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Refined rigorous perturbation bounds for the SR

decomposition

Mahvish Samar1,∗ Aamir Farooq2

Abstract. In this article, some new rigorous perturbation bounds for the SR decomposition un-

der normwise or componentwise perturbations for a given matrix are derived. Also, the explicit

expressions for the mixed and componentwise condition numbers are presented by utilizing the

block matrix-vector equation approach. Hypothetical and trial results demonstrate that these

new bounds are constantly more tightly than the comparing ones in the literature.

§1 Introduction

Let Rm×n be the arrangement of m × n real matrices, Rm×n
r be the subset of Rm×n com-

prising of marices with rank r, AT be the transpose of matrix A and Ir be the identity matrix

of order r. Assume A ∈ R2n×2n, and P = [e1, e3, ..., e2n−1, e2, e4, ..., e2n] with ek speaking to

the k-th unit vector. If all even leading principal submatrices of PATJAPT are nonsingular,

Bunse-Gerstner [1] demonstrated that A has the accompanying SR decomposition

A = SR =

[
S11 S12

S21 S22

][
R11 R12

R21 R22

]
, (1.1)

where S ∈ R2n×2n is a symplectic matrix, i.e., it fulfills STJS = S,

J =

[
0 In

−In 0

]
∈ R2n×2n,

Rij(i, j = 1, 2) are upper triangular, and diag(R21) = 0. Further, if

diag(R11) = |diag(R22)| and diag(R12) = 0, (1.2)

then the SR decomposition is unique [2]. Throughout this article, we always assume that the

factor R satisfies (1.2).

The SR decomposition is a helpful instrument in the calculation of some optimal control

problems (e.g., [3-5]). Also the SR decomposition is a key step for constructing structure-
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preserving methods in order to solve the eigenproblem of an important class of structured ma-

trices [2,6-8]. For more points of interest, see for instance [9,10-13]. Henceforth, it is essential

to see how perturbations in the original matrix influence consequence of such a decomposition.

The perturbation analysis for the SR decomposition was first introduced by Bhatia [9]. Then

Chang [2] also considered this problem and its variants. They both gave first-order perturbation

bounds for the SR decomposition. Later, the acquired first-order bounds for SR decomposition

was enhanced by Xie et. al [14] and they also presented the rigorous normwise perturbation

bounds. However, this bound can severely overestimate the true effect of a perturbation.

In this paper, we investigate some new rigorous perturbation bounds for the SR decompo-

sition under normwise or componentwise perturbations. In addition, the obtained first-order

bounds [14] are optimal, which lead to the normwise condition numbers for SR decomposition.

However, we know that the normwise condition number may overestimate the ill-posedness

of the problem because they ignore the structure of coefficient matrices regarding sparsity or

scaling [15,16]. So, it is essential to study the mixed and componentwise condition numbers of

SR decomposition. The mixed condition numbers measure the errors in the input data using

componentwise error analysis and the output using the normwise error analysis. The compo-

nentwise condition numbers measure the errors using the componentwise for both input and

output data. Inspired by this, we attempt to present the explicit expressions of the mixed and

componentwise condition numbers for the factors S and R.

This paper is organized as follows. In Section 3, we combine the block matrix-vector e-

quation approach, the method of Lyapunov majorant function (e.g., [17, Chapter 5]), and the

Banach fixed point theorem (e.g., [17 Appendix 5]) to study rigorous perturbation bounds for

the SR decomposition when the original matrix has the normwise or componentwise perturba-

tions. In Section 4, we give the explicit expressions for mixed and componentwise condition

numbers for the this decomposition. In addition, in Section 2, we provide some notations and

preliminaries and in Section 5, we give some numerical experiments.

§2 Notations and preliminaries

Some notation can be endorsed from [18,19] to make the presentation apparent. We can

still illustrate them here to make easier for readers.

For the given matrix A = (aij) ∈ Rm×n, its spectral norm and Frobenius norm are betoken by

∥A∥2 and ∥A∥F , respectively. For these two matrix norms, the following inequalities clasp (see

[20, pp.80]):

∥XY Z∥2 ≤ ∥X∥2 ∥Y ∥2 ∥Z∥2 , ∥XY Z∥F ≤ ∥X∥2 ∥Y ∥F ∥Z∥2 , (2.1)

whenever the matrix product XY Z is well-defined. For the matrix A = (Aij) ∈ R2n×2n, where

Aij ∈ R2×2, i, j = 1, 2, · · · , n, we define the accompanying operators:

upb (A) =


1
2A11 A12 · · · A1n

0 1
2A22 · · · A2n

...
...

. . .
...

0 0 · · · 1
2Ann

 , utb (A) =


A11 A12 · · · A1n

0 A22 · · · A2n

...
...

. . .
...

0 0 · · · Ann

 ,
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uvecb (A) =



vec (A11)
...

vec (A1n)

vec (A22)
...

vec (A2n)
...

vec
(
A(n−1)(n−1)

)
vec

(
A(n−1)n

)
vec (Ann)



∈ Rv1 , vecb (A) =



vec (A11)
...

vec (A1n)
...

vec (An1)
...

vec (Ann)


∈ R4n2

,

where v1 = 2n(n+ 1). Making use of the structures of the operators defined above, we have

uvecb(A) = Muvecbvecb(A), vecb (utb (A)) = Mutbvecb(A),

vecb (upb (A)) = Mupbvecb(A), (2.2)

where

Muvecb = diag (S1, S2, · · · , Sn) ∈ Rv1×4n2

, Si =
[
04(n−i+1)×4(i−1), I4(n−i+1)

]
∈ R4(n−i+1)×4n,

Mutb = diag
(
Ŝ1, Ŝ2, · · · , Ŝn

)
∈ R4n2×4n2

, Ŝi = diag
(
04(i−1)×4(i−1), I4(n−i+1)

)
∈ R4n×4n,

Mupb = diag
(
S̃1, S̃2, · · · , S̃n

)
∈ R4n2×4n2

, S̃i = diag
(
04(i−1)×4(i−1), 1/2I4, I4(n−i)

)
∈ R4n×4n.

Moreover,

MuvecbM
T
uvecb = Iv1 , MT

uvecbMuvecb = Mutb. (2.3)

Thus, letting uvecb† : Rv1 → R2n×2n be the right inverse of the operator ‘uvecb’ such that

uvecb · uvecb† = 1v1×v1 and uvecb† · uvecb = utb. Then the matrix of the operator ’uvecb’ is

MT
uvecb. That is, uvecb

†(A) = MT
uvecbvecb(A).

For the operator ‘upb’, the following properties are needed later in this paper. Let D2n ∈
R2n×2n denote the set of diagonal positive definite matrices with 2 × 2 main diagonal blocks

siI2, where si > 0, i = 1, 2, · · · , n. Then, for any D2n ∈ D2n,

upb(AD2n) = upb(A)D2n, D2nupb(A) = D2nupb(A). (2.4)

Furthermore, from [2],∥∥upb (A)−D−1
2n upb

(
AT

)
D2n

∥∥
F
≤

√
1 + ς2D2n

∥A∥F , (2.5)

where ςD2n
= max

1≤i<j≤n
{sj/si}.

To give the definitions of mixed and componentwise condition numbers, the following form

of relative distance function will be useful (see [21] for detail). For two vectors a = [a1, · · · , ap]T

and b = [b1, · · · , bp]T ∈ Rp, we define the entry-wise division with

ci0 =


ai0

bi0
, if bi0 ̸= 0,

ai0 , if bi0 = 0.

Then we define the componentwise distance between a and b by

d(a, b) =

∥∥∥∥a− b

b

∥∥∥∥
∞

= max
i=1,··· ,p

{
|ai0 − bi0 |

|bi0 |

}
=


|ai0−bi0 |

|bi0 |
, if bi0 ̸= 0,

|ai0 |, if bi0 = 0.
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Note that when bi0 ̸= 0, d(a, b) will give the relative distance from a to b with respect to b,

while the absolute distance for bi0 = 0. For the distance between the matrices A,B ∈ Rn×n, we

define

d(A,B) = d(vec(A), vec(B)).

In addition, for every ϵ > 0, we have B(a, ϵ) = {x ∈ Rp||xi − ai| ≤ ϵ|ai|, i = 1, · · · , p}, and

denote the domain of definition of function F : Rp → Rq as Dom(F ).

Definition 2.1. [22]: Let F : Rp → Rq be a continuous mapping defined on an open set

Dom(F )⊂ Rp, and a ∈ Dom(F ), a ̸= 0 such that F (a) ̸= 0.

(i) The mixed condition number of F at a is defined by

m(F, a) = lim
ε→0

sup
x∈B(a,ϵ)

x ̸=a

∥F (x)− F (a)∥∞
∥F (a)∥∞

1

d(x, a)
.

(ii) The componentwise condition number of F at a is defined by

c(F, a) = lim
ε→0

sup
x∈B(a,ϵ)

x̸=a

d
(
F (x), F (a)

)
d(x, a)

.

When the map F in Definition 2.1 is Fréchet differentiable, the following lemma given in

[22] makes the computation of mixed and componentwise condition number easier.

Lemma 2.2. With the same assumptions as in Definition 2.1, and supposing that F is Frèchet

differentiable at a, we have

m(F, a) = ∥|DF (a)||a|∥∞
∥F (a)∥∞

, c(F, a) =
∥∥∥ |DF (a)||a|

|F (a)|

∥∥∥
∞
.

where DF (a) is the Fréchet derivative of F at a.

Let A = (Aij) ∈ R2m×2n with Aij ∈ R2×2, i = 1, 2, · · · ,m, j = 1, 2, · · · , n. Like the result

for the regular operator ‘vec’, the following result holds for ‘vecb’:

Π̂m,nvecb(A) = vecb(AT ), (2.6)

where Π̂m,n = (Πm,n ⊗Π2,2) ∈ R4mn×4mn with Πm,n =
m∑
i=1

n∑
j=1

(Eij⊗ET
ij). In these expressions,

⊗ denotes the Kronecker product [23] and the matrix Eij ∈ Rm×n has in the (i, j)-th position

and zeros elsewhere. Given another matrix B, the block Kronecker product between B and A

is defined by

B �A =


B ⊗A11 B ⊗A12 · · · B ⊗A1n

B ⊗A21 B ⊗A22 · · · B ⊗A2n

...
...

. . .
...

B ⊗Am1 B ⊗Am2 · · · B ⊗Amn

 .

For the block Kronecker product, the following results hold [24]

vecb (ACB) = (BT �A)vecb (C) , (2.7)

∥B �A∥2 = ∥B∥2∥A∥2, (2.8)

(B �A)(C �G) = (BC �AG), (2.9)

(B �A)−1 = B−1 �A−1, if B and A are nonsingular. (2.10)

Here, the matrices C and G are of suitable orders and are partitioned appropriately.
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§3 Rigorous perturbation bounds

However, it is well known that the first order perturbation bound may lead to erroneous

conclusions because they neglect the high order terms. So it is necessary to discuss the rigorous

perturbation bound. Next we consider the rigorous perturbation bounds for the factors R and

S when the original matrix has normwise or componentwise perturbations in the given matrix.

First, we give a unique decomposition theorem for a perturbed matrix.

Theorem 3.1. Given A ∈ R2n×2n, consider that all even leading submatrices of PATJAPT

are non singular and A has the unique SR decomposition. If

∥STJ∆AR−1∥2 <
√
2− 1, (3.1)

then A+∆A has the following unique SR decomposition

A+∆A = (R+∆R)(S +∆S). (3.2)

Proof : Note that J−1 = JT = −J and S is nonsingular. Then, left multiplying and right

multiplying STJS = J by STJ and S−1JT , respectively gives SJTST = JT , i.e. SJST = J.

Now,

P (A+∆A)TJ(A+∆A)PT

= P (RTJR+RTSTJ∆A+ (∆A)TJSR+ (∆A)TJ∆A)PT

= PRT (J + STJ∆AR−1 +R−T (∆A)TJS +R−T (∆A)TJ∆AR−1)RPT

= PRT (J +K)RPT , (3.3)

where K = STJ∆AR−1 +R−T (∆A)TJS +R−T (∆A)TJ∆AR−1. Taking the spectral norm on

K and using JTJJ = J

∥K∥2 ≤ 2∥STJ∆AR−1∥2 + ∥R−T (∆A)TJ∆AR−1∥2
≤ 2∥STJ∆AR−1∥2 + ∥R−T (∆A)TJTSJSTJ∆AR−1∥2
≤ 2∥STJ∆AR−1∥2 + ∥STJ∆AR−1∥22

by (3.1) we have ∥K∥2 < 1. Using result from [7] we get, ∥K(2i)∥2 < 1 for i = 1, 2, ..., n.

Furthermore, obviously, ∥J(2i)K(2i)∥2 < 1 also holds. Then I2i − J(2i)K(2i) is nonsingular,

which together with (J +K)2i = J(2i)(I2i − J(2i)K(2i)) shows that (J +K)(2i) is nonsingular.

Noting the structure of R, we can proof that (RT (J + K)R)2i = RT
2i(J + K)2iR2i. Since R2i

is nonsingular, shows that (RT (J +K)R)2i is also nonsingular. Thus, observing (3.3), we can

get that all even leading principal submatrices of P (A+∆A)TJ(A+∆A)PT are nonsingular.

Thus, A+∆A has unique SR decomposition.

Remark 3.2. Here we provide the condition under which the perturbed matrix always has the

unique SR factorization, while in [2,14] they only simply assume that is true.

3.1. Refined normwise perturbation bound

Assume that the perturbed SR decomposition defined in (3.2) and using the fact that

(A+∆A)TJ(A+∆A) = (R+∆R)TJ(R+∆R).
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Using (1.1) and little simplification we will get

STJ∆AR−1+R−T (∆A)TJS+R−T (∆A)TJ(∆A)R−1−R−T (∆R)TJ(∆R)R−1

= J∆RR−1+(J∆RR−1)T . (3.4)

In the above equation J∆RR−1 is upper triangular, we have

J∆RR−1

= upb
(
STJ∆AR−1+R−T (∆A)TJS

)
+upb

(
R−T (∆A)TJ(∆A)R−1−R−T (∆R)TJ(∆R)R−1

)
.

(3.5)

Applying the operator ‘vecb’ to (3.5) and (2.7), (2.6) and (2.3) gives(
R−T � J

)
vecb (∆R) = Mupb

(
(R−T � STJ) + (STJ �R−TJ)Πn,n

)
vecb(∆A)

+Mupb

(
R−T �R−T

)
vecb

(
(∆A)TJ∆A− (∆R)TJ∆R

)
.

As done in [25,26] and (2.10), we can obtain

vecb (∆R) =
(
RT � J−1

)
Mupb

(
(R−T � STJ) + (STJ �R−TJ)Πn,n

)
vecb(∆A)

+
(
RT � J−1

)
Mupb

(
R−T �R−T

)
vecb

(
(∆A)TJ∆A− (∆R)TJ∆R

)
. (3.6)

and show that Eq. (3.6) is equivalent to

uvecb (∆R) = Muvecb

(
RT � J−1

)
Mupb

(
(R−T � STJ) + (STJ �R−TJ)Πn,n

)
vecb(∆A)

+Muvecb

(
RT � J−1

)
Mupb

(
R−T �R−T

)
vecb

(
(∆A)TJ∆A− (∆R)TJ∆R

)
.

(3.7)

For simplicity, let

GR = Muvecb

(
RT � J−1

)
Mupb

(
(R−T � STJ) + (STJ �R−TJ)Πn,n

)
, (3.8)

HR = Muvecb

(
RT � J−1

)
Mupb

(
R−T �R−T

)
. (3.9)

Then (3.7) becomes

uvecb (∆R) = GRvecb(∆A) +HRvecb
(
(∆A)TJ∆A− (∆R)TJ∆R

)
. (3.10)

Thus, applying the operator ‘uvecb†’ to (3.10) leads

∆R = uvecb†
[
GRvecb (∆A) +HRuvecb

(
(∆A)TJ∆A− (∆R)TJ∆R

)]
.

The above equation can be written as an operator equation for ∆R:

∆R = Φ(∆R,∆A) ,

= uvecb†
[
GRvecb (∆A) +HRuvecb

(
(∆A)TJ∆A− (∆R)TJ∆R

)]
. (3.11)

We will execute the technique of Lyapunov majorant function and the Banach fixed point

principle to probe the rigorous perturbation bounds for ∆R based on the operator equation

(3.11) as done in [19]. To make it easy and clear for readers and for plenum of the method we

comprehend the detail process here through some steps which are same as in [19]. Assume that

Z ∈ R(2n)×(2n) is upper triangular with the same structure as that of ∆R, ∥Z∥F ≤ ρ for some

ρ ≥ 0, and ∥∆A∥F = δ. Then it follows from the definition of the operator ‘uvecb†’ and (2.1)

that

∥Φ(Z,∆K)∥F ≤ ∥GR∥2δ + ∥HR∥2
(
δ2 + ρ2

)
. (3.12)

From (3.12), we have the Lyapunov majorant function of the operator equation (3.13)

h (ρ, δ) = ∥GR∥2δ + ∥HR∥2
(
δ2 + ρ2

)
,
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and the Lyapunov majorant equation

h(ρ, δ) = ρ, i.e., ∥GR∥2δ + ∥HR∥2
(
δ2 + ρ2

)
= ρ. (3.13)

Assume that δ ∈ Ω = δ ≥ 0 : 1− 4∥HR∥2
(
∥GR∥2δ + ∥HR∥2δ2

)
≥ 0. Then, the Lyapunov

majorant equation (3.8) has two nonnegative roots: ρ1 (δ) ≤ ρ2 (δ) with

ρ1 (δ) = f (δ) =
2
(
∥GR∥2δ + ∥HR∥2δ2

)
1 +

√
1− 4∥HR∥2 (∥GR∥2δ + ∥HR∥2δ2)

.

Let the set B(δ) be

B(δ) = {Z ∈ R(2n)×(2n) : Having the same structure as that of ∆R and ∥Z∥F ≤ f(δ)},
which is closed and convex. We can check that the operator Φ (·,∆A) maps the set B(δ) into

itself and for Z, Z̃ ∈ B(δ),∥∥∥Φ (Z,∆A)− Φ
(
Z̃,∆A

)∥∥∥
F
≤ h′

ρ (f (δ) , δ)
∥∥∥Z − Z̃

∥∥∥
F
.

Since the derivative of the function h (ρ, δ) relative to ρ at f(δ) satisfies h′
ρ (f (δ) , δ) = 1 −√

1− 4∥HR∥2 (∥GR∥2δ + ∥HR∥2δ2) < 1 when

δ ∈ Ω1 =
{
δ ≥ 0 : 1− 4∥HR∥2

(
∥GR∥2δ + ∥HR∥2δ2

)
> 0

}
. Then the operator Φ (·,∆A) is

contractive on the set B(δ) for δ ∈ Ω1. Thus, from the Banach fixed point principle, we have

that the operator equation (3.11), i.e., the matrix equation (3.4), has a unique solution in the

set B(δ). As a result, ∥∆R∥F ≤ f (δ) for δ ∈ Ω1. In summary, we have the following main

theorem.

Theorem 3.3. With the same assumptions as in Theorem 3.1, if

∥HR∥2
(
∥GR∥2δ + ∥HR∥2δ

2
)
<

1

4
, (3.14)

then A+∆A has the unique SR factorization (3.2) and

∥∆R∥2 ≤
2
(
∥GR∥2δ + ∥HR∥2δ2

)
1 +

√
1− 4∥HR∥2 (∥GR∥2δ + ∥HR∥2δ2)

(3.15)

≤ 2
(
∥GR∥2δ + ∥HR∥2δ

2
)

(3.16)

< (1 + 2∥GR∥2) ∥∆A∥F . (3.17)

Proof: It is easy to see that the condition (3.15) is the same as the one in Ω1. Thus, from

the discussions before Theorem 3.1, it suffices to obtain the bound (3.17). This can be done by

noting (3.14) and the fact

2∥HR∥2∥∆A∥F ≤
√
1 + ∥GR∥22 − ∥GR∥2 < 1,

which can be derived from (3.16).

Remark 3.4. From (3.15), by omitting the higher order terms, we can get the first order

perturbation bound of R factor

∥∆R∥F ≤ ∥GR∥2∥∆A∥F +O
(
∥∆A∥2F

)
. (3.18)

In [14], the authors presented the following optimal first order bound for R

∥∆R∥F ≤ ∥(RT � JT )DKSR∥2∥∆A∥F +O
(
∥∆A∥2F

)
, (3.19)

where

D ≡ diag(D1,D2,D2,D1) ∈ R(4n2)×(4n2)
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for D1 and D2 see [14] and

KSR ≡ (R−T � STJ)− (STJ �R−T )Π. (3.20)

Now we show that the bound (3.18) is the same as (3.19). In fact, according to the above

definition and the definition of the operator ’upb’, we can check that for any matrixX ∈ R2n×2n,

Dvecb(X) = vecb(upb(X)).

Thus, for any matrix X ∈ R2n×2n, using (2.7) and (2.2), we have

∥(RT � JT )DKSRvecb(W )∥2
= ∥(RT � JT )Dvecb(STJWR−1 −R−TWTJTS)∥2
= ∥(RT � JT )vecb(upb(STJWR−1 −R−TWTJTS))∥2
= ∥vecb(JTupb(STJWR−1 −R−TWTJTS)R)∥2
= ∥(RT � JT )Mupb(upb(S

TJWR−1 −R−TWTJTS))∥2
= ∥(RT � JT )Mupb((R

−T � STJ)− (STJ �R−T )Π)vecb(W)∥2. (3.21)

From the definitions of the matrices ‘Mutb’ and ‘Mupb’, we can verify that

Mutb(R
T � JT )Mupb = (RT � JT )Mupb,

which together with (3.21) and (2.3) gives

∥(RT � JT )DKSRvecb(W )∥2 = ∥MT
uvecbGRvecb(W )∥2 = ∥GRvecb(W )∥2.

Thus, from the definition of spectral norm we get

∥(RT � JT )DKSR∥2 = max
∥vecb(W )∥2=1

∥(RT � JT )DKSRvecb(W )∥2

= max
∥vecb(W )∥2=1

∥GRvecb(W )∥2

= ∥GR∥2.
So the bounds (3.18) and (3.19) are the same. Therefore, the rigorous bounds in Theorem 3.3

can be regarded as the rigorous versions of the optimal first order perturbation bound given in

[14].

Remark 3.5. In [14] the following rigorous perturbation bounds were derived by a combination

of the classic and refine matrix equation approaches,

∥∆R∥F 6
√
2κ(R−1)∥S∥2∥∆A∥F + (3

√
2 + 2

√
3)κ(R−1)∥S∥22∥∆A∥2F , (3.22)

under the condition

∥STJ∆AR−1∥F < 1/
√
6 + 2.

In the above bounds, for a non singular matrix Z, κ(Z) denotes its condition number and is

defined as κ(Z) = ∥Z∥2∥Z−1∥2 the set of n× n positive diagonal matrices.

Now we will show that our bounds (3.17) is sharper than (3.22)

∥GR∥2 =
∥∥Muvecb

(
RT � J−1

)
Mupb

(
(R−T � STJ) + (STJ �R−TJ)Πn,n

)∥∥
2

≤
∥∥RT

∥∥
2

∥∥Mupb

(
(R−T � STJ) + (STJ �R−TJ)

)
Πn,n

∥∥
2

=
∥∥RT

∥∥
2

max
∥vecb(X)∥2=1

∥∥Mupb(
(
(R−T � STJ) + (STJ �R−TJ)

)
Πn,n)vecb (X)

∥∥
2
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=
∥∥RT

∥∥
2

max
∥vecb(X)∥2=1

∥∥Mupbvecb
(
STJXR−1 − (STJXR−1)T

)∥∥
2

=
∥∥RT

∥∥
2

max
∥vecb(X)∥2=1

∥∥vecb (upb (STJXR−1 − (STJXR−1)T
))∥∥

2

=
∥∥RT

∥∥
2

max
∥X∥F=1

∥∥upb (STJXR−1 − (STJXR−1)T
)∥∥

F

≤
∥∥RT

∥∥
2

max
∥X∥F=1

√
2
∥∥STJXR−1

∥∥
F

≤
√
2κ(R−1) ∥S∥2 .

Remark 3.6. From (3.2) we have,

∆A = S∆R+∆SR+∆S∆R. (3.23)

Postmultiplying by R−1 gives

∆S = ∆AR−1 − S∆RR−1 −∆S∆RR−1. (3.24)

Applying the operator ‘vecb’ to (3.24) and using (2.7), (2.6) and (2.3), we have

vecb(∆S) ≈ (R−T � I2n)vecb(∆A)− (R−T � S)vecb(∆R)− (R−T � I2n)vecb(∆S∆R).

(3.25)

with the help of above equation and (3.6), we have

vecb(∆S) ≈
(
(R−T � I2n)− (I2n � SJ−1)Mupb

(
(R−T � STJ)

+ (STJ �R−TJ)Πn,n

))
vecb(∆A)− (R−T � I2n)vecb(∆S∆R). (3.26)

For simplicity, let

GS = ((R−T � I2n)− (I2n � SJ−1)Mupb

(
(R−T � STJ) + (STJ �R−TJ)Πn,n

)
). (3.27)

Then (3.26) becomes

vecb(∆S) ≈ GSvecb(∆A)− (R−T � I2n)vecb(∆S∆R). (3.28)

Facilitate more, utilizing (3.24) and the outcomes on R consider given Theorem 3.3, we can get

the rigorous perturbation bounds for S factor. The rigorous perturbation bounds for factor S

is bigger than the one given in [14]. So we don’t talk about their detailed derivation. From

(3.26), by omitting the higher order terms, we can get the first order perturbation bound of S

factor

∥∆S∥F ≤ ∥GS∥2∥∆A∥F +O
(
∥∆A∥2F

)
. (3.29)

Similar to the discussions in Remark 4.2, we can confirm that

∥(R−T � I2n)− (I2n � SJ−1)DKSR∥2 = ∥GS∥2. (3.30)

So the bound (3.29) is same as the optimal one in [14].

3.2. Componentwise perturbation

As done in [27], in the following, we consider the componentwise perturbation in the given

matrix with the following perturbation

|∆A| ≤ ϵL|A|, L = (lij) ∈ R2n×2n, 0 ≤ lij ≤ 1, (3.31)

where ∆A is the perturbation matrix and ϵ ≥ 0 is a small scalar. Now we consider compenent-

wise rigorous perturbation bounds for S and R factors by using matrix equation approach. The
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derivations of these bounds are similar to the ones in [14].

Theorem 3.7. Given A ∈ R2n×2n, consider that all even leading submatrices of PATJAPT

are non singular and A has the unique SR factorization and ∆A satisfies (3.31). If

∥|ST ||J ||L||R−1|∥F cond(R)ϵ <
1√
6 + 2

, (3.32)

then A+∆A has the following unique SR factorization and

∥∆R∥F (3.33)

≤
inf

D∈D2n

∥|R||R−1|D∥2∥D−1R∥2
(√

2+2ζ2D∥|ST ||J ||L||R−1|∥F + (
√
3−

√
2)∥|ST ||J ||L||R−1|∥F

)
√
2− 1

ϵ

∥∆R∥F ≤ (
√
6 +

√
3)
(

inf
D∈D2n

∥|R||R−1|D∥2∥D−1R∥2
)
∥|ST ||J ||L||R−1|∥F ϵ (3.34)

∥∆S∥F ≤ (
√
6 + 2

√
3 + 2 + 2

√
2)∥|ST ||J ||L||S|∥F ∥S∥2cond(R)ϵ, (3.35)

where cond(R) = ∥|R||R−1|∥2.

Proof: Note that J is skew-symmetric. Then, (3.5) equation can be rewritten as

J∆RR−1 = upb
(
STJ∆AR−1−(STJ∆AR−1)T

)
+ upb

(
R−T (∆A)TJ(∆A)R−1−R−T (∆R)TJ(∆R)R−1

)
. (3.36)

Taking the Frobenius norm on (3.36) and using (2.5) by putting D2n = I2n yields

∥∆RR−1∥F ≤
√
2∥STJ∆AR−1∥F +

1√
2
∥R−T (∆A)TJTSJSTJ(∆A)R−1∥F

+
1√
2
∥R−T (∆R)TJ(∆R)R−1∥F

∥∆RR−1∥F ≤
√
2∥STJ∆AR−1∥F +

1√
2
∥STJ(∆A)R−1∥2F +

1√
2
∥∆RR−1∥2F .

Therfore,
1√
2
∥∆RR−1∥2F − ∥∆RR−1∥F +

√
2∥STJ∆AR−1∥F +

1√
2
∥STJ(∆A)R−1∥2F ≥ 0. (3.37)

The inequality (3.37) can be considered as a quadratic inequality on ∥∆RR−1∥F . By the

assumption (3.32), we have

Υ ≡ (−1)2 − 4× 1√
2
×

(√
2∥STJ∆AR−1∥F +

1√
2
∥STJ(∆A)R−1∥2F

)
= 1− 4∥STJ∆AR−1∥F − 2∥STJ(∆A)R−1∥2F ≥ 0.

Hence ∥∆RR−1∥F ≤ 1√
2
(1−

√
Υ) or ∥∆RR−1∥F ≥ 1√

2
(1+

√
Υ) Since 1√

2
(1−

√
Υ) or 1√

2
(1+

√
Υ)

and ∥∆RR−1∥F are all continuous functions of the ∆A, and ∆R → 0 as ∆A → 0, we must

have

∥∆RR−1∥F ≤ 1√
2
(1−

√
1− 4∥STJ(∆A)R−1∥F − 2∥STJ(∆A)R−1∥2F ) <

1√
2
.

Postmultiplying (3.36) by D, where D ∈ D2n and noting R = DR̄

J∆RR̄−1 = upb
(
STJ∆AR̄−1 − (STJ∆AR̄−1)T

)
+ upb

(
R−T (∆A)TJ(∆A)R̄−1 −R−T (∆R)TJ(∆R)R̄−1

)
.
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Taking Frobinous norm and using (2.5), we get

∥∆RR̄−1∥F ≤
√
1 + ζ2D∥STJ∆AR̄−1∥F + ∥R−T (∆A)TJTSJSTJ(∆A)R̄−1∥F

+ ∥R−T (∆R)TJ(∆R)R̄−1∥F

≤
√
1+ζ2D∥STJ∆AR̄−1∥F+∥STJ(∆A)R−1∥F ∥STJ(∆A)R̄−1∥F

+ ∥∆RR−1∥F ∥∆RR̄−1∥F ,
using ∥∆RR−1∥F < 1/

√
2, we have

∥∆RR̄−1∥F ≤
√
2 + 2ζ2D∥STJ∆AR̄−1∥F +

√
2∥STJ(∆A)R−1∥F ∥STJ(∆A)R̄−1∥F√
2− 1

.

With help of this ∥STJ(∆A)R̄−1∥F ≤ ∥R||R̄−1|∥2∥|ST ||J ||L||R−1|∥F ϵ,
√

1 + ζ2D ≥ 1, which

further reduces to

∥∆RR̄−1∥F

≤
√
2+2ζ2D∥R||R̄−1|∥2∥|ST ||J ||L||R−1|∥F ϵ+ (

√
3−

√
2)∥R||R̄−1|∥2∥|ST ||J ||L||R−1|∥F ϵ√

2− 1

≤ (
√
3 +

√
6)
√
1 + ζ2D∥R||R̄−1|∥2∥|ST ||J ||L||R−1|∥F ϵ.

Noting the fact that

∥∆R∥F = ∥∆RR̄−1R̄∥F ≤ ∥∆RR̄−1∥F ∥R̄−1∥2,
we will get (3.34). Next we prove (3.35). For this, premultiplying (3.24) by STJ and noting

STJS = J leads to

STJ∆S = STJ∆AR−1 − J∆RR−1 − STJ∆S∆RR−1.

With the help of (3.36)

STJ∆S = STJ∆AR−1 − upb
(
STJ∆AR−1 −R−T (∆A)TJS

)
− upb

(
R−T (∆A)TJ(∆A)R−1 +R−T (∆R)TJ(∆R)R−1

)
− STJ∆S∆RR−1.

The above equation can rewritten as

STJ∆S = lowb(STJ∆AR−1) + (lowb(STJ∆AR−1))T

− upb
(
R−T (∆A)TJTSJST (∆A)R−1 +R−T (∆R)TJ(∆R)R−1

)
− STJ∆S∆RR−1.

Taking the Frobenius norm and using (2.5) yields

∥STJ∆S∥F ≤
√
2∥STJ∆AR−1∥F +

1√
2
∥STJ∆AR−1∥2F +

1√
2
∥∆RR−1∥2F

+ ∥STJ∆S∥F ∥∆RR−1∥F . (3.38)

Now,

∥∆RR−1∥F ≤ 1√
2
(4∥STJ(∆A)R−1∥F + 2∥STJ(∆A)R−1∥2F ),

which combined with ∥STJ(∆A)R−1∥F ≤
√
3/2− 1 gives

∥∆RR−1∥2F ≤ (5 + 2
√
6)∥STJ(∆A)R−1∥2F . (3.39)
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Substituting (3.39) into (3.38) and using ∥∆RR−1∥F < 1/
√
2, we have

∥STJ∆S∥F ≤
√
2∥STJ∆AR−1∥F + (3

√
2 + 2

√
3)∥STJ∆AR−1∥2F

1− ∥∆RR−1∥F

∥STJ∆S∥F ≤ (
√
2 + (3

√
2 + 2

√
3)∥STJ∆AR−1∥F )∥STJ∆AR−1∥F

1− 1√
2

∥STJ∆S∥F ≤ 2 +
√
6√

2− 1
∥STJ∆AR−1∥F . (3.40)

Substituting (3.39), (3.40) in (3.38) we have

∥STJ∆S∥F ≤
√
2∥STJ∆AR−1∥F+(3

√
2 + 2

√
3)∥STJ∆AR−1∥2F

+
(2 +

√
6)(

√
3 +

√
2)√

2− 1
∥STJ∆AR−1∥2F . (3.41)

By (3.31), we have

∥STJ∆AR−1∥F ≤ ∥|STJ∆AR−1|∥F ≤ ∥|ST ||J ||L||S||R||R−1|∥F ϵ, (3.42)

Now using, ∥STJ(∆A)R−1∥F ≤
√

3/2− 1 and (3.42) the (3.41) becomes

∥STJ∆S∥F ≤ (2
√
2 + 2

√
3 + 2 +

√
6)∥|ST ||J ||L||S||R||R−1|∥F ϵ.

Since ∥∆S∥F = ∥SJTSTJ∆S∥F ≤ ∥S∥2∥STJ∆S∥F . So, we will get (3.35).

Utilizing the methodology of block matrix equation, we can likewise acquire the rigorous per-

turbation bounds for S and R factors with componentwise perturbation i.e. (3.31) however

we can’t demonstrate that the acquired bounds are always tighter than the (3.33), (3.34) and

(3.35). Along these lines, these outcomes are not displayed in this article.

§4 Mixed and componentwise condition numbers

In this section, we present the explicit expressions for the mixed and componentwise con-

dition numbers. To obtain the explicit expressions for mixed and componentwise condition

numbers of SR decomposition (1.1), we need to define the following mappings:

ΨR : vecb(A) → uvecb(R), (4.1)

ΨS : vecb(A) → vecb(S). (4.2)

and use the following two first-order approximations:

uvecb(∆R) = GR(∆A) +O
(
∥∆A∥2F

)
, (4.3)

vecb(∆S) = GS(∆A) +O
(
∥∆A∥2F

)
. (4.4)

which are from (3.10) and (3.28), respectively

Lemma 4.1. Given A ∈ R2n×2n, consider that all even leading submatrices of PATJAPT are

non singular and A has the unique SR decomposition. The mapping defined by (4.1) and (4.2)

are Fréchet differentiable, and the derivative of ΨR and ΨS at a = (vecb(A)T )T is given by

DΨR(a) = GR, (4.5)

DΨS(a) = GS . (4.6)

where GR and GS are given in (3.8) and (3.27).

Proof : Utilizing the meaning in (4.3), (4.4) and by the definition of Fréchet derivative, we
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have the desired results. The definitions for the mixed and componentwise condition numbers

for the factors R and S are first given as follows

mR(ΨR, a) = lim
ϵ→0

sup
|∆A|≤ϵ|A|

∥∆R∥max

d(a+∆a, a)∥R∥max
= mR,

cR(ΨR, a) = lim
ϵ→0

sup
|∆A|≤ϵ|A|

1

d(a+∆a, a)
∥∆R/R∥max = cR,

mS(ΨS , a) = lim
ϵ→0

sup
|∆A|≤ϵ|A|

∥∆S∥max

d(a+∆a, a)∥S∥max
= mS ,

cS(ΨS , a) = lim
ϵ→0

sup
|∆A|≤ϵ|A|

1

d(a+∆a, a)
∥∆S/S∥max = cS .

where a = (vecb(A)T )T , and for a matrix A, ∥A∥max = ∥vecb(A)∥∞ = max
i,j

|aij |. Thus, consid-
ering Lemma 2.2 and Lemma 4.1, we have the accompanying theorem which gives the explicit

expressions of mixed and componentwise condition numbers for the factors R and S.

Theorem 4.2. Given A ∈ R2n×2n, consider that all even leading submatrices of PATJAPT

are non singular and A has the unique SR decomposition. Then mixed and componentwise

condition numbers for the factors R and S are given by

mR =
∥|GR|vecb(|A|)∥∞

∥R∥max
, cR =

∥∥∥∥ |GR|vecb(|A|)
|R|

∥∥∥∥
∞
, (4.7)

mS =
∥|GS |vecb(|A|)∥∞

∥S∥max
, cS =

∥∥∥∥ |GS |vecb(|A|)
|S|

∥∥∥∥
∞

. (4.8)

where GR and GS are given in (3.8) and (3.27).

In accompanying, we give the upper bounds for the above two condition numbers because

the matrices in the exact expressions are very large and will be expensive to compute them.

Corollary 4.3. With the same assumptions as in Theorem 4.2, we have

mR ≤
∥upb

(
(|R−T ||AT ||J ||S|) + (|ST ||J ||A||R−1|)

)
|R|∥max

∥R∥max
= mupp

R (A), (4.9)

cR ≤
∥∥upb ((|R−T ||AT ||J ||S|) + (|ST ||J ||A||R−1|)

)∥∥
max

= cuppR (A), (4.10)

mS ≤
∥|R−1|A||+ |S||J−1|upb

(
(|R−T ||AT ||J ||S|) + (|ST ||J ||A||R−1|)

)
∥max

∥S∥max
= mupp

S (A),

(4.11)

cS ≤

∥∥∥∥∥ |R−1|A||+ |S||J−1|upb
(
(|R−T ||AT ||J ||S|) + (|ST ||J ||A||R−1|)

)
|S|

∥∥∥∥∥
max

= cuppS (A).

(4.12)

Proof: As for (4.9), it can be obtained from (4.7) and

∥|Muvecb

(
RT � J−1

)
Mupb

(
(R−T � STJ) + (STJ �R−TJ)Πn,n

)
|vecb(|A|)∥∞

≤ ∥Muvecb

(
|RT |� |J−1|

)
Mupb

(
(|R−T |� |STJ |) + (|STJ |� |R−TJ |)Πn,n

)
|vecb(|A|)∥∞

= ∥uvecb(|J−1|upb
(
(|R−T ||AT ||J ||S|) + (|ST ||J ||A||R−1|)

)
|R|)∥∞

≤ ∥upb
(
(|R−T ||AT ||J ||S|) + (|ST ||J ||A||R−1|)

)
|R|∥max.

Similarly, we can obtain (4.10), (4.11) and (4.12).
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§5 Numerical Experiments

In this section, we will give some numerical precedents to show the outcomes got in Sections

3 and 4. All calculations are done in MATLAB R2016a, with accuracy 2.22× 10−16.

Example 5.1. In the first example, we compare the normwise, mixed and componentwise

condition numbers and their upper bounds given in Theorem 4.2 and Corollary 4.3 respectively.

In this example, we consider the Hamiltonian matrix

K =


0.1 0 1 0

0 x 0 0

1 1 −0.1 0

1 1 0 −x

 .

Table 1. Comparison of condition numbers and their upper bounds for different values of x.

x 0.1 0.2 0.3 0.4 0.5 1
κR(A) 24.5283 11.9803 7.5375 5.6071 4.6918 4.2205
mR(A) 2.3758 1.3727 0.9720 0.7690 0.6438 0.8316
cR(A) 11.1317 7.0121 5.3901 4.6119 4.1606 4.0217

mupp
R (A) 14.8171 9.9012 8.0688 7.2430 6.8133 6.3460

cuppR (A) 53.8659 36.8307 30.6957 28.1660 27.0700 27.8927
κS(A) 96.9234 26.4750 15.1380 11.6387 9.8911 7.5649
mS(A) 13.5598 3.6199 2.8858 2.5300 2.3165 1.8851
cS(A) 50.2804 11.9383 6.1466 5.8693 5.7145 6.0673

mupp
S (A) 50.8248 29.2708 21.5888 17.8466 15.6537 11.4092

cuppS (A) 144.4159 83.4914 62.8635 59.6577 57.8969 54.4266

In Table 1 κR(A) and κS(A) denotes the normwise condition number for factors R and S

individually. For their explicit expressions see [14]. Hence, upon calculations, we get the numer-

ical outcomes recorded in Table 1, from which we can find that the mixed and componentwise

condition numbers are tighter than the normwise one.

Example 5.2. Let A = (aij) ∈ R2n×2n be a Hilbert matrix (i.e., aij = 1/(i+ j − 1)), a Frank

matrix (i.e., aij = 2n − j + 1, i ≤ j; ai,i−1 = 2n − i + 1; aij = 0, i > j + 1 ), a Pascal matrix

(i.e., ai1 = a1j = 1, aij = ai−1,j + ai,j−1) and a Random(2n) matrix. From Table 2, we can

find that the bound (3.17) is constantly more tightly at that point the bound (3.22) however

the disadvantage is that it is somewhat costly by looking section set apart by t(3.17) and t(3.22).

Example 5.3. The test matrix A and L are set to be

A =

[
A11 A12

A21 A22

]
,

L = 10−lRandom(2n), where A11 = eye(n); A22 = diag((1.1)1/2, (1.1)2/2, ..., (1.1)n/2) and

A12 =


0.1

0.1 0.1
. . .

. . .

0.1 0.1

 , A21 =


0.1

0.01 0.1
. . .

. . .

0.01 0.1

 .
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Table 2. Comparison of rigorous normwise perturbation bounds (3.17) and (3.22).

n b(3.17) t(3.17) b(3.22) t(3.22)
2 Pascal 40.6367 0.111850 174.5033 0.015743

Hilbert 1.2804e+03 0.135869 4.9493e+04 0.023751
Frank 41.4635 0.132276 155.6911 0.016750

Random 28.3318 0.085248 646.7755 0.030598
3 Pascal 601.7476 0.159316 4.8353e+03 0.025492

Hilbert 1.0225e+05 0.140354 1.2674e+08 0.024408
Frank 1.3537e+03 0.164466 5.2178e+04 0.115959

Random 2.1857e+03 0.148285 4.9745e+04 0.025030
4 Pascal 3.1207e+07 0.163765 8.5424e+08 0.025447

Hilbert 4.2752e+08 0.146814 1.7700e+12 0.025031
Frank 2.7770e+05 0.153419 4.1753e+06 0.026466

Random 4.8270e+03 0.229636 1.9533e+05 0.024839
5 Pascal 4.0686e+11 0.167354 8.2880e+13 0.028043

Hilbert 9.4404e+11 0.215623 4.0918e+16 0.025678
Frank 1.5548e+10 0.282169 9.8352e+12 0.027103

Random 6.8858e+06 0.346150 6.7399e+08 0.025810
6 Pascal 2.7992e+14 0.318038 9.9907e+16 0.075091

Hilbert 1.3927e+19 0.218312 1.3368e+24 0.028824
Frank 3.4876e+13 0.393546 8.0500e+16 0.032341

Random 7.8562e+09 0.437335 3.3139e+12 0.026591
8 Pascal 1.4795e+20 0.214910 6.0466e+22 0.075685

Hilbert 2.9537e+32 0.250255 3.4004e+37 0.045839
Frank 1.1544e+30 0.547057 3.5986e+35 0.037279

Random 4.1896e+12 0.672344 4.1544e+15 0.042988
10 Pascal 9.7643e+20 0.452109 3.5216e+23 0.085685

Hilbert 1.7852e+33 0.576208 7.0921e+38 0.056583
Frank 8.9764e+30 0.862061 1.8352e+36 0.041279

Random 6.8043e+13 0.663286 9.0526e+16 0.062988

Table 3. Rigorous componentwise perturbation bounds (3.34) and (3.35).

l n 4 6 8 10 12 14 30 50

-1 b(3.34) 8.2312 12.3658 20.3615 23.4827 30.2538 31.8950 43.6521 76.4218

b(3.35) 39.2562 55.5677 136.9707 141.922 203.3562 294.5619 487.2063 673.65431

-2 b(3.34) 0.7990 1.1089 1.8772 2.3197 2.9432 3.3237 22.6706 37.4325

b(3.35) 3.6962 5.0394 12.6822 13.5271 20.1710 21.3739 55.9432 87.3452

-3 b(3.34) 0.0822 0.1132 0.1886 0.2219 0.2929 0.3249 18.4312 29.7439

b(3.35) 0.3898 0.5063 1.2157 1.3213 2.0074 2.9681 42.5643 65.0945

-4 b(3.34) 0.0066 0.0110 0.0186 0.0215 0.0290 0.0321 12.9812 15.6205

b(3.35) 0.0316 0.0503 0.1248 0.1260 0.1963 0.1989 19.5219 25.0645

-5 b(3.34) 0.0005 0.0012 0.0185 0.0022 0.0028 0.0034 5.5409 9.3482

b(3.35) 0.0038 0.0050 0.1155 0.1270 0.1280 0.1310 11.8543 17.4762

From Table 3, we can see that the bound (3.34) is constantly more tightly at that point the

bound (3.35).
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