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Exact solutions of conformable time fractional Zoomeron

equation via IBSEFM

Ulviye Demirbilek1 Volkan Ala1 Khanlar R. Mamedov2

Abstract. The nonlinear conformable time-fractional Zoomeron equation is an important mod-

el to describe the evolution of a single scalar field. In this paper, new exact solutions of con-

formable time-fractional Zoomeron equation are constructed using the Improved Bernoulli Sub-

Equation Function Method (IBSEFM). According to the parameters, 3D and 2D figures of the

solutions are plotted by the aid of Mathematics software.The results show that IBSEFM is an

efficient mathematical tool to solve nonlinear conformable time-fractional equations arising in

mathematical physics and nonlinear optics.

§1 Introduction

Seeking the exact travelling solutions of nonlinear partial differential equations is very im-

portant to understand the nonlinear process that appears in many areas of science. To find

the exact solutions of these nonlinear equations, many powerful methods have been applied by

mathematicians ([5],[15-17],[20]). The investigation of exact solutions for fractional differential

equations (FDEs) is nowadays one of the main research topics. This importance is due to the

fact that FDEs are widely used to describe several important processes in many fields, such as

biology [33], physics [26], biomedicine [13], finance [10]. Several powerful methods have been

applied in the literature to obtain the exact solutions of FDEs. Some of these effective meth-

ods are; (G′/G) [30], fractional Riccati expansion [12], generalized projective Riccati equation

[28], functional variable [23], the exp-function [8], modified Kudryashov [14], extended direct

algebraic [32], modified trial equation [25], modified exp(−Ω(ξ)) function [34] and Improved

Bernoulli Sub-Equation Function Method (IBSEFM) ([4],[9],[36],[37]).

In [19], a new significant definition of the fractional derivative called conformable fractional

derivative is introduced. The conformable fractional derivative is theoretically easier than

fractional derivative to handle. In addition, the conformable fractional derivative satisfies many
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known features that can’t be satisfied by the existing fractional derivatives, for instance; the

chain rule [2].

The conformable fractional derivative has the weakness that the fractional derivative of

differentiable function at the point zero is equal to zero. So that in [7] a suitable fractional

derivative is proposed that allows us to escape the lack of the conformable fractional derivative.

During the last years, many of techniques where applied to find exact solutions for conformable

fractional nonlinear partial differential equations in literature ([3],[27],[29],[35],[36]).

In this paper, we obtain the exact solutions of (2+1)-dimensional conformable time fractional

Zoomeron equation via IBSEFM. We consider

D2αu

D2α
t u

[uxy

u

]
− D2u

Dx2

[uxy

u

]
+ 2

Dαu

Dα
t u

[
u2

]
x
= 0, 0 < α ≤ 1, (1)

where u(x, y, t) shows amplitude of the relevant wave model. This equation is a convenient

model to present the novel phenomena related with boomerons and trappons and it describes

the evolution of a single scalar field [21]. Many authors investigated the exact solutions of

Zoomeron equation with different methods ([1],[6],[22],[24],[31]). Before beginning to the solu-

tion procedure, we should give some important and efficient properties of conformable fractional

derivative.

§2 Conformable Fractional Derivative

In this section, we give some basic definition, properties and theorems about the conformable

fractional derivative.

The conformable derivative of order α with respect to the independent variable t is defined

as in [19]

Da
t (y(t)) = lim

τ→0

y(t+ τt1−α)− y(t)

τ
, t > 0, α ∈ (0, 1] ,

for a function y = y(t) : [0,∞) → R.

Theorem 1. Assume that the order of the derivative α ∈ (0, 1] and suppose that f = f(t) and

g = g(t) are α−differentiable for all positive t. Then,

1. Da
t (c1f + c2g) = c1D

a
t (f) + c2D

a
t (g), ∀ c1, c2 ∈ R.

2.Da
t (t

k) = ktk−α, ∀ k ∈ R.
3. For all constant function f(t) = λ, Da

t (λ) = 0.

4. Da
t (fg) = fDa

t (g) + gDa
t (f).

5.Da
t

(
f
g

)
=

gDa
t (f)−fDa

t (g)
g2 .

Conformable fractional differential operator satisfies certain basic features like the chain

rule, Taylor series expansion and Laplace transform.

Theorem 2. Let f = f(t) be an α−conformable differentiable function and assume that g is

differentiable and defined in the range of f. Then,

Da
t (f ◦ g)(t) = t1−αg′(t)f ′(g(t)).
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The proofs of these theorems are given in [7] and in [2] respectively.

§3 Description of the IBSEFM

In this part, let us give the fundamental properties of the IBSEFM ([4],[9],[11],[18]). We

present the six main steps of the IBSEFM below the following:

Step 1: Let us take account of the following conformable time fractional partial differential

equation of the style

P (v,D
(µ)
t v,D(µ)

x v,D
(2µ)
xt v,D

(3µ)
xxt v, ...) = 0, (2)

where D
(µ)
t is the conformable derivative operator, v(x, t) is an unknown function, P is a

polynomial in v and its partial derivatives contain fractional derivatives. The aim is to convert

(2) with a suitable fractional transformation into the nonlinear ordinary differential equation.

The wave transformation as

v(x, t) = V (ξ) , ξ =
(
x− ktαα−1

)
, (3)

where k is an arbitrary constant and different from zero. Using the properties of conformable

derivative, it enables us to convert (3) into a nonlinear ordinary differential equation in the

form

N(V, V ′, V ′′, ...) = 0. (4)

Step 2: If we integrate (4) term to term once or more, we acquire integration constant(s)

which may be determined then.

Step 3: We hypothesize that the solution of (4) may be presented as below

V (ξ) =

n∑
i=0

aiF
i(ξ)

m∑
j=0

bjF j(ξ)
=

a0 + a1F (ξ) + a2F
2(ξ) + ...anF

n(ξ)

b0 + b1F (ξ) + b2F 2(ξ) + ...bmFm(ξ)
, (5)

where a0, a1, ..., an and b0, b1, ..., bm are coefficients which will be determined later. m ̸= 0, n ̸=
0 are chosen arbitrary constants to balance principle and considering the form of Bernoulli

differential equation below the following;

F ′(ξ) = σF (ξ) + dFM (ξ), d ̸= 0, σ ̸= 0, M ∈ R/ {0, 1, 2} , (6)

where F (ξ) is polynomial.

Step 4: The positive integer m,n,M (are not equal to zero) which is found according to

the balance principle that is both nonlinear term and the highest order derivative term of (4).

Substituting (5) and (6) in (3) it yields us an equation of polynomial Θ(F ) of F as following;

Θ(F (ξ)) = ρsF (ξ)s + ...+ ρ1F (ξ) + ρ0 = 0,

where ρi, i = 0, ..., s are coefficients and will be determined later.

Step 5: The coefficients of Θ(F (ξ)) which will give us a system of algebraic equations,

whole be zero.

ρi = 0, i = 0, .., s.
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Step 6: When we solve (4), we get the following two cases with respect to σ and d,

F (ξ) =

[
−deσ(ϵ−1) + ϵσ

σeσ(ϵ−1)ξ

] 1
1−ϵ

, d ̸= σ, (7)

F (ξ) =

 (ϵ− 1) + (ϵ+ 1) tanh
(
σ(1− ϵ) ξ2

)
1− tanh

(
σ(1− ϵ) ξ2

)
 , d = σ, ϵ ∈ R. (8)

Using a complete discrimination system for polynomial of F (ξ), we obtain the analytical so-

lutions of (4) via mathematics software and categorize the exact solutions of (4). To achieve

better results, we can plot two and three dimensional figures of analytical solutions by consid-

ering proper values of parameters.

§4 Application of the Improved Bernoulli Sub-Equation Function

Method (IBSEFM)

In this section, the application of the IBSEFM to the conformable time fractional Zoomeron

equation is given. Let us consider the following wave transform:

u (x, y, t) = U (ξ) , ξ = kx+my − l

(
tα

α

)
, (9)

where k,m, l are nonzero constants. Substituting (9) into (1), we obtain the following equation:

kml2
[
U ′′

U

]′′
− k3m

[
U ′′

U

]
− 2kl

[
U2

]′′
= 0. (10)

If we integrate the equation (10) with respect to ξ twice, we get

km(k2 − l2)U ′′ + 2klU3 + sU = 0, (11)

where s is a nonzero constant of integration and the second constant of integration vanishes.

When we reconsider (11) for balance principle, considering between U ′′ and U3 we obtain

the following relationship for m,n and M :

M = n−m+ 1. (12)

(12) gives us different cases of the solution of (11) and we can obtain some analytical solutions

as follows:

If we take M = n = 3,m = 1 for (5) and (6), then we can write the following equations;

U(ξ) =
a0 + a1F (ξ) + a2F

2(ξ) + a3F
3(ξ)

b0 + b1F (ξ)
=

Υ(ξ)

Ψ(ξ)
, (13)

U ′(ξ) =
Υ′(ξ)Ψ (ξ)−Υ(ξ)Ψ′(ξ)

Ψ2(ξ)
, (14)

and

U ′′(ξ) =
Υ′(ξ)Ψ (ξ)−Υ(ξ)Ψ′(ξ)

Ψ2(ξ)
− [Υ(ξ)Ψ′ (ξ)]

′
Ψ2(ξ)− 2Υ(ξ)[Ψ′(ξ)]2Ψ(ξ)

Ψ4(ξ)
, (15)

where F ′ = σF + dF 3, a2 ̸= 0, b1 ̸= 0, σ ̸= 0, d ̸= 0. Using (13)-(15) in (11), we obtain a

system of algebraic equations from coefficients of F.

Constant : −2kla30 − sa0b
2
0 = 0,
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F : −6kla20a1 − sa1b
2
0 − k3mσ2a1b

2
0 + kl2mσ2b20 − 2sa0b0b1 + k3ma0b0b1 − kl2mσ2a0b0b1 = 0,

F 2 : −6kla20a
2
1 − 6kla20a2 − sa2b

2
0 − 4k3mσ2a2b

2
0 + 4kl2mσ2a2b

2
0 − 2sa1b0b1 + k3mσ2a1b0b1

−sa0b
2
1 − k3mσ2a0b

2
1 + kl2mσ2a0b

2
1 = 0,

F 3 : −2kla31 − 12kla0a1a2 − 6kla20a3 − 4dk3mσa2b
2
0 + 4dkl2mσa1b

2
0 − sa3b

2
0 − 9k3mσ2a3b

2
0

+9kl2mσ2a3b
2
0 + 4dk3mσa0b0b1 − 4dkl2mσa0b0b1 − 2sa2b0b1 − 3k3mσ2a2b0b1

+3kl2mσ2a2b0b1 − sa1b
2
1 = 0,

F 4 : −6kla21a2 − 6kla0a
2
2 − 12kla0a1a3 − 12dk3mσa2b

2
0 + 12dkl2mσa2b

2
0 − 2sa3b0b1

−11k3mσ2a3b0b1 + 11kl2mσ2a3b0b1 − sa2b0b
2
1 − k3mσ2a2b

2
1 + kl2mσ2a2b

2
1 = 0,

F 5 : −6kla1a
2
2 − 6kla21a3 − 12kla0a2a3 − 3d2k3mσa1b

2
0 + 3dkl2mσa1b

2
0 − 24dkl2mσa3b

2
0

+3d2k3ma0b0b1 − 3d2kl2ma0b0b1 − 12dk3ma2b0b1 + 12dkl2mσa2b0b1 − sa3b
2
1 − 4k3mσ2a3b

2
1

+4kl2mσ2a3b
2
1 = 0,

F 6 : −2kla32 − 12kla1a2a3 − 6kla0a
2
3 − 8d2k3ma2b

2
0 + 8d2kl2ma2b

2
0 − d2k3ma1b0b1

+d2kl2ma1b0b1 − 32dk3mσa3b0b1 + 32dkl2mσa3b0b1 + d2k3ma0b
2
1 − d2kl2ma0b

2
1

−4dk3mσa2b
2
1 + 4dkl2mσa2b

2
1 = 0,

F 7 : −6kla32a3 − 6kla1a
2
3 − 15d2k3ma3b

2
0 + 15d2kl2ma3b

2
0 − 9d2k3ma2b0b1 + 9d2kl2ma2b0b1

−12dk3mσa3b
2
1 + 12dkl2mσa3b

2
1 = 0,

F 8 : −6kla2a
2
3 − 21d2k3ma3b0b1 + 21d2kl2ma3b0b1 − 3d2k3ma2b

2
1 + 3d2kl2ma2b

2
1 = 0,

F 9 : −2kla33 − 8d2k3ma3b
2
1 + 8d2kl2ma3b

2
1 = 0.

Solving the above system of equations with the help of mathematics programme, it yields us

the following coefficients:

Case 1: For σ ̸= d;

a0 =
i
√
sb0√

2
√
k
√
l
; a1 =

i
√
sb1√

2
√
k
√
l
; a2 =

i
√
2d

√
sb0√

k
√
lσ

; a3 =
i
√
2d

√
sb1√

k
√
lσ

;m =
s

2k(k2 − l2)σ2
.

Substituting these coefficients along with (7) in (13) we obtain the complex exponential

function solution of the conformable time fractional Zoomeron equation as follows:

u1(x, y, t) =

i
√
s

(
1 + 2d

−d+ϵσexp
(
−2kxσ+ 2ltασ

α − sy

k3σ−kl2σ

))
√
2kl

.

Case 2: For σ ̸= d;

a0 =

√
−k2 + l2

√
m
√
sb0√

2l
√
k3m− kl2m

; a1 =

√
−k2 + l2

√
m
√
sb1√

2
√
l
√
k3m− kl2m

; a2 = −2d
√
−k2 + l2

√
mb0√

l
;

a3 = −2d
√
−k2 + l2

√
mb1√

l
;σ = −

√
s√

2
√
k3m− kl2m

.

Putting these coefficients along with (7) in (13) we obtain the exact solution of (1) as follows:

u2(x, y, t) =

√
−k2 + l2

√
m

√
2
√
s− 4d

√
k(k−1)(k+1)m

√
2d

√
k(k−1)(k+1)m

√
s

+ϵexp

(√
2
√

s(kx+my− ltα
α )√

k(k−1)(k+1)m

)


2
√
l
√

k(k − 1)(k + 1)m
.
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Figure 1. The 3D and 2D graphs of |u1(x, y, t)| and u1(x, y, t) considering the values y = 0.5;
k = 0.1; s = 0.01; d = 0.4; σ = 0.5; α = 1.

Figure 2. The 3D and 2D graphs of the solution of |u2(x, y, t)|, real and imaginary part of
u2(x, y, t) considering the values y = 0.2; k = 0.2; s = 0.3; d = 0.6; m = 0.7; l = 0.4; α = 1;
ϵ = 0.1; −15 < x < 15, −1 < t < 1 for 3D and t = 0.2 for 2D.

Case 3: For σ ̸= d;

a0 =
i
√
sb0√
2kl

; a1 =
i
√
sb0√
2kl

; a3 =
a2b1
b0

;m =
a22

4d2(−k2 + l2)b20
;σ = − i

√
2d

√
sb0√

kla2
.

Substituting above the coefficients along with (7) in (13) we obtain the exact solutions of

(1) as follows:

u3(x, y, t) =
i
√
s√

2kl
+

1

i
√
kl√
2s

+ e
−

2id
√

2s

(
kx− ltα

α
+

lya2
s

4d2(−k2+l2)b20

)
b0

√
kla2

a2
εb0

.

Now, let us show the 3D and 2D figures of the solutions plotted with the help of mathematics

software:
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Figure 3. The 3D and 2D graphs of the solution of |u3(x, y, t)|, real and imaginary part of
u3(x, y, t) y = 0.1; k = 0.2; b0 = 1; d = 0.6; s = 0.7; l = 0.5; α = 0.5; ϵ = 0.2; −15 < x < 15,
−1 < t < 1 for 3D and t = 0.1 for 2D.

§5 Discussion, comparision and physical explanations

In this article, we have successfully applied the IBSEFM to the nonlinear conformable time

fractional Zoomeron equation to investigate some new exact solutions. It has been observed

that all analytical solutions examined in this paper verify the nonlinear ordinary differential

equation (11) which is obtained from nonlinear conformable time-fractional Zoomeron equation

under the terms of wave transformation. All necessary computational calculations and graphs

have been acquired by using mathematics software.

Figures 1-3 give a good impression about the change of amplitude and width of the soliton

due to the variation of the fractional order. Remarkably, 3D graphs describe the behavior of

u(x, y, t) in space x and y at time t corresponding to the value of the fractional order.The

behavior represents that an increase of the fractional parameter changes the nature of the

solitary wave solution. The nature of the solitary wave solution of the fractional order is

confirmed by 2D line plots. Therefore, the fractional order derivative can be used to modulate

the shape of the waves.

Furthermore, the nature of the waves are affected from the value of coefficients of the linear

and nonlinear term of (11). According to the figures, one can see that the formats of travelling

wave solutions in two and three dimensional surfaces are similar to the physical meaning of

results. If we take more values of coefficients, we can obtain more travelling wave solutions.

§6 Conclusion

By using the Improved Bernoulli Sub-Equation Function method, we obtain exact traveling

wave solutions for the (2+1)-dimensional conformable timefractional Zoomeron equation under

the given parameter conditions. For this equation many exact solutions have been obtained

which include hyperbolic function solutions, Jacobi elliptic function solutions, trigonometric
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function solutions and rational function solutions in literature. Compared with the previous

works, the solution method obtained in this paper has not been reported. Hence, this method

is very reliable, efficient and submits new travelling wave solutions. Therefore, the IBSEFM

can be applied to the other nonlinear fractional differential models in mathematical physics and

nonlinear optics.
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