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Variable selection for skew-normal mixture of joint

location and scale models
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Abstract. Although there are many papers on variable selection methods based on mean model

in the finite mixture of regression models, little work has been done on how to select significant

explanatory variables in the modeling of the variance parameter. In this paper, we propose

and study a novel class of models: a skew-normal mixture of joint location and scale models

to analyze the heteroscedastic skew-normal data coming from a heterogeneous population. The

problem of variable selection for the proposed models is considered. In particular, a modified

Expectation-Maximization(EM) algorithm for estimating the model parameters is developed.

The consistency and the oracle property of the penalized estimators is established. Simulation

studies are conducted to investigate the finite sample performance of the proposed methodolo-

gies. An example is illustrated by the proposed methodologies.

§1 Introduction

Homoscedasticity of the scale parameter is a common assumption in many regression model-

s. However, this may not be appropriate in some situations, such as heteroscedasticity in data.

One suitable approach is to model the variance parameter. Particularly in the econometric area

and industrial quality improvement experiments, model the variance to identify the source of

variability in the observations will be of direct interest in its own right, such as Taguchitype

experiments for robust design[1]. In addition, the efficient estimation of mean parameters in

regression depends on correct modelling of the variance. The loss of efficiency in using con-

stant variance models when the variance is varying may be substantial. Thus, modelling of

the variance can be as important as that of the mean. Joint mean and variance models have

received a lot of attention in recent years. Park [2] proposed a log-linear model for the vari-

ance parameter and described the Gaussian model using a two-stage process to estimate the

parameters. Harvey [3] discussed the maximum-likelihood (ML) estimation of the mean and

variance effects and the subsequent likelihood ratio test under general conditions. Aitkin [4]

provided ML estimation for a joint mean and variance model and applied it to the commonly
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cited Minitab tree data. Wu et al. [5] proposed a hybrid strategy, in which variable selection

is employed to reduce the dimension of the explanatory variables in joint mean and variance

models, and Box-Cox transformation is made to remedy the distribution of the response. Wu

et al. [6] investigated the simultaneously variable selection in joint location and scale models

of the skew-normal distribution. Wu et al. [7] propose a unified penalized likelihood method

to simultaneously select significant variables and estimate unknown parameters in a joint lo-

cation, scale and skewness model with a skew-t-normal (StN) distribution when outliers and

asymmetrical outcomes are present.

Mixture of regression models are well known as switching regression models in econometrics

literature, which were the first introduced by Goldfeld and Quandt [8]. Mixture of regression

models have been applied in various fields including biology, medicine, economics, agriculture,

animal sciences and so on, see [9–12]. Mixture of regression models can be easily applied to

analyze data sets in which two or more subpopulations are mixed together. Due to its flexibility

in modeling, mixture of regression models have enjoyed intensive attentions over the past years,

from both practical and theoretical perspectives. In particular, on the variable selection, Khalili

and Chen [13] proposed a new regularization method for variable selection in finite mixture of

regression models. Khalili [14] investigated new estimation and feature selection methods in

mixture-of-experts models. Khalili and Lin [15] developed a new regularization in finite mixture

of regression models with diverging number of parameters. Khalili [16] gave an overview of the

new feature selection methods in finite mixture of regression models. For other methods of

variable selection for the mixture of regression models, we can refer to Du et al.[17], Ormoz and

Eskandari[18], Lee et al.[19], Khalili et al.[20], Tang and Karunamun[21].

The existing studies on the mixture of regression models mainly focus on the normality

assumption of response variables. This assumption may be inappropriate in some applications.

For a set of data containing a group or groups of observations with asymmetric behavior, the

use of normal component may be unsuitable and inferences can be misleading. In particular, the

normal mixture model tends to overfit when additional components are included to capture the

skewness. So we introduce the skew-normal distribution to overcome the potential weakness

of normal mixtures. Liu and Lin [22] first developed a skew-normal mixture of regression

model, but they only considered the mixture of location regression models using the univariate

skew-normal distribution.

In the standard formulation of all the above mentioned work within the framework of the

mixture of regression models, it is assumed that the equal variance for each component is con-

stant across observations. However, in many practical situations, this assumption may be not

hold. A more general model formulation allows for the variance to vary across observations,

which has received little attention in the literature. When the variance is really varying, in-

ference carried out under the assumption of fixed constant variance may be highly inaccurate.

The common strategy in this situation is to augment the model by defining another regression

structure for the variance parameter in a homogeneous population(see Aitkin [4]; Cepeda and

Gamerman [23]; Taylor and Verbyla [24] ; Zhang and Wang [25] ; Wu and Li [26] ; Zhao and

Zhang [27] ; Wu et al. [7]).

Similar to modelling of the variance parameter in a homogeneous population, we apply

the idea of joint mean and variance models to the mixture of regression models and propose

and study a novel class of models: a skew-normal mixture of joint location and scale mod-
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el(SNMJLSM) to analyze the heteroscedastic skew-normal data coming from a heterogeneous

population. The problem of variable selection for the proposed model is considered. In particu-

lar, a modified Expectation-Maximization(EM) algorithm for estimating the model parameters

is developed. The consistency and the oracle property of the penalized estimators are estab-

lished. Simulation studies are conducted to investigate the finite sample performance of the

proposed methodologies. An example is illustrated by the proposed methodologies.

The outline of the article is as follows. In Section 2, we propose a skew-normal mixture of

joint location and scale model(SNMJLSM). Then, in Section 3, we present variable selection

for our proposed models via the penalized likelihood-based method. To do this in Section 3.1,

penalized likelihood-based method is considered, and in Section 3.2 asymptotic properties of the

proposed variable selection procedure are studied. Section 3.3 will show the EM algorithm and

numerical solution for estimators. Choosing the tuning parameters will be considered in Section

3.4. In Section 4, we carry out simulation studies to assess the finite sample performance of

the method. In section 5, a real data set on the air quality index (AQI) date is analyzed to

demonstrate the proposed methods. Some concluding remarks are given in Section 6. Some

technical proofs are put in the appendix.

§2 SN mixture of joint location and scale models

2.1 Skew-normal distribution

In this section, we introduce the skew-normal distribution, as developed by Azzalini[28].

The random variable Y is said to have a skew-normal distribution with location parameter

µ, scale parameter σ and skewness parameter λ, denoted by Y ∼ SN(µ, σ2, λ), if it has the

probability density function

f(y) =
2

σ
ϕ(

y − µ

σ
)Φ(λ

y − µ

σ
), (1)

where ϕ(.), Φ(.) are the density function and the cumulative distribution function of the s-

tandard normal distribution, respectively. If λ = 0, then the density of Y in (1) reduces to

N(µ, σ2).

2.2 SN mixture of joint location and scale models

Let y1, y2, · · · , yn be a random sample of size n from a m-component skew-normal mixture

model with unknown mixing probabilities π1, π2, · · · , πm, the probability density function of

random variable Y has a m-component mixture form:

f(y) =

m∑
j=1

πjSN(µj , σ
2
j , λj), (2)

where πj represents the mixing probabilities and
∑m

j=1 πj = 1. Where πj , µj , σ
2
j , λj are un-

known, and the parameter vector of the model is

ΨΨΨ = (π1, · · · , πm, µ1, · · · , µm, σ2
1 , · · · , σ2

m, λ1, · · · , λm)T .

In this paper, we assume that the number of components m is fixed and known. Of course,

in some practical applications, and m may be unknown and needs to be estimated along with
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mixing probabilities and other parameters, but in this paper, to simplify, we only consider the

case where m is known, and only estimate the unknown vector of parameters ΨΨΨ.

Consider the following skew-normal mixture of joint location and scale model(SNMJLSM):
yi ∼

∑m
j=1 πjSN(µij , σ

2
ij , λj),

µij = xxxT
i βββj ,

log σ2
ij = hhhT

i γγγj ,

i = 1, 2, · · · , n; j = 1, 2, · · · ,m.

(3)

In the model (3), yi is an independent response variable, xxxi = (xi1, xi2, · · · , xip)
T and hhhi =

(hi1, hi2, · · · , hiq)
T are explanatory variables. In the jth subpopulation, βββj = (βj1, βj2, · · · ,

βjp)
T is an unknown parameter of the location model , γγγj = (γj1, γj2, · · · , γjq)T is an unknown

parameter of the scale model and λj is skewness parameter. xxxi,hhhi may be identical or completely

different or part of the same, that is, the location model and the scale model may incorporate

different covariates, or some of the same covariates, and may depend on common covariates in

different ways. In this paper, we aim to remove the unnecessary explanatory variables from the

model (3).

2.3 Identifiability

In models of finite mixtures of any class of distributions, it is important to consider the

property of the identifiability, because procedures for estimation of parameters can be ill defined

without such property. Otiniano et al [29]presents the proof of the identifiability of the classes of

all finite mixtures of Skew-Normal and Skew-t distributions. The identifiability of some mixture

models has been investigated by several authors, Teicher [30], Atienza et al [31], among others.

In this paper, we assume that the SNMJLSM under study are identifiable. Consider a

SNMJLSM as (3). For a given design matrix, the SNMJLSM are said to be identifiable if for

any two parameters

m∑
j=1

πjSN(µj , σ
2
j , λj) =

m∗∑
j=1

π∗
jSN(µ∗

j , σ
∗2
j , λ∗

j ),

for each i = 1, 2, · · · , n and all possible values of y, implies m = m∗ and ΨΨΨ = ΨΨΨ∗.

The identifiability implies that no two sets of different parameter values have the same

density functions. Following Hennig [32] and Wang et al.[33] , we interpret ΨΨΨ = ΨΨΨ∗, in the

above definition, up to a permutation .

§3 Estimation and variable selection method

3.1 Penalized likelihood

Many traditional variable selection criterias can be considered as a penalized likelihood

which balances modeling biases and estimation variances [34]. They can enhance model inter-

pretability with parsimonious representation and also improve the accuracy of estimation by

efficiently identifying the significant variables.

Suppose that we have a random sample yi,xxxi,hhhi, i = 1, 2, · · · , n, from the model (3). Let

l(ΨΨΨ) denote the log-likelihood function conditional on yi,xxxi,hhhi. Then the log-likelihood function
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of ΨΨΨ is given by:

ln(ΨΨΨ) =

n∑
i=1

log


m∑
j=1

πjSN(µij , σ
2
ij , λj)

 . (4)

Similar to Khalili and Chen [13] , the penalty log-likelihood function is defined as

Ln(ΨΨΨ) = ln(ΨΨΨ)− pn(ΨΨΨΨΨΨΨΨΨ), (5)

where ln(ΨΨΨΨΨΨΨΨΨ) is a log-likelihood functions in (4), and the penality function pn(ΨΨΨ) is as follows:

pn(ΨΨΨ) =

m∑
j=1

πj

p∑
t=1

pn(βjt; τ1j) +

m∑
j=1

πj

q∑
t=1

pn(γjt; τ2j). (6)

Here pn(ΨΨΨ; τj) is a nonnegative function indexed by certain tuning parameters τj ≥ 0. The first

part of pn(ΨΨΨ) penalizes the regression coefficients βjt of the location model, and the second

part is the penalty on the coefficients γjt of the scale model. General conditions on the proper

choice of the penalty functions in (6) are given in the next subsection.

If some of the coefficients βjt or γjt (or both) are small in the models(3), then in fitting the

model to the data through maximization of the function Ln(ΨΨΨ) the hope is that the penalty

function pn(ΨΨΨ) will force the estimated values of those coefficients to zero. The method auto-

matically performs variable selection, which makes it computationally much more efficient than

all-subset selection methods.

In general, we should choose appropriate penalty functions to suit the need of the application,

under the guidance of statistical theory. However, the following three penalty functions have

been investigated in the literature in a number of contexts and will be used here to illustrate

the theory:

LASSO:

pτj (|ΨΨΨjt|) = τj |ΨΨΨjt|,
HARD:

pτj (|ΨΨΨjt|) = τj
2 − (|ΨΨΨj | − τj)

2I(|ΨΨΨjt| < τj),

SCAD:

p
′

τj (|ΨΨΨjt|) = τj{I(|ΨΨΨjt| ≤ τj) +
(aτj − |ΨΨΨjt|)+

(a− 1)τj
I(|ΨΨΨjt| > τj)}.

Following the convention in Fan and Li [34], we set a = 3.7 in our work. The penalty function

of LASSO([35]) has a good property enables easy numerical computation. The SCAD penalty

function gives good performance in selecting important variables without creating excessive

biases. HARD([36]) should work more like SCAD, although less smoothly([13]).

3.2 Asymptotic properties

Without loss of generality, the coefficient vectors βββj and γγγj are decomposed into βββT
j =

(βββT
1j ,βββ

T
2j) and γγγT

j = (γγγT
1j , γγγ

T
2j) such that βββ2j and γγγ

2j
contain the 0 effects. The parameter

vector ΨΨΨ is also decomposed into ΨΨΨT = (ΨΨΨT
1 ,ΨΨΨ

T
2 ) such that ΨΨΨT

2 contains all the parameters

corresponding to zero effects, that is βββ2j and γγγ2j in the true model. The vector of parameters

in the true model is ΨΨΨ0, and its components are denoted with a superscript, such as β0
jt(1 ≤

j ≤ m, 1 ≤ t ≤ p) and γ0
jt(1 ≤ j ≤ m, 1 ≤ t ≤ q). Denote

q1n = max
j,t

{|p
′

n(β
0
jt; τ1j)|/

√
n : β0

jt ̸= 0}; q∗1n = max
j,t

{|p
′

n(γ
0
jt; τ2j)|/

√
n : γ0

jt ̸= 0}
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q2n = max
j,t

{|p
′′

n(β
0
jt; τ1j)|/

√
n : β0

jt ̸= 0}; q∗2n = max
j,t

{|p
′′

n(γ
0
jt; τ2j)|/

√
n : γ0

jt ̸= 0}

The p
′

n(ΨΨΨ; τj) and p
′′

n(ΨΨΨ; τj) are the first and second derivatives of the function pn(ΨΨΨ; τj) with

respect to ΨΨΨ, for the tuning parameters τj and γj that depend on the simple size n. Using these

quantities, the function pn(ΨΨΨ; τj) is required to satisfy the following conditions:

C0: For all n and τj , pn(0; τj) = 0, and pn(ΨΨΨ; τj) is symmetric and nonnegative. In addition,

it is nondecreasing and twice differentiable for all ΨΨΨ in (0,∞) with at most a few exceptions.

C1: As n → ∞, q2n = o(1), q∗2n = o(1).

C2: For Tn = {ΨΨΨ; 0 <ΨΨΨ ≤ n−1/2 log n}, lim
n→∞

inf
ΨΨΨ∈Tn

(p
′

n(ΨΨΨ; τj))/
√
n = ∞.

Conditions C0−C2 guarantee
√
n-consistency of the estimators of the true nonzero regression

coefficients, and also consistency of the method in variable selection.

Theorem 1 Let Vi = (xi, Yi), i = 1, 2, · · · , n, be a random sample from a density function

f(v,ΨΨΨ) that satisfies the regularity conditions R1 − R5 in the Appendix. Assume that the

function pn(ΨΨΨ; τj) satisfies the regularity conditions C0 and C1, and also suppose τj/
√
n → 0

as n → ∞. Then there exists a local minimizer Ψ̂ΨΨn of the regularized log-likelihood function

Ln(ΨΨΨ) for which

∥Ψ̂ΨΨn − Ψ̂ΨΨ0∥ = Op{n−1/2(1 + q∗1n + q1n)}.
The estimator Ψ̂ΨΨn is

√
n consistent if q1n = o(1) and q∗1n = o(1). The rate is achievable by

proper choice of the tuning parameters τj .

Consistency of Ψ̂ΨΨn in variable selection, that is: β̂ββ2j = 0, j = 1, 2, · · · ,m, and γ̂γγ2j = 0, j =

1, 2, · · · ,m, with probability tending to 1, is shown in Theorem 2.

Theorem 2 Assume that the conditions in Theorem 1 are fulfilled, and the function

pn(ΨΨΨ; τj) satisfies conditions C0 − C2, and also suppose τj/
√
n → 0 as n → ∞. Then for

any
√
n-consistent maximum regularized likelihood estimator Ψ̂ΨΨn of ΨΨΨ, as n → ∞. We have

(a) Consistency in the variable selection: P (β̂ββ2j = 0, γ̂γγ2j = 0) → 1, j = 1, 2, · · · ,m.

(b) Asymptotic normality:

√
n{[I1(ΨΨΨ01) +

p
′′

n(ΨΨΨ01)

n
](Ψ̂ΨΨ1 −ΨΨΨ01) +

p
′′

n(ΨΨΨ01)

n
} d−→ N(0, I1(ΨΨΨ01)),

where I1(ΨΨΨ01) is the Fisher information matrix under the true model with all zero effects

removed.

Brief proofs of the theorems are in the Appendix.

3.3 The EM algorithm

In the context of finite mixture models, because of the existence of latent variable zij , the

classical MLE is not applicable. The expectation-maximization (EM) algorithm of Dempster

et al. [37]provides a convenient approach to the estimation of parameters. However, due to

condition C0, the function pn(ΨΨΨ; τj) are not differentiable at ΨΨΨ = 0. Then, the Newton-Raphson

algorithm can not be used directly. We follow the suggestion of Fan and Li [34], and approximate

pn(ΨΨΨ; τj) in a neighbourhood of ΨΨΨ0 by the local quadratic function

pn(ΨΨΨ; τj) ∼= pn(ΨΨΨ0; τj) +
p

′

n(ΨΨΨ0; τj)

2ΨΨΨ0
(ΨΨΨ2 −ΨΨΨ2

0). (7)

This function increase to infinity when n → ∞, which is more suitable for our application

than the simple Taylors expansion. Let ΨΨΨ(k) be the parameter value after the kth iteration.
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We replace pn(ΨΨΨ) in the penalized log-likelihood function in (5) by the following function:

p̃n(ΨΨΨ;ΨΨΨ(k)) =
m∑
j=1

πj

p∑
t=1

{pnj(β(k)
jt ) +

p
′

n(β
(k)
jt )

2β
(k)
jt

(β2
jt − (β

(k)
jt )2)}

+
m∑
j=1

πj

q∑
t=1

{pnj(γ(k)
jt ) +

p
′

n(γ
(k)
jt )

2γ
(k)
jt

(γ2
jt − (γ

(k)
jt )2)}.

The revised EM algorithm is as follows. Let the complete log-likelihood function be

lcn(ΨΨΨ) =

n∑
i=1

m∑
j=1

zij{logSN(yi;xxx
T
i βββj , exp(hhh

T
i γγγj), λj)},

where zij is indicator variable showing the component membership of the ith observation in

the SNMJLSM and is an unobserved imaginary variable. The penalized complete log-likelihood

function is, then, given by Lc
n(ΨΨΨ) = lcn(ΨΨΨ)− pn(ΨΨΨ). After kth iteration, the model parameters

are updated as follows:

E-Step: Let ΨΨΨ(k) be the estimate of the parameters after kth iteration. The E-step com-

putes the conditional expectation of the Lc
n(ΨΨΨ) with the respect to zij , given the data (xxxi,hhhi, yi),

and assuming that the values of the current estimate ΨΨΨ(k) are the true parameters of the model.

The conditional expectation is

Q(ΨΨΨ;ΨΨΨ(k)) =
n∑

i=1

m∑
j=1

ω
(k)
ij {log[πjSN(yi;xxx

T
i βββj , exp(hhh

T
i γγγj), λj)]} − pn(ΨΨΨ),

where the conditional expectation of the missing labels zij is:

ω
(k)
ij =

π
(k)
j SN(yi;xxx

T
i βββ

(k)
j , exp(hhhT

i γγγ
(k)
j ), λ

(k)
j )∑m

j=1 π
(k)
j SN(yi;xxxT

i βββ
(k)
j , exp(hhhT

i γγγ
(k)
j ), λ

(k)
j )

. (8)

M-Step: The M −Step on the (k+1)th iteration maximizes the function Q(ΨΨΨ;ΨΨΨ(k)) with

respect to ΨΨΨ. In the usual EM algorithm, the mixing probabilities are updated by

π
(k+1)
j =

1

n

n∑
i=1

ω
(k)
ij , j = 1, 2, · · · ,m. (9)

which maximizes leading term of Q(ΨΨΨ;ΨΨΨ(k)). Maximizing Q(ΨΨΨ;ΨΨΨr) itself with respect to πj

will be more complex. For simplicity, we use updating scheme (8) nevertheless; this performed

well in our simulations.

We now consider the πj , as constants in Q(ΨΨΨ;ΨΨΨ(k)), and maximize Q(ΨΨΨ;ΨΨΨ(k)) with respect

to the other parameters in ΨΨΨ. By replacing pn(ΨΨΨ) by p̃n(ΨΨΨ;ΨΨΨ(k)) in Q(ΨΨΨ;ΨΨΨ(k)), the regression

coefficients are updated by solving
n∑

i=1

ω
(k)
ij

∂

∂βjt
{logSN(yi;xxx

T
i βββj , exp(hhh

T
i γγγj), λj)} − πj{

∂

∂βjt
p̃nt(βjt)} = 0,

n∑
i=1

ω
(k)
ij

∂

∂γjt
{logSN(yi;xxx

T
i βββj , exp(hhh

T
i γγγj), λj)} − πj{

∂

∂γjt
p̃nt(γjt)} = 0,

n∑
i=1

ω
(k)
ij

∂

∂λj
{logSN(yi;xxx

T
i βββj , exp(hhh

T
i γγγj), λj)} = 0,

where p̃nt(βjt) and p̃nt(γjt) are the corresponding term in p̃n(ΨΨΨ;ΨΨΨ(k)), for j = 1, 2, · · · ,m; t =

1, 2, · · · , p(q).
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Starting from an initial value ΨΨΨ(0), we iterate between the E andM steps until the Euclidean

norm ∥ΨΨΨ(k+1) −ΨΨΨ(k)∥ is smaller than some threshold value.

3.4 Choosing the tuning parameters

When using the methods proposed in this paper, one needs to choose the tuning parameter

τj . Our current theory provides only some guidance on the order of the tuning parameter τj to

ensure the consistency of the method in variable selection. Fan and Li [34], Khalili and Chen

[13] showed that the tuning parameter selected by GCV leads to a nonignorable overfitting

effect in the final selected model. They used the BIC for choosing the tuning parameter, and

the method was shown to be consistent in selecting the true sparse model. We also propose

using a BIC-type approach.

Consider the maximizer ΨΨΨn of the log-likelihood function (3) which is based on the full SN-

MJLSM. The estimator ΨΨΨn is used to calculate the weights ωij in (8). The weights remain fixed

throughout the tuning parameter selection process. For a given value of the τj , let (β̂ββj , γ̂γγj , λ̂j)

be the maximum regularized likelihood estimates of the parameters in the jth component of the

SNMJLSM by fixing the remaining elements of ΨΨΨ at ΨΨΨn. Denote the likelihood-based deviance

statistics, evaluated at (β̂ββj , γ̂γγj , λ̂j), corresponding to the jth component of SNMJLSM as

Dj(β̂ββj , γ̂γγj , λ̂j) =

n∑
i=1

ωij logSN(yi;xxx
T
i β̂ββj , exp(hhh

T
i γ̂γγj), λ̂j).

We define

BIC(τj) = 2Dj(β̂ββj , γ̂γγj , λ̂j) +N(τj) log nj , j = 1, 2, · · · ,m. (10)

where nj =
∑n

i=1 ωij is expected sample size from the nonzero element of the SNMJLSM , and

N(τj) is the number of nonzero elements of β̂ββj and γ̂γγj , respectively.

Similar to Wu et al. [6] , we suggest

(i)τ1j =
τj

|β̂ββ
0

j |
, j = 1, 2, · · · ,m.

(ii)τ2j =
τj

|γ̂γγ0
j |
, j = 1, 2, · · · ,m.

where β̂ββ
0

j and γ̂γγ0
j are initial estimators of βββj and γγγj , respectively. The tuning parameter τj can

be obtained as

τ̂j = argmin
τj

BIC(τj).

From our simulation study, we found that this method works well.

§4 Simulation study

To evaluate the finite sample performance of the proposed penalized likelihood method,

we conduct some Monte Carlo simulations. The performance of estimators β̂ββn, γ̂γγn, λ̂n will be

assessed by using the mean square error(MSE), defined as

MSE(β̂ββn) = E(β̂ββn − βββ0)
T (β̂ββn − βββ0),

MSE(γ̂γγn) = E(γ̂γγn − γγγ0)
T (γ̂γγn − γγγ0),

MSE(λ̂n) = E(λ̂n − λ0)
2.



WU Liu-cang, et al. Variable selection for skew-normal mixture of joint location... 483

To save space we have reported only the results for SNMJLSM with m = 2. We simulate

data from the model (3):


yi ∼ π1SN(µi1, σ

2
i1, λ1) + π2SN(µi2, σ

2
i2, λ2),

µij = xxxT
i βββj ,

log σ2
ij = hhhT

i γγγj ,

i = 1, 2, ..., n; j = 1, 2.

(11)

To perform this simulation, we take βββ1 = (0.8, 1.8, 0, 0, 2.8, 0, 0, 0)T , βββ2 = (0, 0, 0.8, 1.8, 0, 0,

2.8, 3.8)T , γγγ1 = (0.5, 1.5, 0, 0, 2.5, 0, 0, 0)T , γγγ2 = (0, 0, 0.5, 1.5, 0, 0, 2.5, 3.5)T , respectively. The

covariates xi ∼ U(−1, 1), hi ∼ U(−1, 1), π1 = 0.35, 0.5, π2 = 1 − π1, λ1 = 0.5, λ2 = −0.5,

n = 150, 250, 500. yi is generated according to the model (11).

For the sake of comparison, we carry out simulations with three penalties as described above.

The performance of proposed method for variable selection is investigated via simulations.

The simulation results are reported using the following two quantities:

C: average number of zero regression coefficients that are correctly estimated as zero.

IC: average number of nonzero regression coefficients that are correctly estimated as zero.

Note: according to βββ1 = (0.8, 1.8, 0, 0, 2.8, 0, 0, 0)T ,βββ2 = (0, 0, 0.8, 1.8, 0, 0, 2.8, 3.8)T , γγγ1 =

(0.5, 1.5, 0, 0, 2.5, 0, 0, 0)T , γγγ2 = (0, 0, 0.5, 1.5, 0, 0, 2.5, 3.5)T , we know that component 1 has 5 re-

ally zero regression coefficients in the location model and scale model, respectively. Component

2 has 4 really zero regression coefficients in the location model and scale model, respectively.

Table 1. Simulation results of location model (Parameter βββ).
π1=0.35 π1=0.5

Method Component n C IC MSE C IC MSE
150 4.3500 0.0100 0.2064 4.7600 0 0.0631

Component 1 250 4.8700 0 0.0428 4.8700 0 0.0258
SCAD 500 4.9200 0 0.0149 4.8800 0 0.0116

150 3.8100 0 0.0186 3.8600 0 0.0264
Component 2 250 3.9400 0 0.0054 3.8800 0 0.0094

500 3.9500 0 0.0025 3.9700 0 0.0039
150 3.7700 0.0100 0.1960 4.2300 0 0.0696

Component 1 250 4.3400 0 0.0484 4.3100 0 0.0313
LASSO 500 4.5300 0 0.0181 4.5600 0 0.0137

150 3.3200 0 0.0236 3.2800 0 0.0316
Component 2 250 3.6300 0 0.0065 3.3800 0 0.0111

500 3.6600 0 0.0029 3.6200 0 0.0044
150 4.5800 0.0100 0.1953 4.9500 0 0.0538

Component 1 250 4.9500 0 0.0383 4.9200 0 0.0270
HARD 500 4.9700 0 0.0154 4.9900 0 0.0109

150 3.9500 0 0.0172 3.9100 0 0.0271
Component 2 250 3.9600 0 0.0052 3.9600 0 0.0091

500 3.9800 0 0.0026 3.9900 0 0.0040
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Table 2. Simulation results of scale model (Parameter γγγ).
π1=0.35 π1=0.5

Method Component n C IC MSE C IC MSE
150 4.1900 0.6900 2.9315 4.6600 0.7000 0.6776

Component 1 250 4.7200 0.6300 0.5574 4.9000 0.5800 0.3333
SCAD 500 4.9200 0.5300 0.2432 4.9200 0.3600 0.1534

150 3.8200 0.5900 0.5856 3.7600 0.6400 0.7729
Component 2 250 3.9000 0.4400 0.3206 3.7900 0.5300 0.4150

500 3.9300 0.2200 0.1418 3.8800 0.3300 0.2061
150 4.0500 0.6500 2.1286 4.5100 0.6500 0.5599

Component 1 250 4.5600 0.5200 0.4648 4.7200 0.4500 0.3224
LASSO 500 4.8200 0.3000 0.2446 4.8200 0.1800 0.1665

150 3.6500 0.4400 0.6206 3.5400 0.5500 0.7138
Component 2 250 3.7900 0.2800 0.3104 3.7200 0.4100 0.3923

500 3.8200 0.0600 0.1450 3.7900 0.2200 0.2117
150 3.2900 0.5200 3.1657 4.1400 0.5500 0.8497

Component 1 250 4.2900 0.4400 0.6389 4.7100 0.4100 0.3628
HARD 500 4.8200 0.3600 0.2270 4.9200 0.2000 0.1179

150 3.6600 0.4000 0.5994 3.1300 0.4700 0.9940
Component 2 250 3.8500 0.3100 0.3029 3.7700 0.4300 0.3907

500 3.9200 0.0900 0.1103 3.9000 0.2500 0.1836

Table 3. Simulation results of skewness parameter λ.
π1=0.35 π1=0.5

Component n Estimate MSE Estimate MSE
150 0.7768 0.2510 0.6908 0.0828

Component 1 250 0.5756 0.0354 0.5733 0.0334
500 0.5316 0.0148 0.5464 0.0102
150 -0.6153 0.0436 -0.6616 0.0808

Component 2 250 -0.5617 0.0191 -0.5627 0.0243
500 -0.5243 0.0071 -0.5364 0.0106

From Tables 1–3 , we have the following observations:

(1) For a given penalty, as expected, the performance of variable selection for components 1

and 2 become better and better as the sample size n increases. The MSEs of estimators β̂ββj , γ̂γγj

and λ̂j(j = 1, 2) also become smaller as n increases, which indicates the convergence property

of the maximum penalized likelihood estimator of the model.

(2) For a given sample size n, the performances of three variable selection procedures are

similar in terms of model complexity. The performances of SCAD and HARD procedures are

similar in terms of model error. Furthermore, the performances of SCAD and HARD are better

than that of LASSO in terms of model error. However, this paper proposed method does not

perform well for small sample sizes.

(3) For a given penalty function and sample size n, the performance of variable selection for

components 1 and 2 in the location model is significantly better than that of the scale model in

the sense of model error and model complexity. It is may be that the estimation of scale model

parameters is not unbiased.

(4) For a given sample size n and the mixture proportion π1 = π2 = 0.5, as expected,

the performances of three variable selection procedures in two subpopulation is similar in the
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sense of model error and model complexity. However, in the case π1 = 0.35, π2 = 0.65, the

performance of three variable selection procedures in the second subpopulation is significantly

better than that of the first subpopulation in the sense of model error and model complexity.

§5 Application to real data

In this section, we illustrate the proposed variable selection procedure by using the air

quality index (AQI) data. We collected the daily average value of the AQI data of Hangzhou

city and Zhengzhou city in China from May 1, 2015 to March 31, 2017, totaling 670 data. This

AQI data set consists of the response variable Y –AQI and seven predictors: X1–fine particulate

matter(PM2.5); X2– inhalable particulate matter(PM10); X3–Sulfur dioxide(SO2); X4–Carbon

monoxide (CO); X5–Nitrogen dioxide(NO2); X6–Ozone(O3) and X7–AQI day ranking. We are

interested in establishing the relationship between the Y –AQI and the important predictors.

Figure 1. Histogram of AQI for hangzhou city.

Figure 2. Histogram of AQI for zhengzhou city.

Figures 1 and 2 indicate that the AQI data of Hangzhou city and Zhengzhou city follow

approximately a skew-normal distribution, respectively. AQI data in Hangzhou is concentrated

in the 50–100, while the AQI data of Zhengzhou is mainly concentrated in 100–200. Thus, there
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are some differences in the air quality index of two part. It may not be appropriate to describe

it with the same model, so it is analyzed using a finite mixture of models.

According to the above analysis, Y , the AQI data of Hangzhou city and Zhengzhou city

follow approximately a skew-normal distribution. So, we can consider the AQI data variable

selection for the following skew-normal mixture joint location and scale models(SNMJLSM):
yi ∼ 0.5SN(yi;µi1, σ

2
i1, λ1) + 0.5SN(yi;µi2, σ

2
i2, λ2),

µij = xxxT
i βββj ,

log σ2
ij = hhhT

i γγγj ,
i = 1, 2, ..., 670; j = 1, 2.

We apply the variable selection procedure based on the SCAD, LASSO and HARD proposed

in Section 2 to the above model. The results are displayed in Table 4, where H and Z denote

Hangzhou and Zhengzhou, respectively.

Table 4. Variable selection for the air quality index (AQI) data.
Constant x1 x2 x3 x4 x5 x6 x7

SCAD H 0.2019 0.0821 0 0 0.8820 1.1515 0 0.0047
Z -11.473 0.7792 0.1552 0 5.2534 0 0.0776 0.0912

βββ LASSO H 0 0.0952 0 0 0.1938 1.1520 0 0.0056
Z -2.9686 0.7957 0.1587 0 2.8099 0 0.0637 0.0711

HARD H 0.1965 0.0816 0 0 0.8824 1.1522 0 0.0046
Z -16.373 0.7560 0.1664 0 5.8392 0 0.1007 0.1008

SCAD H 2.8468 0.1011 0 0 0 -0.1280 0.0196 0.0078
Z 3.6748 0.0067 0 0 0 0 0.0126 0

γγγ LASSO H 2.8843 0.0912 0 0 0 -0.1150 0.0188 0.0076
Z 2.7953 0.0069 0 0 0 0 0.0138 0

HARD H 2.8591 0.1013 0 0 0 -0.1280 0.0196 0.0078
Z 3.8429 0.0066 0 0 0 0 0.0110 0

SCAD H 5.6845
Z 1.1668

λ LASSO H 5.6845
Z 1.1668

HARD H 5.6845
Z 1.1668

From Table 4, we can see that in this data example,

(1) The estimation and variable selection procedure based on the SCAD, LASSO and HARD

method perform very similarly in terms of the selected variables.

(2) In the location model, β3 is zero. This indicates X3(SO2) has no significant impact

the location of Y (AQI). For Hangzhou, X2(PM10) and X6(O3) are unimportant variable

impact the location of Y (AQI). For Zhengzhou, X5(NO2) is an unimportant variable impact

the location of Y (AQI). There may be differences between North and South air pollutants.

The northern winter supply of heating needs to burn a large number of coal so that variable

selection results of Hangzhou and Zhengzhou are different.

(3) In the scale model, γ2, γ3 and γ4 are zero. This indicates the X2(PM10), X3(SO2) and

X4(CO) have little influence on the scale parameters of Y (AQI) of Hangzhou and Zhengzhou.

For Zhengzhou, however, X5(NO2) and X7 (AQI day ranking) have no significant impact on

the scale parameters of Y (AQI).
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(4) In the skewness parameter, the Y (AQI) of Hangzhou is λ1 = 5.6845, Zhengzhou is

λ1 = 1.1668. This indicates the AQI data of Hangzhou and Zhengzhou have positively skewed,

respectively.

§6 Conclusions

In this paper, our chief interest is to consider a variable selection procedure based on the

skew-normal distribution for mixture of joint location and scale models. On the basis of the

traditional selection of the mean variables in the finite mixture of regression models, we further

consider the variable selection in variance. The simulation studies show that the procedure is

to be consistent in selecting the most parsimonious mixture of joint location and scale models.

The proposed method is applied to a real data set, the results show that the proposed variable

selection procedure can be used in practical situations.

In addition, we only consider variable selection in mixture of joint location and scale models

based on the skew-normal distribution. A natural future extension of this work is to consider

generalizations of the skew-normal distribution (e.g. skew-t-normal distribution and skew-t

distributions), which may be more suitable in different contexts. Furthermore, one interesting

future direction is to extend the proposed model to the mixture of experts model framework

[38].

Appendix Regularity Conditions and Proofs

Let f(ν;ΨΨΨ) be the density function of V = (x, Y ), with the parameter space ΨΨΨ ∈ Ω. In the

regularity conditions we write ΨΨΨ = (ΨΨΨ1,ΨΨΨ2, · · · ,ΨΨΨs), so that s is the total number of parameters

in the model.

R1: The density f(ν;ΨΨΨ) has common support in ν for all ΨΨΨ ∈ Ω, and f(ν;ΨΨΨ) is identifiable

with respect to ΨΨΨ.

R2: There exists an open subset Ω∗ ∈ Ω, containing the true parameter ΨΨΨ0 such that for

almost all ν, f(ν;ΨΨΨ) admits third partial derivatives with respect to ΨΨΨ ∈ Ω∗.

R3: For all j, l = 1, 2, · · · , s, the first and second derivatives of f(ν;ΨΨΨ) satisfy:

E0[
∂

∂ΨΨΨj
log f(V ;ΨΨΨ)] = 0,

E0[
∂

∂ΨΨΨj
log f(V ;ΨΨΨ)

∂

∂ΨΨΨi
log f(V ;ΨΨΨ)] = −E0[

∂2

∂ΨΨΨj∂ΨΨΨi
log f(V ;ΨΨΨ)].

R4: The Fisher information matrix is finite and positive definite at ΨΨΨ = ΨΨΨ0:

I(ΨΨΨ) = E{[ ∂

∂ΨΨΨ
log f(V ;ΨΨΨ)][

∂

∂ΨΨΨ
log f(V ;ΨΨΨ)]T }.

R5: There exists an integrable function B(ν) such that:

|∂f(V ;ΨΨΨ)

∂ΨΨΨj
| ≤ B(ν), |∂

2f(V ;ΨΨΨ)

∂ΨΨΨj∂ΨΨΨi
| ≤ B(ν), |∂

3 log f(V ;ΨΨΨ)

∂ΨΨΨj∂ΨΨΨi∂m
| ≤ B(ν).

Proof of Theorem 1 Let ξn = n− 1
2 (1 + q∗1n + q1n). It is sufficient to show that for any
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given ε > 0, there exists a constant C such that

lim
n→∞

P{ sup
∥u∥=C

Ln(ΨΨΨ0 + ξnu) < Ln(ΨΨΨ0)} ≥ 1− ε. (A.1)

This implies that for large n, with probability at least 1 − ε, there is a local maximum in

the ball {ΨΨΨ0 + ξnu; ∥u∥ ≤ C}. This local maximizer, say Ψ̂ΨΨn, satisfies ∥Ψ̂ΨΨn −ΨΨΨ0∥ = Op(ξn).

We proceed as follows. Let Dn(u) = Ln(ΨΨΨ0 + ξnu)− Ln(ΨΨΨ0). By definition of Ln(·),
Dn(u) = [ln(ΨΨΨ0 + ξnu)− ln(ΨΨΨ0)]− [pn(ΨΨΨ0 + ξnu)− pn(ΨΨΨ0)].

By pn(0; τj) = 0, and the definitions of ln(ΨΨΨ) and pn(·),

ln(ΨΨΨ0 + ξnu)− ln(ΨΨΨ0) = n−1/2(1 + q∗1n + q1n)l
′

n(ΨΨΨ0)
Tu

− (1 + q∗1n + q1n)
2

2
(uτI(ΨΨΨ0)u)(1 + op(1))

and

| pn(ΨΨΨ0 + ξnu)− pn(ΨΨΨ0) | ≤ d(q∗1n + q1n)∥u∥+
cn
2
(1 + q∗1n + q1n)

2∥u∥2

+
√
man(1 + q∗1n + q1n)∥u∥.

where d = max
j

√
dj and the dj is the number of nonzero regression coefficients in the jth

component of the FMR model. Regularity conditions imply that l
′

n(ΨΨΨ0) = Op(
√
n) and I(ΨΨΨ0)

is positive definite. In addition, cn = o(1) and an = o(1 + q∗1n + q1n). The order comparison of

the foregoing expression implies that for sufficiently large C, the quadratic function

−(1 + q∗1n + q1n)
2{uτI(ΨΨΨ0)u}{1 + op(1)}/2,

and thus for any given ε > 0, we have lim
n→∞

P{ sup
∥u∥=c

Dn(u) < 0} > 1− ε which is (A.1).

The results of the following Lemma is used to prove Theorem 2.

Lemma 1 Under the conditions of Theorem 2, for any ΨΨΨ in the neighborhood∥ΨΨΨ−ΨΨΨ0∥ =

O(n−1/2). By the definition of Ln(·), we have that

Ln(ΨΨΨ1,ΨΨΨ2)− Ln(ΨΨΨ1, 0) = [ln(ΨΨΨ1,ΨΨΨ2)− ln(ΨΨΨ0, 0)]− [pn(ΨΨΨ1,ΨΨΨ2)− pn(ΨΨΨ0, 0)].

By the mean value theorem,

ln(ΨΨΨ1,ΨΨΨ2)− ln(ΨΨΨ1, 0) = [
∂lτn(ΨΨΨ1, ξ)

∂ΨΨΨ2
]ΨΨΨ2 (A.2)

Where ∥ξ∥ ≤ ∥ΨΨΨ2∥ = O(n−1/2). Also, by R5 and the mean value theorem,

∥∂ln(Ψ
ΨΨ1, ξ)

∂ΨΨΨ2
− ∂ln(ΨΨΨ01, 0)

∂ΨΨΨ2
∥ ≤ ∥∂ln(Ψ

ΨΨ1, ξ)

∂ΨΨΨ2
− ∂ln(ΨΨΨ1, 0)

∂ΨΨΨ2
∥+ ∥∂ln(Ψ

ΨΨ1, 0)

∂ΨΨΨ2
− ∂ln(ΨΨΨ01, 0)

∂ΨΨΨ2
∥

≤ [
n∑

i=1

B(Zi)]{∥ξ∥+ ∥ΨΨΨ1 −ΨΨΨ01∥}.

By the regularity conditions R1−R5, ∂ln(ΨΨΨ01, 0)/∂ΨΨΨ2 = Op(n
1/2), and thus ∂ln(ΨΨΨ1, 0)/∂ΨΨΨ2

= Op(n
1/2). Applying this to (A.2), we get

ln(ΨΨΨ1,ΨΨΨ2)− ln(ΨΨΨ1, 0) = Op(
√
n){

m∑
j=1

p∑
t=dj+1

|βjt|+
m∑
j=1

q∑
t=dj+1

|γjt|}

for large n. On the other hand,

pn(ΨΨΨ1,ΨΨΨ2)− pn(ΨΨΨ1, 0) =

m∑
j=1

p∑
t=dj+1

pn(βjt; τ1j) +

m∑
j=1

q∑
t=dj+1

pn(γjt; τ2j).
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Therefore,

Ln(ΨΨΨ1,ΨΨΨ2)− Ln(ΨΨΨ1, 0) =
m∑
j=1

p∑
t=dj+1

{|βjt|Op(
√
n)− pn(βjt; τ1j)√

n
+

m∑
j=1

q∑
t=dj+1

{|βjt|Op(
√
n)− pn(γjt; τ2j)√

n
.

By conditions C2 on the pn(θ; η), the two double sums are negative, for βjt and γjt in a

shrinking neighborhood of 0. This completes the proof of the Lemma 1.

Proof of Theorem 2 Part (a). Consider the partition ΨΨΨ = (ΨΨΨ1,ΨΨΨ2), let ΨΨΨ = (Ψ̂ΨΨ1, 0) be

the maximizer of function Ln(ΨΨΨ1, 0). It suffices to show that in the neighbourhood ∥ΨΨΨ−ΨΨΨ0∥ =

O(n−1/2), as n → ∞, with probability tending to one: Ln(ΨΨΨ1,ΨΨΨ2) < Ln(Ψ̂ΨΨ1, 0). The claim is

proved as follows.

By the definition of Ψ̂ΨΨ1, we have Ln(ΨΨΨ1, 0) < Ln(Ψ̂ΨΨ1, 0). Thus,

Ln(ΨΨΨ1,ΨΨΨ2) < Ln(Ψ̂ΨΨ1, 0) ≤ Ln(ΨΨΨ1,ΨΨΨ2) < Ln(ΨΨΨ1, 0).

By Lemma 1, Ln(ΨΨΨ1,ΨΨΨ2) < Ln(ΨΨΨ1, 0) < 0, with probability tending to one, as n → ∞.

Part (b). The regularized log-likelihood function Ln(ΨΨΨ1, 0) is considered as a function of

ΨΨΨ1. In light of Theorem 2, there exists a
√
n consistent local maximizer of this function, say

Ψ̂ΨΨ1, such that:

∂Ln(Ψ̂ΨΨn)

∂ΨΨΨ1
=

∂l̃n(ΨΨΨ)

∂ΨΨΨ1
− ∂Rn(ΨΨΨ)

∂ΨΨΨ1
|
Ψ̂ΨΨn=(Ψ̂ΨΨ1,0)

= 0.

By substituting the first order Taylors expansions of ∂l̃n(ΨΨΨ)/∂ΨΨΨ1 and ∂Rn(ΨΨΨ)/∂ΨΨΨ1 into the

above expression, we have

{−l
′′

n(ΨΨΨ01) + p
′′

n(ΨΨΨ01) + op(n)}(Ψ̂ΨΨ1 −ΨΨΨ01) = l
′

n(ΨΨΨ01)− p
′

n(ΨΨΨ01),

where p
′

n, l
′

n, p
′′

n, l
′′

n are the gradient and the matrix of the second derivatives of pn(·) and ln(·),
respectively, and I is an identity matrix of the required dimension. Under the regularity con-

ditions R1 −R5,

−l
′′

n(ΨΨΨ01)/n = I1(ΨΨΨ01),

l
′

n(ΨΨΨ01)/
√
n

d−→ N(0, I1(ΨΨΨ01)).

Using the above facts and Slutskys Theorem, the results follows.
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