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The CUSUM statistic of change point under NA

sequences

LING Jin1 LI Xiao-qin2 YANG Wen-zhi2,∗ JIAO Jian-ling1

Abstract. In this paper, we investigate the CUSUM statistic of change point under the neg-

atively associated (NA) sequences. By establishing the consistency estimators for mean and

covariance functions respectively, the limit distribution of the CUSUM statistic is proved to be

a standard Brownian bridge, which extends the results obtained under the case of an indepen-

dent normal sample and the moving average processes. Finally, the finite sample properties of

the CUSUM statistic are given to show the efficiency of the method by simulation studies and

an application on a real data analysis.

§1 Introduction

Detecting a change-point and estimating its location are very important problems because

of its extensive applications in many fields such as quality control, economics and finance, and

so on. Many researchers pay attention to the study of change point detection. For example, Hsu

[11] detected the shifts of parameter in gamma sequences; Bai [1] and Shi et al. [23] studied

the mean shift models of change point; Kokoszka and Leipus [14] considered the CUSUM-

type estimator for mean shift with dependent sequence; Lee et al. [15] and Na et al. [17]

investigated the CUSUM statistic for parameter change in time series models; Horváth and

Rice [10] summarized some classical methods in change point analysis; Christian et al. [6] and

Oh and Lee [18] studied the change point test for the GARCH models. In addition, Bai [2],

Horváth and Hušková [8] and Horváth et al. [9], etc, obtained many results of the change point

detection for panel data; Shi et al. [24,25] studied the graph-based change-point test, etc.

On the other hand, the concept of Negatively Associated (NA) was first introduced by Joag-

Devand Proschan [13], where they presented many examples and properties of NA sequences.

One can refer to the monographs by Bulinski and Shaskin [4], Prakasa Rao [21] and Oliveira
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[12] for more theorems as well as applications in Gaussian system, survival analysis system, etc.

Recall that a finite family {Z1, Z2, · · · , Zn} is said to be NA if for any disjoint subsets A, B of

{1, 2, · · · , n}, and any real coordinatewise nondecreasing functions f on RA, g on RB ,

Cov(f(Zk, k ∈ A), g(Zk, k ∈ B)) ≤ 0.

A sequence of random variables {Zn, n ≥ 1} is said to be NA if for every n ≥ 2, Z1, Z2, · · · , Zn

are NA.

In this paper, we investigate the asymptotic property of CUSUM statistic of change point

under NA sequences. For convenience, let ⌊x⌋ denote the largest integer not exceeding x, and

{B0(t); t ∈ [0, 1]} be a standard Brownian bridge. Let
d→ mean the convergence in distribution.

Inclán and Tiao [12] proposed a CUSUM statistic to test a change-point of variance as follows:

Theorem 1.1 Let {Xn, n ≥ 1} be a sequence of independent, identically distributed Normal

random variables with X1 ∼ N(0, σ2) and σ2 > 0. Then for k = ⌊tn⌋ and 0 ≤ t ≤ 1,

max
1≤k≤n

|ITn,k|
d−→ sup

0≤t≤1
|B0(t)|, n → ∞, (1)

where ITn,k =
√

n
2 (

∑k
i=1 X2

i∑n
i=1 X2

i
− k

n ), 1 ≤ k ≤ n.

A large value of max
1≤k≤n

|ITn,k| indicates the existence of a variance change, and the change-

point is at argmax
1≤k≤n

|ITn,k|. Meanwhile, Lee and Park [16] extended (1) to an infinite order

moving average processes. For more details about the change-point detection, we can refer to

the books [5,7].

In view of nonnegative of X2
i in (1), we will further investigate the asymptotic distribution

of ITn in (1) based on the nonnegative sequences of NA random variables. By establishing

the consistency estimators for mean and covariance functions, the limit distribution of CUSUM

statistic of change point is proved to be a standard Brownian bridge. The paper is organized

as follows. In Section 2, we give some assumptions and main results of this paper. In Section

3, some simulation studies and a real data analysis are implemented to show the efficiency of

the CUSUM statistic. Finally, the proofs of main results are presented in Section 4.

§2 Some assumptions and main results

Let {Zn, n ≥ 1} be a sequence of strictly stationarity nonnegative NA random variables,

and γ(h) be the covariance function of {Zn, n ≥ 1}, which is denoted as γ(h) = Cov(Z1, Z1+h),

for h = 0, 1, 2, . . .. γ(h) is usually unknown and estimated by the sample covariance function

γ̂(h) = 1
n

∑n−h
i=1 (Zi − µ̄)(Zi+h − µ̄) for 0 ≤ h < n, where µ̄ = 1

n

∑n
i=1 Zi, n ≥ 1. In order to

establish the main results, we need the following assumptions.

Assumption 2.1 Assume that
∞∑
h=1

|γ(h)| < ∞ (2)

and

σ2
0 := γ(0) + 2

∞∑
h=1

γ(h) > 0. (3)
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Assumption 2.2 Let {hn, n ≥ 1} be a sequence of positive integers satisfying

hn → ∞ as n → ∞ and hn = O(nρ) for some ρ ∈ (0, 1/4). (4)

Then, the estimator for σ2
0 is given as follows

σ̂2
n = γ̂(0) + 2

hn∑
h=1

γ̂(h). (5)

Now, we give the main results of this paper.

Theorem 2.1. Let {Zn, n ≥ 1} be a sequence of strictly stationarity nonnegative NA

random variables with EZ1 = µ > 0, Var(Z1) = σ2 > 0 and EZ4
1 < ∞. Suppose that the

Assumptions 2.1 and 2.2 are satisfied. Then, we have

Var(µ̄− µ) = O(n−1) (6)

and

lim
n→∞

E|σ̂2
n − σ2

0 | = 0. (7)

By Theorem 2.1, the limit distribution for the CUSUM statistic is presented as follows.

Theorem 2.2. Let the conditions of Theorem 2.1 hold true. For 1 ≤ k ≤ n, denote

Tnk =
µ̄
√
n√
σ̂2
n

(∑k
i=1 Zi∑n
i=1 Zi

− k

n

)
,

where µ̄ and σ̂2
n are defined in (6) and (7), respectively. If t ∈ [0, 1] and k = ⌊nt⌋, then

max
1≤k≤n

|Tnk|
d−→ sup

0≤t≤1
|B0(t)| (8)

as n → ∞.

Remark 2.1. Theoretically, it is easy to obtain the consistency of mean estimator µ̄ (see

(6)) but difficult to establish the consistency of σ̂2
n in (7) based on the auto-covariance function

estimator γ̂(h). In this paper, we use the truncation method and the covariance inequality

of NA sequence (see Lemma 3.1 of Roussas [21]) to obtain the moment consistency of σ̂2
n in

Theorem 2.1. Then, the limit distribution for the CUSUM statistic max
1≤k≤n

|Tnk| is presented in

Theorem 2.2. By (8), it is easy to establish (1) in Theorem 1.1 obtained by Inclán and Tiao

[12]. So, Theorem 2.2 extends the result in the case of normal sequence to the dependent setting

of NA sequences. In Section 3, some simulations are carried out to show that the empirical

sizes and powers of our CUSUM statistic have a good performance. Further more, we apply

our method and the results by Inclán and Tiao [12] to detect a change-point of variances for

the returns of log daily prices of Dow Jones Industrial (DJI) index which caused by COVID-19

pandemic in 2020.

§3 Simulation studies and a real data analysis

3.1 Simulations

In this subsection, we carry out some simulations to show the empirical sizes and powers

for the CUSUM statistic max1≤k≤n |Tnk| in (8). For convenience, if X and Y have the same

the distribution, we denote it by X
d
= Y . Let k∗ be a change-point such that

Yj
d
= N(0, σ2

1), j = 1, 2, . . . , k∗, Yj
d
= N(0, σ2

2), j = k∗ + 1, . . . , n, (9)
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and

Cov(Yi, Yj) = ρ, ∀ i ̸= j, (10)

where ρ is some constant in (−1, 0]. Let x+ = max(x, 0) and x− = max(−x, 0). By Joag-

Dev and Proschan [13], it can be seen that {Y1, Y2, . . . , Yn} is a NA sequence. In addi-

tion, we obtain that {Y −
1 , Y −

2 , . . . , Y −
n }, {Y +

1 , Y +
2 , . . . , Y +

n }, {(Y −
1 )2, (Y −

2 )2, . . . , (Y −
n )2} and

{(Y +
1 )2, (Y +

2 )2, . . . , (Y +
n )2} are nonnegative NA sequences. For simplicity, we do the simula-

tions by 10000 replications and for the case Z1 = (Y +
1 )2, Z2 = (Y +

2 )2, . . . , Zn = (Y +
n )2, where

Y1, Y2, . . . , Yn are satisfying (9), (10) for ρ = −n−2 (ρ = −n−1.1) and k∗ = ⌊n
2 ⌋, n ≥ 2. Let

the null hypothesis be H0: σ2
1 = σ2

2 and the alternative hypothesis be H1: σ2
1 ̸= σ2

2 . For the

significance level α = 0.05, if max1≤k≤n |Tnk| > R∗ = 1.358, then we reject the null hypothesis

and conclude that there is a change-point at k̂∗ = argmax1≤k≤n |Tnk| (see Inclán and Tiao

[12]). Consequently, for the significance level α = 0.05, we take hn = ⌊n1/5⌋ in (4) and obtain

the empirical sizes and powers for the estimator Tn in the following Table 1.

Table 1. Empirical sizes and powers for CUSUM statistic max1≤k≤n |Tnk|.
size power

ρ k∗ n σ2
1 = σ2

2 = 1 σ2
1 = 1, σ2

2 = 4

−n−2 ⌊n
2 ⌋ 300 0.0317 0.5183

−n−2 ⌊n
2 ⌋ 600 0.0394 0.8875

−n−2 ⌊n
2 ⌋ 900 0.0389 0.9814

−n−1.1 ⌊n
2 ⌋ 300 0.0337 0.5156

−n−1.1 ⌊n
2 ⌋ 600 0.0380 0.8900

−n−1.1 ⌊n
2 ⌋ 900 0.0383 0.9842

By Table 1, we can see that, the differences of empirical sizes are smaller than 0.05 and

the empirical powers go to 1 as the sample size n increasing. Meanwhile, under H1: σ2
1 = 1

and σ2
2 = 4, we obtain the histograms of estimator k̂∗ = argmax1≤k≤n |Tnk| for k∗ = ⌊n

2 ⌋,
ρ = −n−1.1 and n = 300, 600, 900 in Fig 1.

Figure 1. Histograms of k̂∗ = argmax1≤k≤n |Tnk| with different sample n = 300, 600, 900.

By histograms in Fig 1, the percentage of k̂∗ for k∗ = ⌊n
2 ⌋ is increasing as n increasing.

3.2 A real data analysis

In this subsection, we apply our method and the results by Inclán and Tiao [12] to analysis

the average returns of Dow Jones Industrial (DJI) index. Let Pt is the price of DJI of day

t ∈ T , the return is defined as rt = logPt − logPt−1. The left of Fig 2 shows the average of log

daily prices of DJI from May 2019 to March 2020 with sample sizes 232. Similarly, the right of
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Fig 2 shows the average of log daily prices of DJI with 31 daily returns.

Figure 2. Log daily prices of DJI and returns of log daily prices of DJI from May 2019 to
March 2020.

By Figure 2, it looks like that there is a change-point of variance around day 200 (February

13, 2020) for the returns of log daily prices of DJI. By taking n = 231 and hn = ⌊n1/5⌋, we cal-

culate the value max1≤k≤n |Tnk| in (8), where Zi is replaced by (ri− r̄)2. Then max1≤k≤n |Tnk|
= 1.6441 > 1.358 and argmax1≤k≤n |Tnk| = 204. Consequently, by the significance level

α = 0.05, we conclude that there is a change-point of variance for the returns ri and the

change-point is at day 204. Since the method of Inclán and Tiao [12] was only used to test

change-point of variance, here we also calculate the value max1≤k≤n |ITnk| in (1), where Xi is

replaced by (ri − r̄). Then max1≤k≤n |ITnk| = 7.7497 > 1.358 and argmax1≤k≤n |ITnk| = 204.

Both methods have detected the same change-point location at day 204. However, it should

be pointed out that our method is not only used to detect the change-point of variance but

also can be used to detect the change of nonnegative parameter. On the other hand, we find

that the change-point location day 204 (February 20, 2020) is at the early stage of COVID-19

pandemic. As time goes on, the COVID-19 pandemic has caused an obviously catastrophic

result to the global economy. Therefore, people all over the world should unite to defeat the

COVID-19 pandemic, then humanity will finally overcome this epidemic.

§4 Proofs of main results

For convenience, let C,C1, C2, . . . be some positive constants which are independent of n.

In addition, ⇒ denotes the weak convergence under the Skorohod topology.

Proof of Theorem 2.1. Obviously, by Lemma 4.2, it is easy to have that

Var(µ̄− µ) =
1

n2
Var(

n∑
i=1

(Zi − EZi)) = O(
1

n
), (11)

which completes the proof of (6).

Next, we will prove (7). From (3) to (5), it follows

E|σ̂2
n − σ2

0 | ≤ E|γ̂(0)− γ(0)|+ 2

hn∑
h=1

E|γ̂(h)− γ(h)|+ 2

∞∑
h=hn+1

|γ(h)| := L1 + L2 + L3. (12)



LING Jin, et al. The CUSUM statistic of change point under NA sequences 517

First, we consider L1. Obviously, γ̂(0) − γ(0) = 1
n

∑n
i=1(Z

2
i − EZ2

i ) − (µ̄ − µ)2 − 2µ(µ̄ − µ).

For x ≥ 0, the function f(x) = x2 is increasing. Then for the nonnegative of Zi, {Z2
1 , . . . , Z

2
n}

is also a strictly stationarity NA sequence. So by Theorem 2 of Shao [22] with EZ4
1 < ∞,

L1 ≤
(
E
∣∣∣ 1
n

n∑
i=1

(Z2
i − EZ2

i )
∣∣∣2)1/2

+ E(µ̄− µ)2 + 2|µ|(E(µ̄− µ)2)1/2 = O(n−1/2). (13)

Second, we consider L2. Since γ̂(h) = 1
n

∑n−h
i=1 ZiZi+h − 2(µ̄)2 + n−h

n (µ̄)2 + µ̄
n

∑n
i=n−h+1 Zi +

µ̄
n

∑h
i=1 Zi and γ(h) = EZ1Z1+h − µ2, then it can be seen that

γ̂(h)− γ(h) =
1

n

n−h∑
i=1

(ZiZi+h − EZiZi+h)−
1

n

n∑
i=n−h+1

EZiZi+h − (
h

n
+ 1)(µ̄− µ)2

−2µ(µ̄− µ) +
µ̄− µ

n

n∑
i=n−h+1

(Zi − EZi) +
µ̄− µ

n

h∑
i=1

(Zi − EZi)

+
µ

n

n∑
i=n−h+1

(Zi − EZi) +
µ

n

h∑
i=1

(Zi − EZi) +
hµ2

n
:=

9∑
i=1

Jhi. (14)

Therefore, it follows

L2 ≤ C1

hn∑
h=1

9∑
i=1

E|Jhi|. (15)

For 1 ≤ i ≤ n, denote Z ′
i = ZiI(Zi ≤ n1/4) + n1/4I(Zi > n1/4), Z ′′

i = ZiI(Zi > n1/4) −
n1/4I(Zi > n1/4). In view of Zi = Z ′

i + Z ′′
i , we have that

1

n

n−h∑
i=1

(ZiZi+h − EZiZi+h) =
1

n

n−h∑
i=1

(Z ′
iZ

′
i+h − EZ ′

iZ
′
i+h) +

1

n

n−h∑
i=1

(Z ′′
i Z

′
i+h − EZ ′′

i Z
′
i+h)

+
1

n

n−h∑
i=1

(Z ′
iZ

′′
i+h − EZ ′

iZ
′′
i+h) +

1

n

n−h∑
i=1

(Z ′′
i Z

′′
i+h − EZ ′′

i Z
′′
i+h)

:= I1 + I2 + I3 + I4. (16)

Obviously, it follows from Hölder inequality and EZ4
1 < ∞ that

E|I2| ≤
C1(n− h)

nn1/4
(E(|Z1|4I(|Z1| > n1/4))1/2(E|Z1|2)1/2 ≤ C2(n− h)

n5/4
.

So by the fact hn = O(nρ) and ρ ∈ (0, 1/4), it has
hn∑
h=1

E|I2| ≤ C1

hn∑
h=1

n− h

n5/4
= O(nρ−1/4) = o(1). (17)

Similarly,
hn∑
h=1

E|I3| = o(1). (18)

Meanwhile, by Hölder inequality, it has
hn∑
h=1

E|I4| ≤ C1

hn∑
h=1

E(|Z1|4I(|Z1| > n1/4)) ≤ C2

hn∑
h=1

n− h

n3/2
= O(nρ−1/2) = o(n−1/4). (19)

For 1 ≤ i ≤ n− h and h < n, it has V ar(Z ′
iZ

′
i+h) ≤ E[(Z ′

i)
2(Z ′

i+h)
2] ≤ (EZ4

i )
1/2(EZ4

i+h)
1/2 ≤

CEZ4
1 < ∞. For x ≥ 0 and a > 0, if f(x) = xI(x ≤ a)+aI(x > a), then it has supx |f ′(x)| ≤ 1,
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a.s.. So, by Lemma 3.1 of Roussas [21], we obtain that for 1 ≤ i, j ≤ n − h and i ̸= j,

|Cov(Z ′
iZ

′
i+h, Z

′
jZ

′
j+h)| ≤ C1n

1/2|Cov(Z ′
i, Z

′
j)| ≤ C1n

1/2|Cov(Zi, Zj)|. Then, together with (2),

we obtain that

Var(I1) ≤ 1

n2

n−h∑
i=1

Var(Z ′
iZ

′
i+h) +

C1

n2

∑
1≤i<j≤n−h

j−i≤⌊log(hn)⌋

n1/2
√
Var(Zi)Var(Zj)

+
C2

n2

∑
1≤i<j≤n−h

j−i>⌊log(hn)⌋

n1/2|Cov(Zi, Zj)| ≤ C3
n− h

n3/2
[1 + ⌊log(hn)⌋],

which implies
hn∑
h=1

E|I1| ≤
hn∑
h=1

√
Var(I1) ≤ C2

hn∑
h=1

√
n− h

n3/2
⌊log(hn)⌋ = O(nρ−1/4 log1/2 n) = o(1), (20)

since ρ ∈ (0, 1/4). Consequently, from (16) to (20), it follows that
hn∑
h=1

E|Jh1| = o(1). (21)

Obviously,
hn∑
h=1

E|Jh2| ≤
1

n

hn∑
h=1

n∑
i=n−h+1

(EZ2
i )

1/2(EZ2
i+h)

1/2 ≤ C

n

hn∑
h=1

h = O(n2ρ−1) = o(n−1/2). (22)

By (11), it follows
hn∑
h=1

E|Jh3| ≤
hn∑
h=1

(
h

n
+ 1)Var(µ̄− µ) = O(nρ−1) = o(n−3/4) (23)

and
hn∑
h=1

E|Jh4| ≤
hn∑
h=1

2|µ|(Var(µ̄− µ))1/2 = O(nρ−1/2) = o(n−1/4). (24)

Combining (11) with Theorem 2 of Shao [22], we get that
hn∑
h=1

E|Jh5| ≤
1

n

hn∑
h=1

(Var(µ̄− µ))1/2(E|
n∑

i=n−h+1

(Zi − EZi)|2)1/2 = o(n−9/8). (25)

Similarly,
hn∑
h=1

E|Jh6| = O(n3(ρ−1)/2) = o(n−9/8). (26)

By Lemma 4.2, it has
hn∑
h=1

E|Jh7| ≤
|µ|
n

hn∑
h=1

(E|
n∑

i=n−h+1

(Zi − EZi)|2)1/2 ≤ C1

n

hn∑
h=1

h1/2 = o(n−5/8). (27)

The similarity holds true for
hn∑
h=1

E|Jh8| = o(n−5/8). (28)

It is easy to have
hn∑
h=1

E|Jh9| ≤
hn∑
h=1

hµ2

n
= O(n2ρ−1) = o(n−1/2). (29)
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Therefore, by (15) and (21)-(29), L2 = o(1). In addition, by (2), as hn → ∞, it can be checked

that L3 = o(1). Consequently, together with (12) and (13), it has the result of (7). �
Proof of Theorem 2.2. Denote Sn =

∑n
i=1(Zi − EZi) and Xn(t) =

S⌊nt⌋√
nσ2

0

for t ∈

[0, 1], where σ2
0 is defined by (3). Let {W (t); t ∈ [0, 1]} and {B0(t); t ∈ [0, 1]} be standard

Wiener process and standard Brownian bridge, respectively. Obviously, it can be seen that

lim
n→∞

1
nVar(

n∑
i=1

Zi) = σ2
0 > 0. By (3) and Theorem 4 of Shao [22], Xn(t) ⇒ W (t), so {Xn(t) −

tXn(1)} ⇒ B0(t) (see Page 93 of Billingsley [3]). Without loss of generality, we assume that

k = nt, 1 ≤ k ≤ n, since t ∈ [0, 1] and k = ⌊nt⌋. Then

Xn(t)− tXn(1) =

√
n√
σ2
0

( 1

n

n∑
i=1

EZi

)(∑k
i=1 Zi∑n
i=1 Zi

− k

n

)
:=

√
n√
σ2
0

µ̄Rnk.

Therefore, by the fact {Xn(t) − tXn(1)} ⇒ B0(t), one can obtain that
√
nµ̄√
σ2
0

Rnk ⇒ B0(t).

By (7), it has σ̂2
n

P−→ σ2
0 . So it follows

√
nµ̄√
σ̂2
n

Rnk ⇒ B0(t). Last, by the continuous mapping

theorem, we obtain max
1≤k≤n

√
nµ̄√
σ̂2
n

|Rnk|
d−→ sup

0≤t≤1
|B0(t)|, which implies (8) immediately. The

distribution of sup
0≤t≤1

|B0(t)| is given in equation (9.40) of Billingsley [3]. �
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[6] F Christian, L Horváth, J Zakoian. Variance targeting estimation of multivariate GARCH mod-

els, J Financ Economet, 2016, 14(2): 353-382.
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