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Fuzzy Zorn’s lemma with applications

XIN Xiao-long1,2,∗ FU Yu-long3

Abstract. We introduced the fuzzy axioms of choice, fuzzy Zorn’s lemma and fuzzy well-

ordering principle, which are the fuzzy versions of the axioms of choice, Zorn’s lemma and well-

ordering principle, and discussed the relations among them. As an application of fuzzy Zorn’s

lemma, we got the following results: (1) Every proper fuzzy ideal of a ring was contained in a

maximal fuzzy ideal. (2) Every nonzero ring contained a fuzzy maximal ideal. (3) Introduced

the notion of fuzzy nilpotent elements in a ring R, and proved that the intersection of all fuzzy

prime ideals in a commutative ring R is the union of all fuzzy nilpotent elements in R. (4)

Proposed the fuzzy version of Tychonoff Theorem and by use of fuzzy Zorn’s lemma, we proved

the fuzzy Tychonoff Theorem.

§1 Introduction

Zorn’s lemma is a useful result to appear in proofs of some non-constructive esistence the-

orems throughout many mathematical branches. In 1933 Artin and Chevalley first referred to

the principle as Zorns lemma. Especially, the equivalences of axioms of choice, Zorn’s lemma,

well-ordering principle and comparability principle were discussed ([4,8,7]).

The theory of fuzzy sets which was introduced by Zadeh ([16]) was applied to the branches

of pure and applied mathematics. The study of fuzzy relations was started by Zadeh ([17])

in 1971. In [17], the author introduced the concept of fuzzy relation, defined the notion of

equivalence, and gave the concept of fuzzy orderings. Fuzzy orderings have broad utility. They

can be applied, for example, when expressing our preferences with a set of alternatives. Since

then many notions and results from the theory of ordered sets have been extended to the fuzzy

ordered sets. In [15], Venugopalan introduced a definition of fuzzy ordered set (foset) (P, µ)

and presented an example on the set of positive integers. He extended this concept to obtain

a fuzzy lattice in which he defined a (fuzzy) relation as a generalization of equivalence. The
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notion of a multichain in a fuzzy ordered set is defined in [1]. In [13], Šešelja and Tepavčević

presented a survey on representations of ordered structures by fuzzy sets. An order relation

and a ranking method for type-2 fuzzy values are proposed in [9]. On the other hand, few years

after the inception of the notion of fuzzy set, Rosenfeld started the pioneer work in the domain

of fuzzification of the algebraic objects, with his work on fuzzy groups ([12]). This work is a

contribution to the theory founded on the ideas of those authors and their followers. Das ([6])

characterized fuzzy subgroups by their level subgroups. In [10], Lin applied the concept of fuzzy

sets to the theory of rings and introduced and examined the notion of a fuzzy ideal of a ring.

Zorn’s lemma has many applications in mathematics. By using of Zorn’s lemma, W. J. Lin

proved that every proper ideal of a ring is contained in a maximal ideal ([10]). In 2009, D. D.

Anderson etc. applied Zorn’s lemma to study some existence theorems in modules, groups, and

integral domains ([2]). In 2015, as a direct application of Zorn’s lemma, Haruo Tsukada proved

Tychonoff Theorem ([14]).

In the set theory, ones have been proved that axioms of choice, Zorn’s lemma, well-ordering

principle and comparability of cardinalities are all equivalent. By use of a special fuzzy order,

Chapin ([5]) studied the basic logical axioms of fuzzy set theory and also introduced the fuzzy

axiom of choice. Ismat Beg ([3]) proved fuzzy Zorn’s lemma by using fuzzy axiom of choice due

to Chapin. But the authors did not prove that such fuzzy axiom of choice and fuzzy Zorn’s

lemma are equivalent.

In this paper, by the use of Zadeh’s fuzzy order, we introduce the fuzzy axioms of choice,

fuzzy Zorn’s lemma and fuzzy well-ordering principle, which are the fuzzy versions of the axioms

of choice, Zorn’s lemma and well-ordering principle, and discuss the relations among them. As

an application of fuzzy Zorn’s lemma, we prove that every proper fuzzy ideal of a ring is

contained in a maximal fuzzy ideal. Moreover we give the fuzzy version of Tychonoff Theorem.

By use of the fuzzy Zorn’s lemma, we prove that fuzzy Tychonoff Theorem.

§2 Preliminary

In this section, we recollect some definitions and results which will be used in the following.

Let X be a non-empty set. A map µ : X → [0, 1] is called a fuzzy subset of X. Denote

the set of all fuzzy subsets of X by F (X). For a fuzzy subset µ ∈ F (X), we define supp{µ} =

{x ∈ X | µ(x) > 0}, which is called support set of µ. If | supp{µ} |≤ 1, the fuzzy subset µ is

called a fuzzy point of X. Denote the set of all fuzzy points of X by FP (X). Some times, for

λ ∈ FP (X), we write λ by λx, where λ(x) > 0. Let PF (X) denote the sets of all subsets of

the set of fuzzy subsets on X.

For µ, ν ∈ F (X), we give the following notions:

(µ ∩ ν)(x) = min{µ(x), ν(x)}, for all x ∈ X,

(µ ∪ ν)(x) = max{µ(x), ν(x)}, for all x ∈ X,

µ ⊆ ν iff µ(x) ≤ ν(x)}, for all x ∈ X.

Now we present the concept of Zadeh’s fuzzy partial orders.

Definition 2.1. ([16]) Let X be a crisp set. A fuzzy partial order (for short fuzzy order) µR

on X is a fuzzy subset µR of X ×X with the following properties:

(FO1) for all x ∈ X, µR(x, x) = 1 (Reflexivity),
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(FO2) for all x, y ∈ X, µR(x, y) > 0 and µR(y, x) > 0 imply x = y, (Antisymmetric)

(FO3) for all x, y, z ∈ X, µR(x, z) ≥ ∨y∈X(µR(x, y) ∧ µR(y, z)). (Transitive)

Let X be a set and µR be a fuzzy order on X. A pair (X,µR) is called a fuzzy ordered set.

If A is a subset of X, then we call (A,µR) a fuzzy ordered subset of X (for shortly we call A is

a fuzzy ordered subset of X).

Definition 2.2. Let (X,µR) be a fuzzy ordered set and A be a fuzzy ordered subset of X.

(1) The fuzzy order µR is said to be total if for all x, y ∈ X we have either µR(x, y) = 1 or

µR(y, x) = 1.

(2) If the fuzzy order µR is total on A, then A is called a fuzzy chain.

(3) An element x ∈ A is called fuzzy maximal element of A if there is no y(̸= x) in A for which

µR(x, y) = 1.

(4) An x ∈ X satisfying µR(y, x) = 1 for all y ∈ A is called fuzzy upper bound of A.

(5) An x ∈ A satisfying µR(y, x) = 1 for all y ∈ A is called fuzzy greatest element of A.

Similarly, we can define fuzzy lower bound, fuzzy minimal and least elements of A.

Definition 2.3. Let X be a set and µ, λ be two fuzzy sets on X.

(1) If µ(x) ≤ λ(x) for all x ∈ X, we call that µ is less than or equal to λ, denoted by µ ⊆ λ.

(2) If λ is a fuzzy point and supp{λ} ∈ supp{µ}, we call that λ belong to µ, denoted by λ ∈ µ

(sometimes by λ ⊆ µ).

(3) If µ(x) = 0 for some x ∈ X, we call µ is a proper fuzzy set.

It is well-known the result about famous axioms in set theory.

Theorem 2.4. ([2,8,7]) The following statements are equivalent:

(1)(Axiom of choice) If {Xi}i∈I is a family of nonempty sets, then
∏

i∈I Xi is also nonempty.

(2)(Zorn’s lemma) Let P be a partially ordered set. If every chain in P has an upper bound,

then X has a maximal element.

(3)(Well-ordering principle) Every set can be well-ordered.

(4)(Comparability principle) Given any two sets X and Y , there exists either a bijection between

X and a subset of Y , or a bijection between Y and a subset of X.

§3 The fuzzy axioms of choice, fuzzy Zorn’s lemma and fuzzy

well-ordering principle

In this section, we introduce the fuzzy axioms of choice, the fuzzy Zorn’s lemma and the

fuzzy well-ordering principle.

Fuzzy axioms of choice (FAC): Let X be a set. Given a family {µi∈I} of non-zero fuzzy sets

on X, one could choice a family {λi∈I} of fuzzy points, with λi ∈ µi, for each i ∈ I.

Fuzzy Zorn’s lemma (FZL): Let (X,µR) be a fuzzy ordered set. If every fuzzy chain in

(X,µR) has a fuzzy upper bound, then X has a fuzzy maximal element.

In order to state the fuzzy well-ordering principle, we firstly give the definition of fuzzy

well-ordered sets.

Definition 3.1. A fuzzy ordered set (X,µR) is called a fuzzy well-ordered set if it is a totally

fuzzy ordered set in which every non-empty subset has a fuzzy least element.
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Now we introduce the fuzzy well-ordering principle (FWOP): Every set X can be fuzzy

well-ordered, i.e. for every set X, there exists a fuzzy binary relation µR on X which makes it

a fuzzy well-ordered set.

Proposition 3.2. If fuzzy axiom of choice holds, then axiom of choice holds, too.

Proof. Let fuzzy axiom of choice hold. Given a family of non-empty sets {Xi}i∈I , then we

define X = ∪i∈IXi and define a family of fuzzy sets {µi}i∈I for each i ∈ I by

µi(x) =

{
1, x ∈ Xi

0, otherwise

for all x ∈ X. We can see that {µi}i∈I is a non-zero fuzzy set on X for each i ∈ I. By use of

the fuzzy axiom of choice, we can choice a family of fuzzy points {λi}i∈I , with λi ∈ µi, for each

i ∈ I. Hence we can choice xi = suppλi ∈ suppµi = Xi, for each i ∈ I.

Proposition 3.3. If Zorn’s lemma holds, then fuzzy Zorn’s lemma holds, too.

Proof. Assume that Zorn’s lemma holds. Let (X,µR) be a fuzzy ordered set, in which every

fuzzy chain has a fuzzy upper bound in (X,µR). Define a binary relation ” ≤ ” by x ≤ y if

µR(x, y) = 1. Then we can check that (X,≤) is an ordered set. If {ai}i∈I is a chain in (X,≤)

with ai ≤ ai+1 for each i ∈ I, then µR(ai, ai+1) = 1 for each i ∈ I and thus it is a fuzzy

chain. By hypothesis, {ai}i∈I has a fuzzy upper bound in (X,µR), denote it by a0. Then we

have R(ai, a0) = 1. By the definition of ≤, we have ai ≤ a0, which means that x0 is a upper

bound for {ai}i∈I in (X,≤). Since Zorn’s lemma holds, we have that (X,≤) has a maximal

element, denote it by x0. We claim that x0 is a fuzzy maximal element in (X,µR). Otherwise,

if x0 is not a fuzzy maximal element in (X,µR), there exists x1 ∈ X, such that x1 ̸= x0 and

R(x0, x1) = 1. By the definition of ≤, we have x0 ≤ x1 but x1 ̸= x0, contradicting to that x0

is a fuzzy maximal element in (X,µR).

Proposition 3.4. If the fuzzy Zorn’s lemma holds, then the fuzzy axiom of choice holds, too.

Proof. Assume that fuzzy Zorn’s lemma holds. Let {µi}i∈I be a family of non-zero fuzzy sets on

a non-empty X. Let P be the ”fuzzy partial functions” from I to ∪i∈Iµi
.
= {λi | λi ∈ µi, i ∈ I},

where for ϕ ∈ P we mean that ϕ ⊆ I × ∪i∈Iµi such that for each i ∈ I, any element of ϕ with

first component i has second component in µi, and for each i, there is at most one such element.

Note that P is non-empty because the empty fuzzy partial function is a member of it. Let P

be partially ordered by fuzzy order µR as follows: for all ϕ, ϕ′ ∈ P

µR(ϕ, ϕ
′) =

{
1, ϕ ⊆ ϕ′

0, otherwise.

Then we can check that (P, µR) is a fuzzy ordered set. Given any fuzzy chain {ϕi}i∈Λ in P ,

we can verify that the union of Φ = ∪i∈Λϕi is a fuzzy upper bound to {ϕi}i∈Λ in P . First we

check that Φ ∈ P . Clearly Φ ⊆ I × ∪i∈Iµi. For a ∈ Φ, then there is ϕi such that a ∈ ϕi. If

the first component of a is i, then it’s second component is in µi and for such i, there is at

most one such element. It follows that a ∈ P . Then we check that Φ is a fuzzy upper bound to

{ϕi}i∈Λ. For any ϕi ∈ {ϕi}i∈Λ, we have ϕi ⊆ Φ and hence R(ϕi,Φ) = 1 by the definition of R.

It follows that Φ is a fuzzy upper bound to {ϕi}i∈Λ. By the fuzzy Zorn’s lemma, (P, µR) has
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a fuzzy maximal element ϕ. Therefore we can verify that such ϕ will be a fuzzy function, i.e,

ϕ = {(i, λi)} with λi ∈ µi, as required. In fact, if it is not a fuzzy function, then there is some

a ∈ ϕ with the first component i0 but it’s second component is empty. Let ϕ1 be a element in

P , such that (i0, λi0) is in ϕ1 but for other i ∈ Λ the second component is same with one of

ϕ, where λi0 ∈ µi0 . Therefore ϕ ⊆ ϕ1 and hence µR(ϕ, ϕ1) = 1. This contradict to that ϕ is a

fuzzy maximal element.

Proposition 3.5. The following statements are equivalent:

(1) The well-ordering principle holds.

(2) The fuzzy well-ordering principle holds.

Proof. (1)⇒(2) Let (WOP) hold. Then given a set X, there exists a binary relation ≤ on X,

such that it is a well-ordered set. Define a fuzzy binary relation e by

e(x, y) =

{
1, x ≤ y

0, otherwise.

Then we can check that e is a fuzzy order on X. Since X is a well-ordered set, then it is a

chain in (X,≤) and hence is also a fuzzy chain in (X, e). Now we verify that (X, e) a fuzzy

well-ordered set. Let A be a subset of X. Since X is a well-ordered set in (X,≤), then there

exists a least element x0 ∈ A, that is, x0 ≤ a for each a ∈ A. This means that e(x0, a) = 1 for

each a ∈ A. It follows that x0 is a fuzzy least element of A in (X, e), and thus (X, e) is a fuzzy

well-ordered set.

(2)⇒(1) Let (FWOP) hold. Then for any set X, there exists a fuzzy binary relation e, such

that (X, e) is a fuzzy well-ordered set. Define a binary relation ≤ by x ≤ y iff e(x, y) = 1, for

all x, y ∈ X. Then we can check that ≤ is a order on X. Since X is a fuzzy chain in (X, e),

then it is also a chain in (X,≤). Let A ⊆ X. Since X is a fuzzy well-ordered set in (X,≤),

then there exists a least element x1 ∈ A, that is, e(x1, a) = 1 for each a ∈ A. By the definition

of ≤, we have x1 ≤ a for each a ∈ A. This means that x1 is a least element of A, and hence

(X,≤) is a well-ordered set.

By Theorem 2.4, Propositions 3.2, 3.3, 3.4 and 3.5, we can get the following theorem.

Theorem 3.6. The following statements are equivalent:

(1) Fuzzy axiom of choice holds;

(2) Axiom of choice holds;

(3) Zorn’s lemma holds;

(4) Fuzzy Zorn’s lemma holds;

(5) The well-ordering principle holds.

(6) The fuzzy well-ordering principle holds.

§4 The applications of fuzzy Zorn’s lemma

In this section, we discuss the applications of fuzzy version of Zorn’s lemma.
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4.1 The application of the fuzzy Zorn’s lemma for fuzzy ideals in rings

Firstly by use of the fuzzy Zorn’s lemma, we will prove that in a ring R, any fuzzy ideal of

R is contained in a maximal fuzzy ideal.

Definition 4.1. ([10]) Let R be a ring and A be a fuzzy set of R. A is called a fuzzy ideal of

R if it satisfies the following conditions:

(1) A(x+ y) ≥ A(x) ∧A(y), for all x, y ∈ R,

(2) A(−x) ≥ A(x), for all x ∈ R,

(3) A(xy) ≥ A(x) ∨A(y), for all x, y ∈ R.

We denote the set of all fuzzy ideals of a ring R by FI(R).

In the following we give a relation between fuzzy ideals and ideals in rings. For a fuzzy set

A and t ∈ [0, 1], we denote At = {x ∈ R | A(x) ≥ t}.

Proposition 4.2. ([11]) Let R be a ring and A be a fuzzy subset of R. Then A is a fuzzy ideal

of R if and only if At is a ideal of R, for all t ∈ [0, 1] and At ̸= ∅.

Proposition 4.3. Let R be a ring and {Ai}i∈I be a family of fuzzy ideals of R such that

Ai ⊆ Ai+1 for all i ∈ I. Then ∪i∈IAi is also a fuzzy ideal.

Proof. Let J = ∪i∈IAi and t ∈ [0, 1] such that Jt ̸= ∅. Now we can check that Jt is an ideal

of R. Let x, y ∈ Jt, then J(x) ≥ t and J(y) ≥ t. Let J(x) = a and J(y) = b. By the

definition of the supremum, for any ϵ > 0, there is i0 and j0 such that Ai0(x) > a − ϵ and

Aj0(y) > b− ϵ. Take k0 = max{i0, j0}, since {Ai}i∈I is a chain, we have Ak0(x) > a− ϵ ≥ t− ϵ

andAk0(y) > b−ϵ ≥ t−ϵ. SinceAi is fuzzy ideal for each i ∈ I, then J(x−y) = (∪i∈IAi)(x−y) =

supi∈I{Ai(x − y)} ≥ supi∈I{Ai(x) ∧ Ai(y)} ≥ Ak0(x) ∧ Ak0(y) ≥ t − ϵ. By the arbitrariness

of ϵ, we get J(x − y) ≥ t, and thus x − y ∈ Jt. Similarly we can prove that for all x ∈ R and

y ∈ Jt, we have xy ∈ Jt. By Proposition 4.2, we get that J is a fuzzy ideal of R.

Definition 4.4. Let R be a ring and A be a proper fuzzy ideal of R. A is called a maximal

fuzzy ideal if there is no proper fuzzy ideal B such that A ⊂ B ⊂ R.

Theorem 4.5. Let R be a ring with identity. Then every proper fuzzy ideal µ of R is contained

in a maximal fuzzy ideal.

Proof. Let FI(µ) be the set of proper fuzzy ideals in R containing µ. We define a fuzzy order

e on FI(µ) by e(λ, ν) = 1 iff λ ⊆ ν for all λ, ν ∈ FI(µ). Let C be a fuzzy chain in FI(µ), that

is, C is just a string of fuzzy ideals, · · ·µ1 ⊆ µ2 ⊆ · · · .
Now we show that C has a fuzzy upper bound in FI(µ). Let J = ∪µi∈Cµi. Clearly

µ ⊆ J . Also we can check that J is a fuzzy ideal of R. Indeed, J(x+ y) = (∪µi∈Cµi)(x+ y) =

supµi∈C{µi(x+y)} ≥ supµi∈C{µi(x)∧µi(y)} = supµi∈C{µi(x)}∧supµi∈C{µi(y)} = J(x)∧J(y).
Similarly we can prove that J(−x) ≥ J(x) and J(x · y) ≥ J(x) ∨ J(y). By Definition 4.1, we

get that J is a fuzzy ideal of R.

Moreover we prove that J is proper. Since µi is proper for each µi ∈ C, then µi(xi) = 0

for some xi ∈ X. Since µi is a fuzzy ideal, µi(xi) = µi(xi · 1) ≥ µi(1) and hence µi(1) = 0 for
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each µi ∈ C. It follows that J(1) = 0, and thus J is proper. We get J ∈ FI(µ). Note that

µi ⊆ J and hence e(µi, J) = 1 for each µi ∈ C. This shows that J is a fuzzy upper bound of C

in FI(µ). By the fuzzy Zorn’s lemma, FI(µ) has a fuzzy maximal element, say it as ν. We can

get that ν is a fuzzy maximal ideal of R. Otherwise, if there is a proper fuzzy ideal λ such that

ν ⊆ λ and ν ̸= λ, then λ ∈ FI(µ) and e(ν, λ) = 1, and so ν is not a fuzzy maximal element of

FI(µ), a contradiction.

Corollary 4.6. Every nonzero ring contains a maximal fuzzy ideal.

Proof. Let R be a nonzero ring. Define a fuzzy set A0 as follwing:

A0(x) =

{
1, x = 0

0, x ̸= 0

Then we can check that A0 is a fuzzy ideal of R. Since R is a nonzero ring, then there is a ∈ R

and a ̸= 0 such that A0(a) = 0. This shows that A0 is a proper fuzzy ideal. From Theorem

4.5, A0 is contained in a maximal fuzzy ideal M . It follows that R contains a maximal fuzzy

ideal M .

Now, we discuss some properties of fuzzy ideals generated by fuzzy subsets, which will be

used in the following discussions.

Definition 4.7. ([10]) Let R be a ring and A be a fuzzy set of R. The smallest fuzzy ideal

containing A is called the fuzzy ideal generated by A, denoted by [A].

Proposition 4.8. ([11]) Let R be a ring and A be a fuzzy subset of R. Then for any x ∈ R,

we have

[A](x) = sup{t | x ∈ [At], At ̸= ∅}.

By use of the above representation of fuzzy ideal generated by a fuzzy subset, we give a

representation of fuzzy ideal generated by a fuzzy point.

Proposition 4.9. Let R be a ring and λ be a fuzzy point of R with supp{λ} = {x0}. Then for

any x ∈ R, we have

[λ](x) =

{
λ(x0), x ∈ [x0]

0, otherwise.

Moreover, supp{[λ]} = [x0].

Proof. By Proposition 4.8, we have [λ](x) = sup{t | x ∈ [λt], λt ̸= ∅}. Note that λt ̸= ∅ iff λt =

{x0} iff λ(x0) ≥ t. It follows that for all x ∈ [x0], [λ](x) = sup{t | x ∈ [x0], λ(x0) ≥ t} = λ(x0).

Otherwise, [λ](x) = 0.

In the following, by use of fuzzy Zron’s lemma, we discuss the connection between fuzzy

prime ideals and the fuzzy nilpotent elements in the rings. First we recall notion of nilpotent

elements and an important theorem concerns nilpotent elements in commutative rings.

Definition 4.10. Let R be a commutative ring. An element x of R is called nilpotent if xn = 0

for some n ≥ 1.
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Let R be a commutative ring. Denote the set of all prime ideals in R by PI(R) and the set

of all nilpotent elements of R by NE(R).

Theorem 4.11. Let R be a commutative ring. Then the intersection of all prime ideals in R

is the set of nilpotent elements in R, that is, ∩{P | P ∈ PI(R)} = NE(R).

For fuzzy subsets A,B of a set X, define A ·B, A+B and A∗ as follows: for any x ∈ X,

(A ·B)(x) =

{
sup{A(x1) ∧B(x2) | x = x1x2}, if ∃t1, t2 ∈ R, s.t., x = t1t2
0, otherwise

(A+B)(x) =

{
sup{A(x1) ∧B(x2) | x = x1 + x2}, if ∃t1, t2 ∈ R, s.t., x = t1 + t2
0, otherwise

A∗ = {x ∈ X|A(x) = A(0)}.

We denote AB = A · B and A1 = A, An = An−1A for n > 1. Firstly, we give a property

of An for a fuzzy subset A of R.

Lemma 4.12. Let A,B be fuzzy subsets and λ, ν be fuzzy points with supp{λ} = {x0} and

supp{ν} = {y0} in a ring R. Then we have the following:

(1) supp{AB} = supp{A}supp{B};
(2) supp{[λ][ν]} = [x0][y0];

(3) supp{A+B} = supp{A}+ supp{B};
(4) supp{[λ] + [ν]} = [x0] + [y0];

(5) A ̸= 0 and B ̸= 0 iff AB ̸= 0 iff A+B ̸= 0;

(6) A ̸= 0 iff An ̸= 0 for all n ∈ N;

where A+B = {x+ y | x ∈ A, y ∈ B} and AB = {xy | x ∈ A, y ∈ B} for all A,B ⊆ R.

Proof. We can directly check that the above statements hold.

Proposition 4.13. ([10]) Let A,B,C be fuzzy ideals of a ring R. Then the following hold:

(1) A(B + C) ⊆ AB +AC, (B + C)A ⊆ BA+ CA;

(2) AB ⊆ A ∩B ⊆ A,B;

(3) A ⊆ B implies AC ⊆ BC, CA ⊆ CB and A+ C ⊆ B + C;

(4) AB and A+B are also fuzzy ideals of R;

(5) A(0) ≥ A(x) for all x ∈ R;

(6) A(0) > 0 for any non-zero fuzzy ideal of R.

Proposition 4.14. Let A,B be nonzero fuzzy ideals of a ring R. Then we have the following:

(1) A ⊆ B implies supp{A+B} = supp{B};
(2) A ⊆ nA, where nA = A+ · · ·+A︸ ︷︷ ︸

n times

;

(3) supp{nA} = supp{A}.

Proof. We can directly check that the above statements hold.

Definition 4.15. ([11]) Let µP be a fuzzy ideal of a ring R and |ImµP | > 1. If for any fuzzy

points λ and ν, λν ⊆ µP implies λ ⊆ µP or µ ⊆ µP , then µP is called a fuzzy prime ideal.
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We denote the set of all fuzzy prime ideals of R by FPI(R).

Proposition 4.16. ([11]) Let µP be a fuzzy prime ideal of a ring R. Then we have the

following:

(1) |ImµP | = 2;

(2) µP (0) = 1;

(3) (µP )∗ is a prime ideal of R.

Proposition 4.17. Let µP be a fuzzy prime ideal of a ring R. Then for any fuzzy ideal A of

R, we have A ⊆ A+ µP .

Proof. Note that (A + µP )(x) ≥ A(x) ∧ µP (0) for all x ∈ R. By Proposition 4.16(2), we get

µP (0) = 1, and thus (A+ µP )(x) ≥ A(x) ∧ 1 = A(x) for all x ∈ R. That is A+ µP ⊇ A.

Proposition 4.18. Let R be a ring and A be a fuzzy set of R. Define a fuzzy point xA for

x ∈ R as follows:

xA(t) =

{
A(x), t=x

0, otherwise.

Then we have A = ∪{xA | x ∈ R}, that is, any fuzzy set of R can be represented by a union of

some fuzzy points.

Proof. We can directly check it.

Definition 4.19. Let R be a ring and λ be a fuzzy point of R. λ is called a fuzzy nilpotent

element if λn(0) > 0 for some n ≥ 1.

Clearly, any fuzzy nilpotent element is not equal to 0. We denote the set of all fuzzy nilpotent

elements of R by FN(R).

Proposition 4.20. Let R be a commutative ring and λ, ν be fuzzy points of R with supp{λ} =

{x0} and supp{ν} = {y0}. Then we have the following:

(1) λν is also a fuzzy point of R with supp{λν} = x0y0;

(2) λn is also a fuzzy point of R with supp{λn} = xn
0 , for any n ∈ N;

(3) λ is a fuzzy nilpotent elements of R iff x0 is a nilpotent elements of R;

(4) λn(0) > 0 iff xn
0 = 0;

(5) supp{[λ][ν]} = supp{[λν]}.

Proof. We can directly check that the above statements hold.

Example 1. Let R2×2 = {

(
a b

c d

)
| a, b, c, d ∈ R}, where R is the set of all real numbers.

Then (R2×2,+, ·,0) forms a commutative ring, where 0 denotes zero matrix, + and · are

additions and multiplications of matrix, respectively. It is easy to see that B =

(
0 b

0 0

)
is

a nilpotent element of R, since B2 = 0. Let 1B be the characteristic function of {B}. We

can see supp{1B} = {B}. By Proposition 4.20(2), we have supp{12B} = {B2}, and hence

12B(B
2) = 12B(0) > 0. It follows that 1B is a fuzzy nilpotent element of R2×2. Moreover, let

a ̸= 0 and A =

(
a 0

0 0

)
, then 1A is not a fuzzy nilpotent element of R2×2.
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Now by use of the fuzzy Zorn’s lemma, we give a result to show a relation between fuzzy

prime ideals and fuzzy nilpotent elements on a commutative ring. Indeed, it is a fuzzy version

of Theorem 4.11.

Theorem 4.21. The intersection of all fuzzy prime ideals in a commutative ring R is the union

of all fuzzy nilpotent elements in R, that is, ∩{µP | µP ∈ FPI(R)} = ∪{λ | λ ∈ FN(R)}.

Proof. Take a fuzzy nilpotent element λ with supp{λ} = x0 and a fuzzy prime ideal µP in R.

Then we have that λn(0) > 0 for some n ≥ 1. By Proposition 4.20(2), λn is also a fuzzy point

of R with supp{λn} = xn
0 = 0, and hence, λn(x) = 0 for any x ̸= 0. It follows from Proposition

4.16(2) that λn ⊆ µP . Since µP is prime, we get λ ⊆ µP , and so, ∪{λ | λ ∈ FN(R)} ⊆ µP . It

follows that ∪{λ|λ ∈ FN(R)} ⊆ ∩{µP | µP ∈ FPI(R)}.
Now we prove the inverse inclusion relation. Let λ be a fuzzy point of R such that λ ⊆ µP

for all fuzzy prime ideals. We claim that λ is a fuzzy nilpotent element. Otherwise, if λ is not

a fuzzy nilpotent element, then λn(0) = 0 for each n ≥ 1. Define a set S as follows:

S = {A ∈ FI(R) | λn /∈ A,∀n ≥ 1}.

Consider the fuzzy ideal A0 given in the proof of Corollary 4.6. Since λ is not a fuzzy nilpotent

element, then supp{λn} ̸= {0}, and so A0 ∈ S. This shows that S is nonempty. We define a

fuzzy relation on S by the following: for all A,B ∈ S,

R(A,B) =

{
1, A ⊆ B

0, otherwise.

Then R is a fuzzy ordered relation on S. Let C = {Ai}i∈I is a fuzzy chain in (S,R), where

I = {1, 2, · · · } and R(Ai, Ai+1) = 1 for i = 1, 2, · · · . Then we can check that A = ∪i∈IAi

is a fuzzy upper bound of C in S. By Proposition 4.3, A is a fuzzy idea of R. In order to

prove A ∈ S, it is only to check λn /∈ A, for all n ≥ 1. If it is not, then λn ∈ A for some

n ∈ N. By Definition 2.3(2), we have that x0 = supp{λn} ∈ supp{A}, or A(x0) > 0. It

follows that supi∈I{Ai(x0)} > 0. Hence we can get Ai(x0) > 0 for some i ∈ I. This means

supp{λn} = x0 ∈ supp{Ai}, or λn ∈ Ai. This contradict to Ai ∈ S. So that we get that λn /∈ A,

for all n ≥ 1. This shows that A is a fuzzy upper bound of S, and thus the condition of fuzzy

Zorn’s lemma holds in S. By the fuzzy Zorn’s lemma, there is a maximal element in S, say

M . In the following, we prove that M is a fuzzy prime ideal. First we claim that | ImM |> 1.

Otherwise if | ImM |= 1, then from A0 ⊆ M we get M = 1, and so supp{M} = R. This

contradict to λn /∈ M . Moreover let σν ⊆ M for σ, ν ∈ FP (R). To prove σ ⊆ M or ν ⊆ M , we

assume otherwise. Then [σ] +M and [ν] +M are both ideals by Proposition 4.14 and strictly

larger than M , so that they can’t be in S. This means that λn ∈ [σ] +M and λm ∈ [ν] +M

for some n,m ∈ N. Moreover, we have λn+m ∈ ([σ] +M)([ν] +M), by 4.12(1). Note that the

following inclusions:

λn+m ∈ ([σ] +M)([ν] +M)

⊆ [σ][ν] + [σ]M + [ν]M +MM (by Proposition 4.13(1))

⊆ [σ][ν] + 3M . (by Proposition 4.13(2), (3))

Hence λn+m ∈ [σ][ν] + 3M , and hence xn+m
0 ∈ supp{[σ][ν] + 3M} = supp{[σ][ν]}+ supp{3M}.

By proposition 4.20(5) and 4.14(3), supp{[σ][ν]} + supp{3M} = supp{[σν]} + supp{3M} =
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supp{[σν]} + supp{M} = supp{[σν] + M}. Since σν ⊆ M , then we have [σν] ⊆ M , and

hence supp{[σν] + M} = supp{M}, by Proposition 4.14(1). From the above arguments, we

get xn+m
0 ∈ supp{M}, that is λn+m ∈ M . It is a contradiction to M ∈ S. This shows that

M is a fuzzy prime ideal. Since M ∈ S, we have λ /∈ M , and hence we get a contradiction

to the choice of λ. Therefore, if a fuzzy point λ ⊆ µP for all prime fuzzy ideals, then λ must

be a fuzzy nilpotent element. Let F = ∩{µP | µP ∈ FPI(R)}. By Proposition 4.18, we have

F = ∪{xF | x ∈ R}, where xF is a fuzzy point and xF ⊆ F . It follows that xF ⊆ µP , for each

fuzzy prime ideal µP . By the above arguments, we get xF is a fuzzy nilpotent element, and so

∪{xF | x ∈ R} ⊆ ∪{λ | λ ∈ FN(R)},

or F ⊆ ∪{λ | λ ∈ FN(R)}. Therefore the inverse inclusion relation holds. We complete the

proof.

From the following example, we can see that in Theorem 4.21, if fuzzy prime ideals are

replaced by fuzzy ideals, it does not hold.

Example 2. Consider the ring R2×2 as given in Example 1. For any µ ∈ FI(R2×2), we have

1{0} ⊆ µ, and thus ∩{µP | µP ∈ FPI(R2×2)} = 1{0}. From Example 1, we know that 1{B} is

a fuzzy nilpotent element of R2×2 for B =

(
0 b

0 0

)
and b ̸= 0. Note that 1{0}  1{B}, and

hence ∩{µ | µ ∈ FI(R2×2)} ≠ ∪{λ | λ ∈ FN(R2×2)}.

4.2 Fuzzy Tychonoff theorem and the applications of fuzzy Zorn’s

lemma

In this subsection, we discuss the fuzzy version of Tychonoff Theorem and give it’s proof by

fuzzy Zorn’s lemma. Firstly we present Tychonoff Theorem.

Tychonoff Theorem. ([14]) For an arbitrary family of compact topological spaces {Xi}i∈I ,

the product space
∏

i∈I Xi with the product topology is compact.

Definition 4.22. A set Fµ consisting of fuzzy subsets of a set X is called a fuzzy filter on X,

if the following conditions are satisfied:

(1) 0 /∈ Fµ, 1 ∈ Fµ,

(2) for any fuzzy subsets U, V of X, if U ∈ Fµ and U ⊆ V , then V ∈ Fµ,

(3) for any U, V ∈ Fµ, we have U ∩ V ∈ Fµ.

Definition 4.23. A fuzzy filter Fµ on a set X is called a fuzzy ultrafilter or a fuzzy maximal

filter, if Fµ is maximal with respect to the inclusion, that is, any fuzzy filter including Fµ must

be equal to Fµ.

Proposition 4.24. Let X,Y be two sets and f : X → Y be a map.

(1) For a fuzzy filter Fµ on X, we define

f(Fµ) = {V ∈ F (Y ) | f−1(V ) ∈ Fµ}.
Then f(Fµ) is the smallest fuzzy filter on Y including the set of the images {f(U) | U ∈ Fµ}.
(2) For a fuzzy filter Gµ on Y such that f−1(V ) ̸= 0 for all V ∈ Gµ, we define
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f−1(Gµ) = {U ⊆ F (X) | ∃V ∈ Gµ(f
−1(V ) ⊆ U)}.

Then f−1(Gµ) is the smallest fuzzy filter on X including the set of the inverse images {f−1(V ) |
V ∈ Gµ}.

Proof. (1) Let Fµ be a fuzzy filter on X. Clearly f(Fµ) ⊇ {f(U) | U ∈ Fµ}.
Now we prove that f(Fµ) is a fuzzy filter on Y . We claim that 0 /∈ Fµ. If 0 ∈ Fµ, then

f−1(0)(x) = 0(f(x)) = 0 ∈ Fµ, a contradiction. Similarly we can prove that 1 ∈ f(Fµ).

Moreover let U ∈ f(Fµ) and U ⊆ V . Then f−1(U) ⊆ f−1(V ) and f−1(U) ∈ Fµ. Since Fµ is

a fuzzy filter, we get f−1(V ) ∈ Fµ and hence V ∈ f(Fµ). Lastly we let U, V ∈ f(Fµ). Then

f−1(U) ∈ Fµ and f−1(V ) ∈ Fµ. Since Fµ is a fuzzy filter, we have f−1(U)∩f−1(V ) ∈ Fµ. Note

that for all x ∈ X, we have (f−1(U) ∩ f−1(V ))(x) ≤ (f−1(U))(x) = U(f(x)) and (f−1(U) ∩
f−1(V ))(x) ≤ (f−1(V ))(x) = V (f(x)). Thus (f−1(U) ∩ f−1(V ))(x) ≤ U(f(x)) ∧ V (f(x)) =

(U ∩ V )(f(x)) = f−1(U ∩ V )(x), and hence f−1(U) ∩ f−1(V ) ⊆ f−1(U ∩ V ). Combining the

above arguments, we get that f(Fµ) is a fuzzy filter on Y .

Let Gµ be a fuzzy filter and Gµ ⊇ {f(U) | U ∈ Fµ}. Taking U ∈ f(Fµ), then f−1(U) ∈ Fµ

and hence f(f−1(U)) ∈ {f(V ) | V ∈ Fµ} ⊆ Gµ. Note that f(f−1(U)) ⊆ U and thus U ∈ Gµ.

It follows that f(Fµ) ⊆ Gµ.

(2) Let Gµ be a fuzzy filter on Y such that f−1(V ) ̸= ∅ for all V ∈ Gµ. Let U ∈ {f−1(V ) | V ∈
Gµ}. Then U = f−1(V ) for some V ∈ Gµ. By the definition of f−1(Gµ), we have U ∈ f−1(Gµ),

that is, f−1(Gµ) ⊇ {f−1(V ) | V ∈ Gµ}.
Next we prove 0 /∈ f−1(Gµ). If 0 ∈ f−1(Gµ), then f−1(V ) ⊆ 0 for some V ∈ Gµ, and hence

f−1(V ) = 0. But by hypothesis, f−1(V ) ̸= 0, a contradiction. Clearly 1 ∈ f−1(Gµ). Moreover

for U, V ∈ F (X), if U ∈ f−1(Gµ) and U ⊆ V , then f−1(W ) ⊆ U for some W ∈ Gµ. By U ⊆ V ,

we have f−1(W ) ⊆ V for some W ∈ Gµ, and so V ∈ f−1(Gµ). At last let U, V ∈ f−1(Gµ).

Then f−1(W1) ⊆ U and f−1(W2) ⊆ V for some W1,W2 ∈ Gµ. Hence f−1(W1 ∩ W2) =

f−1(W1)∩f−1(W2) ⊆ U ∩V . It follows from W1∩W2 ∈ Gµ that U ∩V ∈ f−1(Gµ). Combining

the above arguments, we get that f−1(Gµ) is a fuzzy filter on X.

Let Fµ be a fuzzy filter and Fµ ⊇ {f−1(V ) | V ∈ Gµ}. Let U ∈ f−1(Gµ). Then f−1(V ) ⊆ U

for some V ∈ Gµ. Since Fµ ⊇ {f−1(V ) | V ∈ Gµ}, f−1(V ) ∈ Fµ. It follows from Fµ being a

fuzzy filter that U ∈ Fµ. That is, f
−1(Gµ) ⊆ Fµ.

Proposition 4.25. Let X,Y be two sets, and f : X → Y be a onto map. For any U ∈ F (X)

and V, Z ∈ F (Y ), we have the following equivalence:

U ∩ f−1(V ) ⊆ f−1(Z) ⇔ f(U) ∩ V ⊆ Z.

Proof. (⇒) Note that for all x ∈ X and y = f(x),

U ∩ f−1(V ) ⊆ f−1(Z)

⇒ U(x) ≤ f−1(Z)(x) or f−1(V )(x) ≤ f−1(Z)(x)

⇒ U(x) ≤ Z(f(x)) or V (f(x)) ≤ Z(f(x))

⇒ f(U)(y) = sup{U(x) | f(x) = y} or V (y) ≤ Z(y)

⇒ f(U)(y) ≤ sup{Z(f(x)) | f(x) = y} or V (y) ≤ Z(y), (∵ U(x) ≤ Z(f(x)))

⇒ f(U)(y) ≤ sup{Z(y) | f(x) = y} or V (y) ≤ Z(y)

⇒ f(U)(y) ≤ Z(y) or V (y) ≤ Z(y)

⇒ (f(U) ∩ V )(y) ≤ Z(y)

⇒ f(U) ∩ V ⊆ Z.
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(⇐) For any y ∈ Y and y = f(x), we have the following:

f(U) ∩ V ⊆ Z

⇒ f(U)(y) ≤ Z(y) or V (y) ≤ Z(y)

⇒ f(U)(f(x)) ≤ Z(f(x)) or V (f(x)) ≤ Z(f(x))

⇒ f(U)(f(x)) ≤ f−1(Z)(x) or f−1(V )(x) ≤ f−1(Z)(x)

⇒ U(x) ≤ f(U)(f(x)) ≤ f−1(Z)(x) or f−1(V )(x) ≤ f−1(Z)(x)

⇒ U(x) ≤ f−1(Z)(x) or f−1(V )(x) ≤ f−1(Z)(x)

⇒ (U ∩ f−1(V ))(x) ≤ f−1(Z)(x)

⇒ U ∩ f−1(V ) ⊆ f−1(Z).

Proposition 4.26. Let X,Y be two sets, and f : X → Y be a map. For a fuzzy filter Fµ on

X and a fuzzy filter Gµ on Y such that f−1(V ) ̸= 0 for all V ∈ Gµ, we have the following

equivalence:

f−1(Gµ) ⊆ Fµ ⇔ Gµ ⊆ f(Fµ).

Proof. The equivalence follows since we have:

f−1(Gµ) ⊆ Fµ

⇔ ∀U ∈ F (X)(∃V ∈ Gµ)(f
−1(V ) ⊆ U) ⇒ U ∈ Fµ

⇔ ∀V ∈ Gµ(f
−1(V ) ∈ Fµ)

⇔ Gµ ⊆ f(Fµ).

This is essentially the Galois connection between the power fuzzy subsets P (F (X)) and

P (F (Y )) induced by the inverse image map f−1 : F (Y ) → F (X).

Proposition 4.27. Let X,Y be two sets and f : X → Y be a onto map. Let Fµ and Gµ be

fuzzy filters on X and Y , respectively. If f(Fµ) ⊆ Gµ, then there exists a fuzzy filter Hµ on X

such that Fµ ⊆ Hµ and Gµ = f(Hµ).

Proof. For any U ∈ Fµ we have f(U) ∈ f(Fµ) ⊆ Gµ. Hence for any V ∈ Gµ, we have

f(U) ∩ V ̸= 0. This implies that U ∩ f−1(V ) ̸= 0. Otherwise if U ∩ f−1(V ) = 0, then we have

the following implications: for all x ∈ X and y ∈ Y ,

(U ∩ f−1(V ))(x) = 0

⇒ U(x) = 0 or f−1(V )(x) = 0

⇒ U(x) = 0 or V (f(x)) = 0

⇒ f(U)(x) = 0 or V (y) = 0 (by f being onto)

⇒ f(U) ∩ V = 0,

a contradiction.

Let Hµ be the smallest fuzzy filter on X including Fµ ∪ f−1(Gµ), namely,

Hµ = {W ⊆ F (X) | ∃U ∈ Fµ, ∃V ∈ Gµ, (U ∩ f−1(V ) ⊆ W )}.
Then we have Fµ ⊆ Hµ and f−1(Gµ) ⊆ Hµ, which implies Gµ ⊆ f(Hµ) by Lemma 4.25.

Conversely we have

f(Hµ) = {Z ∈ F (Y ) | ∃U ∈ Fµ, ∃V ∈ Gµ(U ∩ F−1(V ) ⊆ f−1(Z))}.
For any U ∈ Fµ, V ∈ Gµ, and Z ∈ F (Y ), we have the following:

Z ∈ f(Hµ)

⇒ U ∩ f−1(V ) ⊆ f−1(Z)

⇒ f(U) ∩ V ⊆ Z (by Proposition 4.25)
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⇒ Z ∈ Gµ, (∵ f(Fµ) ⊆ Gµ)

and hence f(Hµ) ⊆ Gµ.

Proposition 4.28. Let X,Y be two sets and f : X → Y be a onto map. For any fuzzy

ultrafilter Fµ on X, f(Fµ) is also a fuzzy ultrafilter on Y .

Proof. It follows from Proposition 4.27 that f(Fµ) is also a fuzzy filter on Y . If f(Fµ) is not

maximal, then there is a fuzzy filter Gµ on Y such that f(Fµ) ⊆ Gµ and f(Fµ) ̸= Gµ. From

Proposition 4.27, there is a fuzzy filter Hµ on X, such that Fµ ⊆ Hµ and Gµ = f(Hµ). Since

f(Fµ) ̸= Gµ, we have Fµ ̸= Hµ, contradicting to the maximality of Fµ.

Definition 4.29. A fuzzy topological space Xµ is a set equipped with a map N : FP (X) →
P (F (X)), which satisfies the following conditions:

(1) N(λ) is a fuzzy filter on X for all λ ∈ FP (X),

(2) For all λ ∈ FP (X), λ belongs to the intersection ∩N(λ). That is, λ ∈ U for all U ∈ N(λ),

(3) For all λ ∈ FP (X) and U ∈ N(λ), there exists an element V ∈ N(λ) such that V ⊆ U and

U ∈ N(ν) for each ν ∈ V .

An element of N(λ) is called a neighborhood of λ.

Definition 4.30. Let Xµ be a fuzzy topological space with the neighborhood filter N(λ) for

λ ∈ FP (X). A fuzzy filter Fµ on X is said to converge to an element λ of FP (X), and we

write Fµ → λ, if N(λ) ⊆ Fµ.

Definition 4.31. A fuzzy topological space Xµ is called compact if for any filter Fµ on X,

there exists a fuzzy filter Gµ on X and an element λ of FP (X) such that Fµ ⊆ Gµ and G → λ.

By Definitions 4.30 and 4.31, we have following corollary.

Corollary 4.32. Any fuzzy ultrafilter on a compact space converges.

Definition 4.33. For an arbitrary family of sets {xi}i∈I , the product set is defined as∏
i∈I

Xi = {x : I → ∪i∈IXi | ∀i ∈ I(x(i) ∈ Xi)}
.

An element of the product set is called a choice map of {Xi}i∈I .

For each index i ∈ I, the projection map pri from the product X =
∏

i∈I Xi onto Xi is

defined by pri(x) = x(i) for all x ∈ X.

Definition 4.34. For an arbitrary family of fuzzy topological spaces {Xµi}i∈I , the product

fuzzy topology on the product set X =
∏

i∈I Xi is the weakest topology making the projections

{pri : X → Xµi}i∈I continuous. Namely, the neighborhood filter of λ ∈ X is the smallest fuzzy

filter including the union:

∪i∈I{pr−1
i (U) | U ∈ N(pri(λ))}, or ∪i∈Ipr

−1
i (N(pri(λ))).

Lemma 4.35. For any fuzzy filter Fµ on the product space X =
∏

i∈I Xi, and an element λ of

FP (X), the following two conditions are equivalent:

(1) Fµ → λ;

(2) pri(Fµ) → pri(λ) for all i ∈ I.
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Proof. The lemma follows from Definition 4.29 and Proposition 4.26.

In following, we prove Tychonoff theorem as a direct application of Zorns lemma. The idea

is to construct an ultrafilter and an element of the product space simultaneously by taking a

suitable partially ordered set.

Theorem 4.36. For an arbitrary family of compact fuzzy topological spaces {Xµi}i∈I , any

fuzzy filter on the product space
∏

i∈I Xµi with the product topology is included in a convergent

fuzzy ultrafilter.

Proof. Let Fµ be a fuzzy filter on the product set
∏

i∈I Xµi . Let P be the set of pairs (Gµ, x),

where Gµ is a fuzzy filter on
∏

i∈I Xµi including Fµ, and x : J → ∪i∈IXµi is a map with J ⊆ I

satisfying x(j) ∈ Xµj and prj(Gµ) → x(j) for all j ∈ J . If we define a fuzzy binary relation Rµ

on P by:

Rµ((Gµ, x), (Hµ, y)) =

{
1, Gµ ⊆ Hµ, x ⊆ y

0, otherwise

Then we can check that Rµ is a fuzzy order on P . Now we check that the fuzzy ordered set

(P,Rµ) satisfies the assumption of fuzzy Zorns lemma. Namely, (Fµ, 0) ∈ P , and for any non-

empty fuzzy chain C ⊆ P , define Hµ = ∪(Gµ,x)∈C{Gµ} and y = ∪(Gµ,x)∈C{x}. Then we can

check that (Hµ, y) ∈ P . Clearly (Hµ, y) is a fuzzy upper bound for C in (P,Rµ). By the fuzzy

Zorn’s lemma, a maximal element (Gµ, x) of P exists. Note that if Gµ is included in a fuzzy

filter Hµ, then Rµ((Gµ, x), (Hµ, x))) = 1. Since (Gµ, x) is maximal, we have (Gµ, x) = (Hµ, x),

and hence Gµ must be equal to Hµ. Thus Gµ is a fuzzy ultrafilter. If x : J → ∪i∈IXµi with

J ̸= I, then there is an element i ∈ I with i /∈ J . Since pri(Gµ) is a fuzzy ultrafilter by

Proposition 4.28, and Xµi is compact, pri(Gµ) converges to an element p of Xµi by Corollary

4.32. This implies that the pair (Gµ, x) ∪ {i, p} is an element of P and is strictly bigger than

(Gµ, x), contradicting its maximality. Thus J = I and therefore, x is an element of the product

space
∏

i∈I Xµi . As pri(Gµ) → pri(x) for all i ∈ I, the fuzzy ultrafilter Gµ converges to x, by

Lemma 4.35.

Theorem 4.37. (Fuzzy Tychonoff Theorem) For an arbitrary family of compact fuzzy topolog-

ical spaces {Xµi}i∈I , the product space
∏

i∈I Xµi with the product fuzzy topology is compact.

Proof. Since any fuzzy filter on
∏

i∈I Xµi is included in a convergent fuzzy filter, the product

space is compact, by Definition 4.31.

§5 Conclusion

As well-known, there are some interesting and profound statements and results, such as,

axiom of choice, Zorn’s lemma, well-ordering principle and comparability principle. It is im-

portant to discuss the fuzzy versions of them. In this paper, by use of Zadeh’s fuzzy order,

we introduce the fuzzy axiom of choice, fuzzy Zorn’s lemma and fuzzy well-ordering principle,

and prove that they are equivalent. As an application of fuzzy Zorn’s lemma, we prove that

every proper fuzzy ideal of a ring is contained in a maximal fuzzy ideal. Moreover we give the

fuzzy version of Tychonoff Theorem. By use of the fuzzy Zorn’s lemma, we prove that fuzzy



536 Appl. Math. J. Chinese Univ. Vol. 36, No. 4

Tychonoff Theorem. But as a equivalent statement to axiom of choice, it’s fuzzy version have

not introduced in this paper. In the future, we will consider giving the fuzzy version of the

comparability principle and discuss the relations between it and other fuzzy versions. Moreover

we can consider the applications of the fuzzy axiom of choice, for example, we can discuss the

existence of the bases of fuzzy victor spaces by the fuzzy axiom of choice.
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