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Couple stress nanofluid flow through a bifurcated artery

— Application of catheterization process

KM Surabhi1 Arpitha Ravikanti1
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Abstract. In this article, we are exploring the hemodynamics of nanofluid, flowing through

a bifurcated artery with atherosclerosis in the presence of a catheter. For treating obstruction

in the artery, one can use the catheter whose outer surface is carrying the drug coated with

nano-particles. The resultant solvent is considered as blood nano-fluid. Blood being a complex

fluid, is modeled by couple stress fluid. In the presence of nano-particles, the temperature and

the concentration distribution are understood in a bifurcated stenotic artery. The concluded

mathematical model is governed by coupled non-linear equations, and are solved by using the

homotopy perturbation method. Consequently, we have explored is the effects of fluid and the

embedded geometric parameters on the hemodynamics characteristics. It is also realized that

high wall shear stress exists for couple stress nano-fluid when compared to Newtonian nano-

fluid. which is computed at a location corresponding to maximum constriction (z = 12.5) of the

artery.

§1 Introduction

World Health Organization (WHO) recognizes that the disorders in the cardiovascular sys-

tem are leading to morbidity and mortality globally. According to the organizations report

[1], Non-communicable Diseases (NCDs) are responsible for premature deaths, out of which,

one third are occurring due to Cardiovascular Diseases (CVDs). These generally designate the

conditions in which, the patients have narrowed or thickened blood vessels, medically termed

as stenosis, which can lead to heart attack, angina (chest pain) or stroke.

Blood is a complex living fluid, which nurtures life and includes a variety of cells like

leukocytes, erythrocytes, and platelets. It is to be noted that the erythrocytes are responsible

for the transport of oxygen, CO2, and other nutrients to the different organs of the human

body, as discussed by Fung [2]. Several researchers understood blood rheology [3, 4, 5] for

the Newtonian fluid. Bugliarello et al. [6] macroscopically observed the suspension of the
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neutrally buoyant cells in the blood, which undergo deformation. These deformations are

demonstrated in the form of constitutive expressions of viscosity and shear stress. Some such

fluids are listed under the non-Newtonian category. In such fluids, the corpuscles radius of

gyration is different from that of fluid particles. This difference produces couple stresses in

the fluid, along with the deformation of the particles. The fluid which has the above two

attributes is called a couple stress fluid and is demonstrated by Stokes [7]. The study of blood

flow with couple stresses may play a significant part in interpreting the theological anomalies

associated with the blood flow. [8] has shown A detailed hemodynamics in the aorta from the

medical imaging data. Chakravarty [9] considered the blood as a classical viscous fluid and

analyzed the flow characteristics by incorporating the numerical methods in a bifurcated aorta.

Cardiac catheterization is an invasive surgical technique developed by Werner Forssmann after

practically testing it on himself. The same has been discussed in detail by Truss et al.[10]. In the

exhibits of their investigation as done by various researchers [11, 12, 13, 14, 15], the mathematical

model was constructed by accounting for the rigidity of the arterial wall and the flow dynamics

were studied for mild stenosis, by considering the blood as couple stress fluid.

In the advanced pharmaceutical and therapeutic techniques for the diagnosis and treatment

of the CVDs, effective usage of the nanotechnology concepts is prime. Nano-Medicine is the

phenomena of using nanotechnology for the delivery of the drug at a specified location in a

quick time. This medication technique, bearing the ultimate objective of a controlled and

sustainable release of drug at the site of infection in human organs, enhances the therapeutic

activity of drug while minimizing the side effects. [16, 17, 18, 19] understood the dynamics of

nanofluid in the stenotic artery using the numerical schemes under Newtonian structure. An

intense research work done on nanofluid to enrich its importance in various application, can be

understood from the articles [20, 21, 22, 23, 24].

Various numerical, optimization and perturbation techniques are in use to solve the complex

fluid flow problems. With this view, researchers [25, 26, 27] used various techniques to solve

the non-linear equations in various domains. However, these asymptotic methods have their

limitations. Mostly, all perturbation techniques depend on the assumption of a small parameter

which exists in the modeled equations. This consideration of small parameter automatically

imposes some restrictions on the solution technique, and therefore, the solution is obtained.

Determination of such a small parameter for all non-linear problems is non-trivial and in some

cases may not be possible at all. To overcome the need of small parameters, some solution

techniques are introduced such as Artificial parameter method by Liu [28], Homotopy analysis

method by Liao [29], Variational iteration method by JH He [30]. Later, JH He [31] presented

a technique which took care of all the importance of Homotopy analytical method as well as

the traditional perturbation method and is named as homotopy perturbation method (HPM).

In this methodology, one constructs the homotopy involving an embedding parameter q, for the

variables to be computed. These to be computed variables are then expressed in the series form

of various powers of q. The embedding parameters account for the values from [0, 1]. Some

of the researchers [32, 33] utilized this method for solving the mathematical model of stenotic

arteries to understand the hemodynamics.

In this paper, we analyzed the physiological flow dynamics of nanofluid flow through a

bifurcated stenotic artery under the influence of a catheter. The mathematical model governed

by coupled non-linear equations is solved by using the HPM. We analyzed the effects of fluid
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and embedded geometric parameter on the hemodynamics characteristics of blood, such as

pressure drop, flow resistance, and wall shear stress (WSS). Also, a comparison of the results of

wall shear stress and impedance of the flow to the results of Newtonian nanofluid is done. As

far as the organization of the paper goes, Sect. 2 discusses the mathematical modeling of the

proposed model. Sect. 2.2 demonstrates the method and its implementation procedures, and

Sect. 2.2 discusses the obtained outcomes, while sections 2.2 and 2.2 contains the conclusions

and acknowledge respectively.

§2 Mathematical Modeling Assumptions and Justifications

2.1 Description of the flow geometry

Consider a laminar, incompressible non-Newtonian nano-fluid flowing through a bifurcated

stenotic artery in the presence of a catheter, as depicted in Fig. 1. The mathematical model of

the proposed work is subject to certain assumptions as given below,

1. Bifurcation of artery is assumed to be symmetrical in nature and bifurcated daughter

arteries are straight circular cylinders of finite length.

2. Parent artery is endowed with the symmetrical mild stenosis in its lumen.

3. For treating the obstruction in the parent artery, catheterization procedure is adopted in

the axial direction, whose outer surface is layered with the temperature-sensitive drug,

coated with NPs.

4. Couple stress fluid is considered for the computation, which theoretically mimicks the

behavior of blood.

5. In the bifurcated artery of the aorta, curvature is at apex of the artery, as shown in Fig. 1.

Mathematical expressions of a bifurcated stenotic artery with inner and outer wall are taken

from [9], and these equations given as (1) and (2). Outer wall of the geometry is given as:

R1(z) =


a; 0 ≤ z ≤ d and d+ L0 ≤ z ≤ z1[
a− 4 ϵ

L2
0

(
L0(z − d)− (z − d)2

)]
; d ≤ z ≤ L0 + d[

a+ r0 −
√
r20 − (z − z1)2

]
; z1 ≤ z ≤ z2[

2 r1 secβ + (z − z2) tanβ
]
; z2 ≤ z ≤ zmax

(1)

Inner wall of artery is expressed as:

R2(z) =


0; 0 ≤ z ≤ z3[√

r′20 − (z − z3 − r′0)
2
]
; z3 ≤ z ≤ z3 + r′0 (1− sinβ)[

r′0 cosβ + z4
]
; z3 + r′0 (1− sinβ) ≤ z ≤ zmax

(2)

Here, R1(z) and R2(z) are the radii of outer wall and inner wall of the bifurcated stenotic artery

respectively. Radius of parent artery is represented by a, which is having a mild stenosis of the

length L0 at a distance d from the origin. In bifurcated artery, r1 corresponds to the radius

of daughter artery, while r0 and r′0 correspond to the radii of curvatures for lateral junction

and flow divider respectively while rc, represents the radius of a catheter placed along the flow

direction. In the process of the bifurcation of the parent artery, z1 and z2 are recorded as the
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Figure 1. Pictorial representation of a bifurcated stenotic artery.

onset and offset locations of the lateral junction, while z3 is at the apex with the bifurcation

angle being β. Also ϵ represents the maximum height of the stenosis at the point z = d+L0/2.

For convenient simulation of the physiological parameters, fluid domain is considered to be of

finite length and accordingly the length of the bifurcated stenotic artery is represented by zmax.

Expression of the parameters which are accommodated in the flow geometry represented by Fig.

1, are mathematically expressed as:

z2 = z1 + (a− 2 r1 secβ)
sinβ

(cosβ − 1)
z3 = z2 + q

where, the value of q is chosen to be sufficiently small lying in the interval (0.1, 0.4) validating

the requirements of geometry.

z4 =
[
z − z3 − r′0 (1− sinβ)

]
tanβ

r0 =
(a− 2 r1 secβ)

(cosβ − 1)

r′0 =
(z3 − z2 sinβ)

(1− sinβ)

2.2 Thermo-physical properties of nanofluid

Fahraeus et al.[34] investigated the influence of diameter of capillaries tubes on the viscosity

of the blood, which is a consequence of deformability of erythrocytes in the plasma. Viscosity

is a vital characteristic of the blood which facilitates the fluid flow through the arteries. During

the process of fluid flow through the cylinder, the flow is more effective at the main flow region

than at the boundary of the cylinder. In this situation, the velocity profile takes the parabolic

shape. The immersion of nano-particels (NPs) in the flow domain leads to the variation in the
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viscosity of the corresponding fluid, which is interesting to study.

Batchelor [35] developed the formula for viscosity in 1972 for high volume fraction ap-

proximate (Φ ≤ 4%) by considering the Brownian motion effect. The mathematical relation

corresponding to viscosity in this case is written as,

µnf = µf (1 + 2.5Φ + 6.5Φ2). (3)

In these articles, authors intended to present the influence of NPs on base fluid properties by

considering Ag− NPs, Cu− NPs, Al2O3− NPs and TiO2− NPs. Their corresponding empiric

relations justified with the experiments, are reported in the form of table 1.

Table 1. Thermo-physical properties of nano-fluids.

H2O Blood
ob-
tained
from
[33]

Al2O3 Ag Cu TiO2

Cp(J/kgK) 4179 3617 765 235 385 686.2
ρ(kg/m3) 1000 1060 3970 10500 8933 4250
k(W/mK) 0.613 0.52 40 429 401 8.9538
γ ×
10−5(K−1)

21 - 0.85 1.89 1.67 1.9

µnf/µf 1 - 1 +
39.11Φ+
533.9Φ2,
as given
by [36]

1.005 +
0.497Φ −
0.1149Φ2

as given by
Godson et
al. [38]

1
(1−Φ)2.5 as

given by
Brinkman
[39]

1 + 5.45Φ +
108.2Φ2 as
given by
Bock Choon
& Young
Cho [37]

ηnf/ηf 1 - 1 −
39.11Φ−
533.9Φ2

1.005 −
0.497Φ +
0.1149Φ2

1
(1+Φ)2.5 1 − 5.45Φ −

108.2Φ2

knf/kf 1 - 1 +
7.47Φ
as given
by Bock
Choon
& Y-
oung
Cho [37]

0.9508 +
0.9692Φ as
given by
Godson et
al.[38]

(
knp + (n −

1)kf + (n −
1)Φ(knp −
kf )
)
/
(
knp+

(n − 1)kf +

Φ(kf−knp)
)

as given by
Hamilton
[40]

1 + 2.92Φ −
11.99Φ2 as
given by
Bock Choon
& Young
Cho [37]

The empiric relation in case of effective nano-fluid for thermo-physical properties follow the

convective phenomena of nano-fluids as discussed by Buongiorno et al.[41]. These specific

relations of nano-fluid are given as,

ρnf =
(
1− Φ

)
ρf +Φρp (4)
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(
ρcp
)
nf

=
(
1− Φ

)(
ρ cp
)
f
+Φ

(
ρ cp
)
p

(5)(
ργ
)
nf

=
(
1− Φ

)(
ρ γ
)
f
+Φ

(
ρ γ
)
p
. (6)

2.3 Equations governing the flow

Consider an axisymmetric, incompressible, nano-fluid flow in a non-uniform region, as de-

picted in figure 1. Nano-fluid is a composition of two components under the following assump-

tions,

1. Flow driven by a constant pressure gradient.

2. Negligible radiative heat transfer.

3. No chemical reaction between the fluid and NPs.

4. Thermal equilibrium exists between the base fluid and NPs.

Equations governing the flow are obtained from [33] given under,

∇ · V⃗ = 0 (7)

ρnf

(
∂tV⃗ + V⃗ · ∇V⃗

)
= −∇p+ µnf∇2

(
V⃗
)
− ηnf∇4

(
V⃗
)
+ F (8)

∂tT +
(
V⃗ · ∇

)
T =

κnf(
ρcp
)
nf

∇2T +

(
ρcf
)
nf(

ρcp
)
nf

[
DB∇C · ∇T +

DT

T1
∇T · ∇T

]
(9)

∂tC +
(
V⃗ · ∇

)
C = DB∇2C +

(
DT

T1

)
∇2T (10)

Here, velocity vector is defined as V⃗ =
(
u(r, z), 0, v(r, z)

)
and F is the body force. It is

to be noted that the body force F experienced by the fluid is due to the variation in the

density, and this density variation is addressed by the use of Boussinesq approximation in the

momentum equation. T and C represent the temperature and concentration of blood-nano

fluid while T1 is the ambient temperature of fluid. Here, for the resultant nano-fluid, µnf and

ηnf are the dynamic viscosity and couple stress viscosity respectively. κnf corresponds to the

thermal conductivity, (ρcp)nf and (ρcf )nf adhere to the specific heat capacitance of the nano-

particles and heat capacitance of nano-fluid respectively. Brownian diffusion coefficient and

thermophoresis diffusion coefficients are accorded by DB and DT respectively.

2.4 Non-dimensionalization of the governing equations

Non-dimensionalization is a powerful tool in fluid mechanics, which enables us to obtain a

great deal of insight. In this problem, the dimensionless variables that are introduced are given

by

r′ = r/a, z′ = z/L0, d′ = d/L0, R′
1(z

′) = R1(z)/a,

R′
2(z

′) = R2(z)/a, t′ = t u0/L0, v′ = v/u0,

θ =
(
T − T0

)
/
(
T1 − T0

)
, σ =

(
C − C0

)
/
(
C1 − C0

)
,

u′ = uL0/
(
u0 ϵ

)
, p′ = p a2/(u0 L0 µf )

(11)
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where, a denotes the characteristic length of the artery and u0 is characteristic flow velocity in

the flow regime. Non-dimensionalised form of the governing equations (7)-(10) after incorpo-

rating the non-dimensional variables from equation (11), subject to the conditions of the mild

stenosis of the geometry, represented by ξ(= ϵ/a) << 0 and δ(= a/L0) ≈ O(1), are given by

∂zv = 0 (12)

∂rp = 0 (13)

∂zp =
µnf

µf

(
∂rrv + 1/r ∂rv

)
− ηnf

ηf

1

β2

[
∂rrrrv + 2/r ∂rrrv −

1/r2 ∂rrv + 1/r3 ∂rv
]
+

(ργ)nf
(ργ)f

(
θ Gr + σ Br

)
(14)

∂rrθ + 1/r ∂rθ +Nb

(
∂rσ ∂rθ

)
+Nt

(
∂rθ
)2

= 0 (15)

∂rrσ + 1/r ∂rσ +Nt/Nb

(
∂rrθ + 1/r ∂rθ

)
= 0 (16)

Non-dimensionalization process recovers some characteristic non-dimensional numbers which

are analysed appropriately. Accordingly we obtained Gr =
a2 (ργ)f

(
T1−T0

)
u0µf

, the Grashof

number and Br =
a2 (ργ)f

(
C1−C0

)
u0µf

, the solute Grashof number. Brownian motion parameter

is Nb =
τnfDB(C1−C0)

αnf
and thermophoresis parameter is Nt =

τnf DT (T1−T0)
αnf T1

. Further, β2 =

(ηf a2)/µf is length dependent parameter.

2.5 Non-Dimensional boundary conditions

Treatment and diagnosis of diseases related to atherosclerosis are different. Therefore, rhe-

ological properties and the flow behavior of blood is of immense importance for fundamental

understanding. Considering this point of view, Chaturani [42] stated different kinds of bound-

ary conditions for polar fluids.

Hyper-stick condition, considered at a catheter wall is as given below,

v = 0 at r = rc where 0 ≤ z ≤ z3 (17)

Further, Brunn [43] introduced the importance of slip velocity at the wall for the different flow

domains, for the polar fluids. Attributing this theory, slip velocity is considered, at the arterial

wall to a bifurcated artery. For outer artery wall ,

v = u2 at r = R1(z) where d ≤ z ≤ d+ L0 (18)

v = u1 at r = R1(z) where 0 ≤ z ≤ d

and d+ L0 ≤ z ≤ zmax (19)

v = u3 at r = R1(z) where z3 ≤ z ≤ zmax (20)

For inner artery wall,

v = 0 at r = R2(z) where z3 ≤ z ≤ zmax (21)

Where u1, u2 and u3 are constant slip velocity with which the blood flows between the outer

and inner arterial wall respectively.

Boundary conditions for dimensionless temperature and concentration are given below as,

θ = 1, σ = 1, at r = rc (22)

θ = 0, σ = 0, at r = R1(z) and r = R2(z) ∀ z (23)
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We are seeking such kind of boundary conditions for temperature and concentration variables,

due to the insertion of a catheter coated with the temperature-sensitive drug into the blood

beds. Therefore, high temperature is noted on the surface of a catheter. This enhancement in

the temperature helps to release the drug faster in the flow regime. This consideration reveals

that the temperature sensitive drug coated catheter is inserted into the lumen of the artery,

which shows that the drug is highly concentrated at the catheter surface. Further, it is to be

noted that an external temperature is provided on the surface of the catheter for the release of

the drug.

§3 Solution methodology

In order to accomplish the solution of the non-linear coupled governing equations, HPM

method proposed by JH He [31], which is the combination of homotopy and traditional per-

turbation methods, is considered. This overcomes the limitations of traditional perturbation

methods. Here an embedding parameter q belonging to the interval [0, 1] is considered and

the solutions are obtained by solving the system of equations which are obtained by comparing

various powers of q. Here the initial solution is obtained conveniently by using the linear part of

the non linear differential equation.Further, this technique has the full advantage of traditional

perturbation techniques.

3.1 Implementation of HPM to the present model

The coupled non-linear equations of temperature and concentration (15) and (16) respective-

ly, are solved by applying HPM. We followed the same steps as implemented in the report [32].

From the equations (15) and (16), corresponding linear operator (L) and non-linear operator

(N) are given below as,

∂rrθ + 1/r ∂rθ︸ ︷︷ ︸
L

+Nb ∂rσ ∂rθ +Nt

(
∂rθ
)2

︸ ︷︷ ︸
N

= 0 (24)

∂rrσ + 1/r ∂rσ︸ ︷︷ ︸
L

+Nt/Nb

(
∂rrθ + 1/r ∂rθ

)
︸ ︷︷ ︸

N

= 0 (25)

The required homotopy is constructed as,

H(θh, q) = ∂rrθh + 1/r∂rθh −
(
∂rrθ0 + 1/r∂rθ0

)
+ q
(
∂rrθ0 + 1/r∂rθ0

)
+q
[
Nb∂rσh ∂rθh +Nt

(
∂rθh

)2]
= 0 (26)

H(σh, q) = ∂rrσh + 1/r∂rσh −
(
∂rrσ0 + 1/r∂rσ0

)
+ q
(
∂rrσ0 + 1/r∂rσ0

)
+

q
[
Nt/Nb

(
∂rrθh + 1/r∂rθh

)]
= 0 (27)

Where, θh and σh are the homotopy corresponding to the variables θ and σ, and are expressed

as,

θh(r, q) = θ0 + q θ1 + q2 θ2 + q3 θ3 + · · · (28)

and

σh(r, q) = σ0 + q σ1 + q2 σ2 + q3 σ3 + · · · (29)
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Where, q is a embedding parameter lying between 0 ≤ q ≤ 1. θ0 and σ0 are the solutions of

the corresponding linear operators satisfying the boundary conditions as shown in the equation

(21). We understand that the solution relies on q, and as the value of the embedding parameter

changes from zero to one, the solutions of the variables θ and σ are given by,

θ = lim
q→1

θh(r, q) = θ0 + θ1 + θ2 + θ3 + . . . (30)

and

σ = lim
q→1

σh(r, q) = σ0 + σ1 + σ2 + σ3 + . . . (31)

Substituting the equations (28) and (29) into the equations (26) and (27) and equating the

coefficients of various powers of q, we get various order of deformations such as,

Zeroth-order deformation

1/r ∂r(r ∂rθ0) = 0 (32)

1/r ∂r(r ∂rσ0) = 0 (33)

corresponding boundary conditions for the outer and inner wall are,

θ0 = 1, σ0 = 1, at r = rc (34)

θ0 = 0, σ0 = 0, at r = R1(z)∀ z (35)

Initial guesses with respect to the linear operator are obtained from (32) - (35) as,

θ0 = log
(
R1(z)/r

)
/log

(
R1(z)/rc

)
(36)

σ0 = log
(
R1(z)/r

)
/log

(
R1(z)

)
/rc (37)

Similarly higher order deformations θ1, σ1, θ2, σ2, θ3, σ3, . . . could be computed.

In order to seek the solution for the axial velocity by using HPM, we have to incorporate

the obtained temperature and concentration results. The corresponding PDE of the velocity

profile having linear operator and non-linear operator is given below,(
∂2v

∂r2
+

1

r

∂v

∂r︸ ︷︷ ︸
L

)
− µf

µnf

∂p

∂z︸ ︷︷ ︸
f

−ηnf µf

µnf ηf

1

β2
Ψr

(
v
)
+

(
ργ
)
nf

µf(
ργ
)
f
µnf

(
θ Gr + σ Br

)
︸ ︷︷ ︸

N

= 0 (38)

Here Ψr is described as ∂rr + 1/r ∂r and ∂rrrr + 2/r ∂rrr − 1/r2 ∂rr + 1/r3 ∂r. The boundary

conditions (17) to (20) are used to solve the above equation.

The homotopy for the velocity variable is given below as,

vh(r, q) = v0 + q v1 + q2 v2 + q3 v3 + · · · (39)

Where v0 is the solution of the linear operator with significant conditions given at boundary.

This is considered as initial guess for the above constructed homotopy. As embedding parameter

moves from zero to one, axial velocity solution changes from v0 to v. Thus,

v = lim
q→1

vh(r, q) = v0 + v1 + v2 + v3 + · · · (40)

As done in case temperature and concentration we compare the coefficients of various powers of

the embedding parameter q to get the various orders of deformations. The details are as given

below.
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Zeroth order deformation

1/r ∂r(r ∂r v0) = 0 (41)

with significant conditions at boundary are

v0 = 0 at r = rc where 0 ≤ z ≤ z3 (42)

For outer artery wall,

v0 = u2 at r = R1(z) where d ≤ z ≤ d+ L0 (43)

v0 = u1 at r = R1(z)

where 0 ≤ z ≤ d and d+ L0 ≤ z ≤ zmax

(44)

For inner artery wall,

v0 = u3 at r = R2(z) where z3 ≤ z ≤ zmax (45)

Linear operator solution with the appropriate boundary conditions (42) - (45) is obtained as,

v0 =
u2

(
log(r/rc)

)
(
log(R1(z)/rc)

) Stenotic region (46)

v0 =
u1

(
log(r/rc)

)
(
log(R1(z)/rc)

) Non-stenotic region (47)

v0 =
u3

(
log(r/R2)

)
(
log(R1(z))/R2(z)

) Bifurcated region (48)

Similarly, v1, v2, v3, . . . can be calculated. Through these obtained values, flow hemodynamics

are determined. The computed values are used to evaluate the pressure gradient, volumetric

flow rate. Further, the resistance to the flow and the wall shear stress is also computed.

3.2 Hemodynamics flow parameters

In this article, authors understood the hemodynamics of blood flow through a bifurcated

stenotic artery. Flow dynamics of blood is altered due to the presence of obstruction in parent

artery and bifurcation of the artery. These flow characteristics are defined as,

Pressure Drop: In circulatory system, pressure drop is occurring due to the action of heart

pumping. From (14) the pressure drop can be calculated as,

∆P =

∫ L

0

[
µnf

µf

(
∂rrv + 1/r∂rv

)
− ηnf

ηf

1

β2

(
∂rrrrv + 2/r∂rrrv − 1/r2∂rrv + 1/r3∂rv

)
+
(ργ)nf
(ργ)f

(
θGr + σBr

)]
dz (49)

WSS: In the study of hemodynamics of bio-fluids, particularly for the cardiovascular diseases,

the wall shear stress plays a vital role. Wall shear stress is expressed as the magnitude of the

force that the blood exerts on the vessel walls and the force exerted by the endothelial cells to
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the blood. The mathematical expression of WSS is given as,

τrz = µnf
∂v

∂r︸ ︷︷ ︸
τS
rz

+
1

4

[ ηnf
r2

∂v

∂r
− ηnf

r

∂2v

∂r2
− ηnf

∂3v

∂r3︸ ︷︷ ︸
τA
rz

]
(50)

where, τSrz and τArz represent the symmetrical and asymmetrical part of the stress tensor. After

incorporating the non-dimensional parameters to the equation (50) we get,

τrz = µnf
∂v

∂r︸ ︷︷ ︸
τS
rz

+
1

4β2
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∂2v

∂r2
− ηnf

∂3v

∂r3︸ ︷︷ ︸
τA
rz

]
(51)

§4 Results and Discussions

In this study, authors theoretically analyzed the hemodynamics of nanofluid flow through a

catheterized bifurcated stenotic artery, which is driven by constant pressure gradient, and the

resultant mathematical model is solved by using HPM. The results were obtained by incorpo-

rating the geometrical and non-dimensional parameters given as, a = 5, d = 10, L0 = 5, β =

π/10, ϵ = 0.55a, r2 = 0.51a, q = 0.15, z1 = 20, u1 = 0.5, u2 = 0.25, u3 = 0.75, Nb = 1, Nt =

0.2, Gr = 0.1, Br = 0.2, rc = 0.01. For the validation of the method, we compared the tem-

Figure 2. Comparison of temperature values computed from FDM of [14] and HPM (present
method).

perature values of Srinivasacharya et al. [14] to the bifurcated stenotic model for Cu−water

nanofluid at Φ = 0.3 in the parent artery as shown in Fig. 2. Wherein, the model of [14] has

been used to obtained the results for temperature using HPM and same were compared with

the finite difference method (FDM) numerical result of temperature. From the same figure, it

is observed that the error is very less. Here, it was found that both the results are in good

agreement. Hence use of HPM produces valid results for problems of this nature. Temperature
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Figure 3. Temperature variation across radial direction r for various order of deformation.

values for various order of deformations is depicted in Fig. 3. From this figure, we observed

that there is no variation from the fifth order deformation onwards, which speaks about the

convergence of the method. Variations of axial velocities and wall shear stress are computed

at the location z = 12.5, which is the location of maximum extrema, for various nano-fluids as

shown in Figs. 4 and 5. In couple stress fluid, the axial velocity for Ag− NPs is comparatively

higher than that of other NPs, while WSS distribution is least for Ag− NPs. Low shear stress

allows the deposition of the cholesterol on the surface of the lumen, which initiates the devel-

opment of atheroma. Hence, consideration of Ag− NPs for the treatment of chronic disease

is not suitable. Accordingly, it appears that TiO2− NPs are a good choice for analysing the

flow dynamics. Further, TiO2− NPs being ceramic in nature dissolve into the human body and

also have several biomedical applications as mentioned in [44]. Hence, TiO2− NPs are used for

getting the subsequent results.

Figure 4. Comparison of axial velocities for different nanofluids in r− direction.

In the parent arterial wall, the axial velocity distribution is observed at different locations

of the outer wall as shown in Fig. 6. Axial velocity is least at z = 12.5 which corresponds to
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Figure 5. Comparison of WSS values for different nanofluids in r− direction.

the maximum height of stenosis. It is also observed that the axial velocity is more in the post-

stenotic region than that in the pre-stenotic region. Volume fraction dependency of NPs on the

blood is understood from Fig. 7. NPs enhance the thermal conductivity of the base fluid, which

significantly depends on the volume fraction of the NPs, which is observed from the Figs. 6 and

7, that the axial velocity is less for the case where non-Newtonian fluid, while there is a rise in the

velocity in case of increase of volume fraction of NPs. When volume fraction increases to Φ = 2%

there is a sudden rise in the velocity due to the Brownian and thermophorotic parameters. It

is also observed that for Φ = 2% and Φ = 4%, there is no variation in velocity profiles, hence,

Φ = 2% has been considered in this study. Comparison of axial velocity profiles and wall

Figure 6. Variation of Axial velocity along radial direction r for various values of z.

shear stress for the fluid considered and Newtonian nanofluid are understood from Figs. 8 and

9. Here, even though the axial velocity is less in case of couple stress nanofluid, it is worth

observing that WSS is more in non-Newtonian case. Therefore, understanding of blood flow

dynamics using non-Newtonian structure is very crucial for conducting clinical procedures.
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Figure 7. Axial velocity for various NPs for different values of Φ.

Figure 8. Comparison of axial velocities for Newtonian and non-Newtonian nanofluid.

Temperature and concentration distribution from catheter surface to the outer wall of a

bifurcated artery, which is having mild stenosis is shown in Fig.10. Due to the presence of tem-

perature sensitive NPs on the catheter, we observed higher temperature nearer to the catheter

wall than at the arterial wall. It is realized that the temperature approaches to zero at the

arterial wall justifying the boundary conditions considered. The rate of dispersion in temper-

ature is decreasing from the catheter surface to the arterial wall. The fact that the dispersion

rate is more at high temperature region is also observed from the left panel of Fig.10. Further,

we have observed the least dispersion in the post-stenotic region. Hence, the dispersion is max-

imum in the stenotic region as desired, that being the region of interest. In similar lines, from

the right panel of Fig.10 it is noticed that higher the concentration variation leads to the high

concentration dispersion. In the axial direction, the drug diffusion is more at the extrema of

the stenosis, which is prime for the faster delivery of the drug to the targeted region. In similar
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Figure 9. Comparison of WSS values for Newtonian and non-Newtonian nanofluid.

lines, temperature and concentration profiles are analyzed for the inner wall of a bifurcated

artery across the axial and radial directions, and is depicted in Fig.10. It is observed that the

Figure 10. Distribution along z− and r− directions at the outer wall(Left:Temperature values,
Right: Concentration values).

temperature and concentration distribution are more near to the apex of the flow division due

to the disturbance of flow. From the Fig.11, we can clearly see a small vortex structures in the

considered domain, hence more temperature and concentration dispersion is observed near to

the flow division. Far away from the apex the temperature and concentration dispersion do not

have significant influence on the daughter arteries, which is good indeed. This understanding

could probably provide a new approach towards a sustainable and controlled drug delivery to

the targeted organs of the human body.

Authors have analysed the axial velocity profiles for outer arterial wall as well as for the
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Figure 11. Distribution along z− and r− directions at the inner wall(Left:Temperature values,
Right: Concentration values).

inner arterial wall of a bifurcated artery and the results as given in Fig. 12. In the parent artery

wall, the axial velocity distribution is observed at different locations of the outer wall as shown

in the left panel of Fig.12. Corresponding to the maximum height of the stenosis the axial

velocity is very less due to the very small annular region between the catheter surface and the

outer arterial wall. However, axial velocity is more in the post-stenotic region of the stenosis

than that of pre-stenotic region of the stenosis. Axial velocity is found to be comparatively more

at the outer wall of the daughter bifurcated artery than that of outer wall of the parent artery.

The variation in the axial velocity is more at the catheter surface than at the arterial surface. In

the case of outer wall, axial velocity profile is less at the extrema of stenosis than at pre and post

stenotic regions of the parent artery, while for the outer wall of the daughter artery, velocity is

moderately less nearer to the apex than at the other regions. Such flow behavior occurs due to

the increasing occlusion and reduced annular region for the flow of blood. Similarly, velocity

profile for the inner arterial wall can be seen from the right panel of Fig.12. At the division

walls of the bifurcations site, the boundary layers are relatively thin with the maximum axial

velocity outside the boundary layer. As the blood enters the daughter arteries with a finite

radius of curvature, the faster moving fluid is observed at the flow divider due to secondary

flow development. Corners of outer wall being sharp, a flow separation is observed along the

outer wall of the bifurcation.

WSS distribution at the outer arterial wall is depicted in Fig.13. WSS has considerable

clinical relevance because it provides information about the magnitude of the force that the

blood exerts on the vessel wall as well as the force exerted by the fluid. Low WSS is related to

the atherosclerosis, and also low WSS impairs the mass transport between blood and the vessel

wall. From Fig.13, it is noticed that WSS is least in the stenotic region and it slightly increases

from the bifurcation point when compared to that of non-stenotic region.ear to the region of

the flow division i.e., in the daughter artery. This is because of the presence of circulatory

flow which results in less velocity gradient and hence low WSS. Atherosclerosis is correlated

with the pressure and low WSS into the human aorta. As the blood is forced to turn around

the curve pressure will increase on outer wall and correspondingly decrease at the curvature.
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Figure 12. Axial velocity distribution along z− and r− direction (Left:At the outer wall Right:
At the inner wall).

Figure 13. WSS distribution along z− and r− direction at the outer wall.

Hence, these phenomena allow endothelium deposition into the lumen, starting of the disease

process. in this study we have stenotic region from z = 10 to z = 15 and location z = 12.5 is

the location of extremes.

§5 Conclusion

This theoretical study have immense important role in order to understand the physiology

of surgical and intervention treatment. We have discussed the flow dynamics related to the

realistic geometry of interest. Some typical observations are as given below,

1. It is observed that results are converging from the fourth deformation onwards for the

parameter of interest. One particular case of temperature in depicted in one of the figures.

2. TiO2− NPs have been chosen for the analysis due to their moderately high velocity profiles
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and relatively high wall shear stress.

3. WSS is more for couple stress nanofluid than that of Newtonian nanofluid while results

are exactly reversed for velocity profiles.

4. It is observed that the volume fraction enhances the temperature and concentration dis-

persion.

5. It is noticed that the rate of temperature and concentration dispersion is more at the

constricted region than that at the outer arterial wall.

6. In case of inner arterial wall of a bifurcated artery, it is observed that apex has more

temperature and concentration distribution both in axial and radial direction.

7. Flow parameter are in good deed in order to extrapolate these to the clinical investigation.

This theoretical mathematical model and its related observations represents a prototype to the

physicians and research scientist in pathology, biomedical and in pharmaceutical industry.
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