbation = Gmpz(νid) * Chaos

xid (t+ 1) =

{
1, if U(0, 1) < Perturbation

0, otherwise

end if
end for
Compute fitness of updated position;
Update historical information for Pi and Pg;

end for
Terminate if Pg meets problem requirements;

end for
END

§3 TESTING WITH BENCHMARK PROBLEMS

The proposed variants are validated on a set of 0-1 knapsack and multidimensional knapsack

problems. Parameter settings taken for the algorithms and a description of knapsack problems

are given in detail in the following subsections.
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3.1 Performance Evaluation Criteria

Binary benchmarks problems from literature are considered and solved to analyze the per-

formance of proposed variants. For all the considered problems the global optima are known.

To test the efficiency of PSO variants for solving binary problems, the termination criteria is

set to maximum number of iterations or when the known optimum is within 99% of accuracy,

whichever occurs earlier. The maximum number of iterations allowed is 500 for considered

continuous problems while for multi knapsack problems it varies from 500 to 1000 based on

dimension of problem, for problems having dimension from up to 50, maximum iterations are

taken to be 500 and for higher dimensions it is set to 1000. A run in which the algorithm

finds a solution satisfying fmin − fopt ≤ 0.01, where fmin is the best solution found when the

algorithm terminates and fopt is the known global minimum of the problem, is considered to

be successful. For each method and problem, results are recorded for following criteria:

Success Rate (SR) = Number of Suuccessful runs
Total number of runs

× 100; Average number of function eval-

uation (AFE)

Average Error (AE) =
∑

n(fmin−fopt)

n , Where, n is the total number of runs ; Average

Computational time over n runs; Standard Deviation of Error over n runs; Minimum error over

n runs.

Parameter Settings: The algorithm parameters are set as: The Swarm size S is set to

5*number of variables; The cognitive and social scaling parameters c1 and c2 are 2.8 and 1.3,

respectively; Maximum velocity Vmax is set equal to 4; Termination criteria: The algorithm will

be terminated if it runs upto maximum number of iterations (1000) or minimum error is less

than 0.01; The total number of Runs is set to 100. Further, the performance evaluation criteria

include Average error, Minimum error, Standard deviation and Average function evaluations.

The results are recorded in tabular form and also presented using box plots.

3.2 Standard Binary (0-1) Problems: Knapsack Problems

Knapsack problems (KP) belongs to the category of NP-Hard problems in the field of com-

binatorial optimization. These combinatorial problems have also been studied extensively due

to the complexity and its immediate applications in various disciplines. KP’s family needs to

choose a subset from the given items that maximizes the corresponding profit while the total

cost/weight of chosen items doesnt exceed the capacity of given Knapsack (s). Knapsack Prob-

lems are divided into different types based on the distribution of items and available knapsack

(s).

• 0-1 Knapsack Problem: In this category of problems, we can not choose any item more

than one time. So if we choose an item then the variable will take value 1 otherwise 0.

• Bounded Knapsack Problem:In this category of problems, we can choose any item

more than one time. So the corresponding variable will take an integer value based on

the number of times an item is chosen.
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• Multiple Choice Knapsack Problem: In this category of problems, items are subdi-

vided into some finite number of classes and exactly one item must be taken from each

class.

• Multidimensional Knapsack Problem: In this category of problems, there are more

than one knapsacks with defined capacities and each of the knapsack has to be filled

simultaneously.

3.2.1 0-1 Knapsack Problem

If there are n items, with each item i having an integer profit pi and an integer weight

wi. The optimization problem is to choose the number of items such that the total profit

is maximized and the total weight does is less than or equal to a given capacity C. The

mathematical formulation of problems is given by

Maximize g(x) =
n∑

j=1

pjxj (6)

subject to
∑n

j=1 wjxj ≤ C; xj ∈ {0, 1} j = 1, 2, ...n

where, xj are the binary decision variables which indicate whether item j is selected for

filling the knapsack or not. Here it is assumed that all profits and weights are positive and

all weights are smaller than the capacity C so each item fits into the knapsack, and the total

weight of the items exceeds the capacity C to ensure a nontrivial problem.

3.2.2 Multidimensional Knapsack Problem

An important generalization of 0-1 knapsack problem is NP-Hard Multidimensional Knap-

sack Problem. It comprises of choosing a subset of the given articles (or items) so that the total

profit (value) of the chosen objects is maximized while a set of imposed limitations are fulfilled.

The mathematical model is as follows:

Maximize f(x) =
n∑

j=1

pjxj (7)

subject to
∑n

j=1 wj,kxj ≤ Ck; ∀ k = 1, 2, ...,m; wj,k ≥ 0, Ck ≥ 0, ∀ k = 1, 2, ...,m;

xj ∈ {0, 1} j = 1, 2, ...n

where n is the number of objects, m is the number of knapsack constraints with capacities

Ck, pj represents the benefit of the object j in the knapsack, xj is a binary variable that

indicates xj = 1 if the object j has been stored in the knapsack and xj = 0, if it remains out,

and wj,k represents the entries of the knapsack’s constraints matrix.

§4 RESULTS AND DISCUSSIONS

In order to verify the feasibility and effectiveness of GBPSO and CGBPSO variants for

solving complex binary valued problems, both the variants are tested on standard set of 0-1

Knapsack and Multidimensional Knapsack Problems. The binary instances are picked from
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publicly available library (Beasley, OR Library) and other online sources. The results recorded

for considered binary problem set are analyzed and discussed in this section.

4.1 Results for 0-1 Knapsack Problems

First set of 0-1 KP consists of 25 instances taken from http://www.math.mtu.edu/ kre-

her/cages/Data.html,. The instances are also used by [17]. In these instances, the number

of items range between 8 to 24. All these instances are randomly generated so the optimum

solution is not known in advance. Due to unknown global optima, the results of BPSO, GBP-

SO and CGBPSO are compared on the basis of maximum profit over 100 runs (MAXPFT)

and average profit (AVPFT) of 100 runs. The total weight gap (in percentage) in case of maxi-

mum profit is WHTGP =

[
weight limit - weight when the maximum profit is reported

weight limit

]
×100

The second set of KP instances is taken from http://www.cs.colostate.edu/ cs575dl /assign-

ments/assignment5.html and [13] with number of items ranging between 10 to 500. The above

considered instances are not generated randomly so the optimum solution for these instances

is known. The performance analysis of considered algorithms has been done on various perfor-

mance aspects. The Average Error (AE) and the Standard deviation (SD) are computed for

feasible solutions only. Numerical results recorded for considered algorithms are summarized in

Table 1. It is observed that the performance in terms of finding Maximum profit (MAXPFT)

over 100 runs for all the algorithms is same. Further, the maximum profit results leads to same

value of the WHTGP for all the algorithms. Through AVPFT, a remarkable difference between

the two algorithms can be observed. In all the instances AVPFT of GBPSO and CGBPSO is

greater than that of BPSO. A statistical view in terms of box plots as shown in Figure 2(a) is

more appropriate to see the improvement of GBPSO and CGBPSO over BPSO. In Figure 2(a),

box plots of BPSO, GBPSO and CGBPSO are plotted for difference (MAXPFT -AVPFT). The

box plot of GBPSO and CGBPSO are close to zero and has less height than that of BPSO.

This shows that the minimum value, median, maximum value, quartiles and standard deviation

of the difference discussed above are least for GBPSO and CGBPSO as compared to BPSO,

which shows the superiority of GBPSO and CGBPSO over BPSO. But when it comes to select

the best performer among the three versions the analysis shows that GBPSO performs better

than CGBPSO and BPSO. The analysis of SD (PFT) for GBPSO, CGBPSO and BPSO is also

performed via box plots shown in Figure 2(b). The figure shows that box plots of GBPSO and

CGBPSO has less height than that of BPSO which predicts that both the proposed methods

are superior over standard version. The order of performance is as: CGBPSO > GBPSO >

BPSO.

The numerical results for the problem set II are given in Table 2. It is evident that GBPSO

and CGBPSO has higher success rate for all considered instances which shows that CGBPSO

and GBPSO are more reliable than BPSO. While averagely GBPSO performs better than

CGBPSO and BPSO on reliability aspects. The average number of function evaluations (AFE)

are also least for GBPSO and CGBPSO for considered instances except instance 2. The results
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Figure 2. Box plots of BPSO, GBPSO and CGBPSO for problem set I of 0-1 Knapsack prob-
lems.

Figure 3. Box plots of BPSO, GBPSO and CGBPSO for problem set II of 0-1 Knapsack
problems.

show that GBPSO performs comparatively better than CGBPSO and BPSO for these instances.

It is also observed that CGBPSO performs better over GBPSO and BPSO from the standpoint

of LE, AE and SD, which reflects the higher accuracy of CGBPSO than GBPSO and BPSO. A

comparative analysis of BPSO, GBPSO and CGBPSO can be seen at a glance using box plots.

The box plots of BPSO, GBPSO and CGBPSO for all comparison criteria are shown in Figure

3, which predict that GBPSO and CGBPSO are more efficient than BPSO in almost all criteria

considered here for 0-1 KP.

4.2 Results for Multidimensional Knapsack Problems

All the three binary variants, BPSO, GBPSO and CGBPSO are tested on two groups of

MKP benchmarks selected from [21]. The first group corresponds to series sento [18] and weing

[17]. This group contains 10 instances and the number of items are ranging between 28 to

105. The second group corresponds to weish [20] contains 38 instances and the number of

items are ranging between 20 to 90. Since MKP instances whose optimal solution is known

are considered here, therefore the comparison among BPSO, GBPSO and CGBPSO is carried

out on the basis of considered performance aspects. The experimental results for first set of

MKP instances obtained using BPSO, GBPSO and CGBPSO are shown in Table 3. It is clear

from the results that GBPSO and CGBPSO are more reliable than BPSO as the success rate
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Figure 4. Box plots of BPSO, GBPSO and CGBPSO for problem set I of Multidimensional
Knapsack problems.

Figure 5. Box plots of BPSO, GBPSO and CGBPSO for problem set II of Multidimensional
Knapsack problems.

(SR) for both the methods are higher than that of BPSO for all the 10 instances. The further

analysis shows that CGBPSO performs better over GBPSO on 7 instances which indicate the

reliability of CGBPSO over GBPSO and BPSO. The average number of function evaluations

(AFE) for CGBPSO are also less than that of BPSO and GBPSO for 9 instances indicating

capability of CGBPSO of giving solution faster. The results indicate that CGBPSO is able to

provide better quality solution for MKP as AE, LE and SD is least for CGBPSO in most of

the instances. An overall strength of CGBPSO with respect to GBPSO and BPSO can be seen

from box plots shown in Figure 4. The box plots of BPSO, GBPSO and CGBPSO for SR,

AFE, AE and SD are shown in Figure 4.

Numerical results for the second problem set of MKP problems are shown in Table 4. Due

to the complexity of MKP problems, some runs are successful while others provide infeasible

solution. The number of infeasible solutions are also recorded and depicted in Table 4. Further,

Figure 5 shows the box plot for problem set II of MKP. It is obvious from Table 4 and Figure 5

that CGBPSO is better in reliability, accuracy and computational cost than BPSO and GBPSO
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for considered MKP problems.

§5 CONCLUSION AND FUTURE SCOPE

In this study, the performance of two new PSO variants namely GBPSO and CGBPSO is

analyzed for solving knapsack problems and the results are compared with Basic Binary PSO.

The conclusions that can be made are as follows:

1. The simulation results show that the use of Gompertz function is a useful strategy for

generating random numbers. This strategy can be used in any evolutionary algorithm

dealing with binary variables.

2. It is also observed that by including the component of chaos, the performance of the

proposed scheme can be further improved.

3. It can be seen from the numerical results that CGBPSO outperforms GBPSO and BPSO,

while GBPSO dominates BPSO in terms of reliability, cost and quality of solution.

Future Scope: In the present study, logistic map has been used to introduce randomness in

the algorithm but other chaotic maps could be used and analyzed for solving knapsack /multi

knapsack/ binary/combinatorial optimization problems. Apart from that we could also use

chaotic maps to generate initial population or handling inertia weight. We could also analyze

the performance of proposed variants for solving more complex real world problems.

Table 1. Comparative results of Problem Set I of 0-1 Knapsack problems.

Sr. No. Method AVPFT SD(PFT) MAXPFT WHTGP

BPSO 3923910.4 2398.54035 3924400 1.990950

1 GBPSO 3924400 0.0 3924400 1.990950

CGBPSO 3924400 0.0 3924400 1.990950

BPSO 3813669 0.0 3813669 0.718926

2 GBPSO 3813669 0.0 3813669 0.718926

CGBPSO 3813669 0.0 3813669 0.718926

BPSO 3330096.12 50734.457 3347452 0.654025

3 GBPSO 3347452 0.0 3347452 0.654025

CGBPSO 3347452 0.0 3347452 0.654025

BPSO 4187707 0.0 4187707 2.9984

4 GBPSO 4187707 0.0 4187707 2.9984

CGBPSO 4187707 0.0 4187707 2.9984

BPSO 4945710.8 29532.688 4955555 2.050978

5 GBPSO 4955555 0.0 4955555 2.050978

CGBPSO 4955555 0.0 4955555 2.050978
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BPSO 5687400.42 4647.9076 5688887 0.255774

6 GBPSO 5688887 0.0 5688887 0.255774

CGBPSO 5688887 0.0 5688887 0.255774

BPSO 6489864.92 22147.9339 6498597 0.063608

7 GBPSO 6494504.52 9377.049690 6498597 0.063608

CGBPSO 6495527.64 8311.86617 6498597 0.063608

BPSO 5169014.7 7356.64603 5170626 0.763310

8 GBPSO 5170626 0.0 5170626 0.763310

CGBPSO 5170626 0.0 5170626 0.763310

BPSO 6992144.26 1028.0805 6992404 0.587572

9 GBPSO 6992404 0.0 6992404 0.587572

CGBPSO 6992404 0.0 6992404 0.587572

BPSO 5329229.56 24533.539352 5337472 0.218656

10 GBPSO 5336513.96 6706.280 5337472 0.218656

CGBPSO 5337472 0.0 5337472 0.218656

BPSO 7844795.52 11102.9805 7850983 0.236724

11 GBPSO 7849118 6443.2234 7850983 0.236724

CGBPSO 7848738.8 6866.3346 7850983 0.236724

BPSO 9350438.98 12054.1785 9352998 0.015315

12 GBPSO 9352787.52 1031.1372 9352998 0.015315

CGBPSO 9352577.04 1427.54481 9352998 0.015315

BPSO 9138502.34 21021.3510 9151147 0.603824

13 GBPSO 9149141.54 8503.477 9151147 0.603824

CGBPSO 9149633.96 7868.7891 9151147 0.603824

BPSO 9338324.36 16185.4586 9348889 0.331975

14 GBPSO 9344369 7825.50823 9348889 0.331975

CGBPSO 9343060.34 11071.5220 9348889 0.331975

BPSO 7765397.78 7058.6312 7769117 0.201440

15 GBPSO 7768447.66 3300.8555 7769117 0.201440

CGBPSO 7768150.84 3849.0652 7769117 0.201440

BPSO 10722026.5 9783.64635 10727049 0.057470

16 GBPSO 10725040.42 6998.4238 10727049 0.057470

CGBPSO 10725287.36 6494.459 10727049 0.057470

BPSO 9811395.88 17724.2421 9818261 0.203017

17 GBPSO 9815731.42 10067.8158 9818261 0.203017

CGBPSO 9815306.14 10944.7366 9818261 0.203017

BPSO 10709624.44 6817.8095 10714023 0.145642

18 GBPSO 10713726.22 1881.169 10714023 0.145642

CGBPSO 10712684.2 4016.4 10714023 0.145642
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BPSO 8925506 11617.5592 8929156 0.093826

19 GBPSO 8927650.32 5676.14517 8929156 0.093826

CGBPSO 8928605.60 2696.3983 8929156 0.093826

BPSO 9356884.22 3233.28548 9357969 0.132708

20 GBPSO 9357137.66 2527.19298 9357969 0.132708

CGBPSO 9357048.96 2811.7475 9357969 0.132708

BPSO 13532001.22 16392.2733 13549094 0.094501

21 GBPSO 13542275.34 11584.7455 13549094 0.094501

CGBPSO 13540139.16 13558.8022 13549094 0.094501

BPSO 12227701.92 11724.61798 12233713 0.084792

22 GBPSO 12228519.34 10465.897 12233713 0.084792

CGBPSO 12228527.08 10401.745 12233713 0.084792

BPSO 12439299.86 15762.910447 12448780 0.149273

23 GBPSO 12446669.52 5652.8089 12448780 0.149273

CGBPSO 12445171.5 7896.10723 12448780 0.149273

BPSO 11807468.06 13691.618121 11815315 0.098607

24 GBPSO 11809343.62 11110.5037 11815315 0.098607

CGBPSO 11811361.02 8936.89088 11815315 0.098607

BPSO 13938518.2 3624.726307 13940099 0.252759

25 GBPSO 13938197.14 6802.7032 13940099 0.252759

CGBPSO 13937847.1 6299.8126 13940099 0.252759

Table 2. Comparative results of Problem Set II of 0-1 Knapsack problems.

Example Algorithm AE LE SD SR AFE

BPSO 0.0 0.0 0.0 100 442.0

1 GBPSO 0.0 0.0 0.0 100 435

CGBPSO 0.0 0.0 0.0 100 438

BPSO 0.0 0.0 0.0 100 1010

2 GBPSO 0.0 0.0 0.0 100 1142.0

CGBPSO 0.0 0.0 0.0 100 1145

BPSO 0.1 0.0 0.303 95 15735

3 GBPSO 0.0 0.0 0.0 100 15630

CGBPSO 0.0 0.0 0.0 100 15671

BPSO 274.80 0.0 357.88925 55 393380

4 GBPSO 220.32 0.0 295.3262 65 382850

CGBPSO 170.20 0.0 237.761 62 382748

BPSO 1675.64 489 384.9666 0 1001000

5 GBPSO 658.04 89 297.09 0 1001000
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CGBPSO 1300.98 362 507.2235 0 1001000

BPSO 3737.58 3332 207.541 0 1501500

6 GBPSO 2337.76 1889 234.985 0 1501500

CGBPSO 1610.24 1159 222.191 0 1501500

Table 3. Comparative results of Problem Set I of Multidimensional Knapsack problems.

Example Algorithm AE LE SD SR AFE

BPSO 6.78 0.0 9.95 62 130464

1 GBPSO 3.70 0.0 6.97 76 95754

CGBPSO 4.32 0.0 8.0806 75 51768

BPSO 8.22 0.0 6.81 30 222870.

2 GBPSO 8.04 0.0 8.10 38 205518

CGBPSO 6.68 0.0 7.8369 42 105498

BPSO 20.0 0.0 98.0 96 8464.4

3 GBPSO 0.0 0.0 0.0 100 6706

CGBPSO 0.0 0.0 0.0 100 8299.2

BPSO 73.8 0.0 267 82 17480.40

4 GBPSO 9.60 0.0 38.0 94 9814

CGBPSO 6.40 0.0 31.35 98 7142.91

BPSO 798.45 0.0 678.21 8 65150.40

5 GBPSO 3.0 0.0 11.9 94 7560

CGBPSO 2.0 0.0 9.797 96 6655.60

BPSO 198.97 0.0 633.341 86 14030.8

6 GBPSO 267 0.0 47.7 94 10494.4

CGBPSO 223.24 0.0 948.365 80 10158.75

BPSO 962 0.0 1621.15 70 26560.80

7 GBPSO 130.26 0.0 588.92 90 13230

CGBPSO 140.16 0.0 588.03 85 17936

BPSO 164 0.0 192.48 58 33373.2

8 GBPSO 156.0 0.0 191.06 60 32099.20

CGBPSO 140.4 0.0 187.20 67 30114

BPSO 73.0 0.0 51.482 14 694743

9 GBPSO 82.78 0.0 71.87 20 447657

CGBPSO 86.42 0.0 77.712 24 229173

BPSO 0.463 0.0 0.14 98 140238

10 GBPSO 0.0 0.0 0.0 100 133255.5

CGBPSO 0.0 0.0 0.0 100 121201.5
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Table 4. Comparative results of Problem Set II of Multidimensional Knapsack problems.

Example Algorithm SR AFE AE LE SD infeasible sol.

BPSO 100 5418 0 0 0 0

1 GBPSO 100 32442 0 0 0 0

CGBPSO 100 20833 0 0 0 0

BPSO 74 44715 1.3 0 2.19317 0

2 GBPSO 78 58299 1.1 0 2.07123 0

CGBPSO 90 33603 0.5 0 1.5 0

BPSO 98 12939 1.26 0 8.82 0

3 GBPSO 98 39180 0.18 0 1.26 0

CGBPSO 98 24431 0.18 0 1.26 0

BPSO 100 9147 0 0 0 0

4 GBPSO 100 32361 0 0 0 0

CGBPSO 100 20679 0 0 0 0

BPSO 100 11379 0 0 0 0

5 GBPSO 100 33921 0 0 0 0

CGBPSO 100 21897 0 0 0 0

BPSO 72 65744 4.64 0 7.53594 0

6 GBPSO 82 84896 2.74 0 5.94242 0

CGBPSO 80 69348 3 0 6.09918 0

BPSO 92 28328 1.44 0 4.88328 0

7 GBPSO 94 64656 1.36 0 5.44338 0

CGBPSO 98 41188 0.36 0 2.52 0

BPSO 82 45864 1.02 0 3.09509 0

8 GBPSO 78 87364 0.66 0 1.93505 0

CGBPSO 82 64140 0.36 0 0.76838 0

BPSO 98 15416 0.68 0 4.76 0

9 GBPSO 100 52872 0 0 0 0

CGBPSO 98 37726 0.68 0 4.72 0

BPSO 88 50245 0.12 0 0.32496 0

10 GBPSO 88 103140 2.04 0 6.84386 0

CGBPSO 88 82485 3.1 0 9.9844 0

BPSO 38 192315 842 0 819.628 14

11 GBPSO 20 221995 1416 0 1378.56 13

CGBPSO 22 219285 55.8 0 56.269 11

BPSO 96 53860 0.04 0 0.19596 0

12 GBPSO 92 65205 2.82 0 11.3661 0

CGBPSO 98 59285 0.02 0 0.14 0

BPSO 90 62555 9.06 0 30.3542 0
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13 GBPSO 94 60405 4.34 0 18.6275 0

CGBPSO 98 53190 1.06 0 1.05418 0

BPSO 66 177810 12.74 0 19.6253 0

14 GBPSO 78 91953.8 8.02 0 18.9137 0

CGBPSO 96 52788 1.96 0 10.2547 0

BPSO 68 105310 14.72 0 24.134 0

15 GBPSO 66 114164 13.9 0 21.033 0

CGBPSO 90 91612 0.64 0 4.48 0

BPSO 70 143258 1.58 0 3.48764 4

16 GBPSO 88 91716 0.6 0 2.74226 0

CGBPSO 82 114886 0.72 0 2.58488 0

BPSO 100 23460 0 0 0 0

17 GBPSO 96 33110 1.08 0 3.43418 0

CGBPSO 98 28730 0.18 0 0.026 0

BPSO 72 196344 4.3 0 7.376 0

18 GBPSO 78 205292 4.1 0 6.86222 0

CGBPSO 88 153545 1.16 0 3.40212 0

BPSO 48 192697 82.18 0 497.06 1

19 GBPSO 56 168159 19.6279 0 31.8624 3

CGBPSO 74 151145 14.164 0 28.0556 0

BPSO 80 106610 3.42 0 7.6291 0

20 GBPSO 76 152793 3.06 0 6.94956 0

CGBPSO 94 66885 1.2 0 4.74974 0

BPSO 75 117306 6.84 0 15.5362 0

21 GBPSO 82 113836 7 0 16.0275 0

CGBPSO 84 112470 6.34 0 15.346 0

BPSO 38 237208 28.081 0 37.058 0

22 GBPSO 54 190429 13.8 0 17.7854 0

CGBPSO 60 168023 10.2 0 13.2499 0

BPSO 10 406800 2264 0 2197.99 66

23 GBPSO 16 389333 174.714 0 694.149 42

CGBPSO 28 330208 79.5 0 49.476 58

BPSO 78 201229 2.3 0 4.9849 0

24 GBPSO 82 130089 2.02 0 5.76017 0

CGBPSO 96 87360 0.54 0 3.14458 0

BPSO 52 208440 13.51 0 18.377 0

25 GBPSO 66 193422 11.1 0 10.3252 0

CGBPSO 70 147958 6.24 0 8.37749 0

BPSO 0 400400 580.574 550 32.198 0

26 GBPSO 0 400400 563.46 550 19.5573 0
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CGBPSO 0 400400 571.48 550 18.111 0

BPSO 76 288917 17.368 0 30.925 2

27 GBPSO 80 220882 16.1837 0 33.6213 1

CGBPSO 90 179640 2.375 0 14.0396 1

BPSO 13 366156 2340 0 1948.84 16

28 GBPSO 28 260550 2001 0 2279.28 10

CGBPSO 42 220163 1294 0 1197.14 12

BPSO 0 450450 2983 609 5467.37 88

29 GBPSO 0 450450 1727 699 879.02 63

CGBPSO 0 450450 6344 459 1493.03 74

BPSO 18 226450 5.94 0 6.05445 0

30 GBPSO 46 162470 4.18 0 6.38965 0

CGBPSO 78 159606 0.88 0 1.65699 0

BPSO 46 69782.3 7.76 0 7.5301 0

31 GBPSO 48 43065 14.16 0 6.011 0

CGBPSO 46 42909 13.74 0 4.68 0

BPSO 50 93666.6 7.54 0 7.97047 0

32 GBPSO 90 49711.7 1.3 0 3.9 0

CGBPSO 82 58690.8 2.44 0 5.2503 0

BPSO 52 81559.6 1142.16 0 1453.69 0

33 GBPSO 62 78285 2818 0 1025.19 0

CGBPSO 70 74240 1141.18 0 1101.36 0

BPSO 28 74060 21.5 0 17.9179 0

34 GBPSO 56 66728 11.5 0 15.8016 0

CGBPSO 72 48498 2.06 0 1.107 0

BPSO 70 61052 5.16 0 8.75068 0

35 GBPSO 64 75444 6.74 0 10.081 0

CGBPSO 80 50462.5 2.78 0 5.449 0

BPSO 44 114904 4.48 0 5.11953 0

36 GBPSO 50 72986.2 5.58 0 6.46866 0

CGBPSO 54 110819 4.86 0 6.1838 0

BPSO 6 133898 14.5 0 5.67186 2

37 GBPSO 6 135820 14.1 0 5.20865 2

CGBPSO 48 80124.8 10.26 0 13.055 1

BPSO 60 81690 6.28 0 7.99009 0

38 GBPSO 78 81140 3.24 0 6.201 0

CGBPSO 84 57974 2.08 0 4.765 0
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