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Weak optimal inverse problems of interval linear

programming based on KKT conditions

LIU Xiao1 JIANG Tao1,2∗ LI Hao-hao3

Abstract. In this paper, weak optimal inverse problems of interval linear programming (IvLP)

are studied based on KKT conditions. Firstly, the problem is precisely defined. Specifically,

by adjusting the minimum change of the current cost coefficient, a given weak solution can

become optimal. Then, an equivalent characterization of weak optimal inverse IvLP problems

is obtained. Finally, the problem is simplified without adjusting the cost coefficient of null

variable.

§1 Introduction

The inverse problem in optimization, as a classical topic, has aroused considerable interest

for a long time, see [4,11,27]. With the rapid development of science, inverse problems have been

applied to some new fields [8, 26]. For example, Finn et al. [6] explored how inverse optimal

control can be used to learn behaviors from demonstrations and apply to torque control of

high-dimensional robotic systems.

Interval linear programming (IvLP) [5,10,13,15–18,21,24], which is one of significant prob-

lems in the area of optimization, has made great progress in recent decades. Despite this, some

questions, such as weak optimal solutions of IvLP remain unsolved. To solve these problems,

Steuer [25] introduced three algorithms for calculating weak optimal solutions of interval cost

coefficient linear programming (LP). Hlad́ık [9] proposed a polynomial time algorithm to verify

weak optimal feasible solution. With the growing maturity of IvLP, researchers’ attention has

been extended from the initial optimal solutions and optimal problems to other directions, such
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as the optimal value, multiobjective and inverse problems. Ishibuchi and Tanaka [12] estab-

lished a method to transform the LP problem with interval cost coefficients into a multiobjective

problem by introducing order relations. From the viewpoint of the order vector space, Li et

al. [14] solved the admissible order multiobjective IvLP problem. Recently, Mohammadi and

Gentili [20] proposed a new method to determine the optimal boundary.

Generally speaking, there are two types of inverse problems in optimization. One is the

inverse optimal value problem [1], and the other is the inverse optimal solution problem [2].

Recently, Mostafaee et al. [19] have studied the inverse optimal value problem of IvLP. Through

designing matrix games, the required optimal values could be achieved. The main idea is to

determine that, under what circumstances, the specified optimal value can be obtained about

the LP problem, in which the cost coefficient and the constraint coefficient are within the given

interval. This provides a new direction for the research of IvLP. Based on this, we consider the

second type of inverse problems, which is the inverse optimal solution problem of IvLP.

In this paper, we introduce the definition of weak optimal inverse IvLP problems, and

present an equivalent characterization based on KKT conditions. In Section 2, the definition

and conditions of weak optimal inverse IvLP problems are proposed, which can guide us in

the search for a candidate of weak optimal inverse IvLP problems. In Section 3, an equivalent

characterization of weak optimal inverse IvLP problems is obtained. Then, we simplify the

problem without adjusting the cost coefficient of null variable and present the main result of

this paper.

§2 Preliminaries

We first review some notations [5].

The set of all m-by-n matrices and interval matrices will be denoted by Rm×n and IRm×n

respectively. We define the interval matrix as

A = [A,A] = {A ∈ Rm×n : A ≤ A ≤ A}.

The center and radius matrices of A are defined as

Ac =
1

2
(A+A), A∆ =

1

2
(A−A),

respectively. Then A = [Ac −A∆, Ac +A∆].

Denote the diagonal matrix Ty = diag(y1, . . . , ym). Let {±1}m be the set of all {−1, 1}
m-dimensional vectors, i.e. {±1}m = {y ∈ Rm| | y |= e}, where e = (1, · · · , 1)T is the

m-dimensional vector of all 1
,
s and the absolute value of a matrix A = (aij) is defined by

|A| = (|aij |). Vector sign is denoted by

(sign x)i =

1 if xi ≥ 0,

−1 if xi < 0.

Let A ∈ IRm1×n1 ,B ∈ IRm1×n2 ,C ∈ IRm2×n1 ,D ∈ IRm2×n2 ,a ∈ IRm1 ,b ∈ IRm2 , c ∈
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IR1×n1 and d ∈ IR1×n2 . We define the “forward” IvLP (FP) problem as

FP(c,d) : min cx1 + dx2 s.t. Ax1 +Bx2 = a,Cx1 +Dx2 ≤ b, x1 ≥ 0, (1)

which is the general IvLP problem.

The corresponding LP form of FP(c,d) is stated as

FP(c, d) : min cx1 + dx2 s.t. Ax1 +Bx2 = a,Cx1 +Dx2 ≤ b, x1 ≥ 0. (2)

Therefore, FP(c,d) can be seemed as the set of FP(c, d) for any A ∈ A, B ∈ B, C ∈ C, D ∈
D, a ∈ a, b ∈ b, c ∈ c, d ∈ d.

Definition 2.1. A vector x is called a weak solution to FP(c,d), if for some A ∈ A, B ∈
B, C ∈ C, D ∈ D, a ∈ a, b ∈ b, it satisfies

Ax1 +Bx2 = a,Cx1 +Dx2 ≤ b, x1 ≥ 0.

Definition 2.2. A vector x is called a weak optimal solution to FP(c,d), if for some A ∈
A, B ∈ B, C ∈ C, D ∈ D, a ∈ a, b ∈ b, c ∈ c, d ∈ d, it is an optimal solution to FP(c, d).

Denote XW (A,B,C,D,a,b), XWOP (c,d) as the set of weak solutions and weak optimal

solutions to FP(c,d) respectively.

Let X(A,B,C,D, a, b), XOP (c, d) be the set of feasible solutions and optimal solutions to

FP(c, d) respectively.

Assume that an observed solution x ∈ XW (A,B,C,D,a,b)\XWOP (c,d), i.e. for some

A ∈ A, B ∈ B, C ∈ C, D ∈ D, a ∈ a, b ∈ b, x ∈ X(A,B,C,D, a, b), but there is no c ∈ c, d ∈ d

such that x ∈ XOP (c, d).

Definition 2.3. For a given solution x ∈ XW (A,B,C,D,a,b)\XWOP (c,d), the weak optimal

inverse IvLP problem WIP(c,d) is to adjust the minimum change of c ∈ c, d ∈ d to get new

cost coefficient (ĉ, d̂) such that x ∈ XOP (ĉ, d̂).

Denote by

G(x) = {ĉ ∈ R1×n1 , d̂ ∈ R1×n2 |min{ĉx1 + d̂x2|(x1, x2) ∈ X(A,B,C,D, a, b)} = ĉx1 + d̂x2}.

Then G(x) ̸= ϕ since (0, 0) ∈ G(x). WIP(c,d) can be stated as

min {∥c− ĉ∥p + ∥d− d̂∥p|(ĉ, d̂) ∈ G(x)}, (3)

where ∥ · ∥ means the norm, we use l1 norm in this paper.

From the analysis above, it can be easily observed that weak optimal inverse IvLP problems

proposed in this paper can be transformed to inverse LP problems.

Actually, not all the cases holds for solving the weak optimal inverse IvLP problem

WIP(c,d). So for a given solution x = (x1, x2), we first need to test whether x is a weak

solution, and then check whether it is a weak optimal solution.

Now we introduce the result of determining a vector as a weak solution to FP(c,d) in [10].

Lemma 2.1. (Corollary 2 in [10]) A pair (x1, x2), x1 ∈ Rn1 , x2 ∈ Rn2 , is a weak solution to
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the interval linear system FP(c,d) if and only if there is some s ∈ {±1}n2 such that
Ax1 + (Bc −B∆Ts)x

2 ≤ a,

−Ax1 − (Bc +B∆Ts)x
2 ≤ −a,

Cx1 + (Dc −D∆Ts)x
2 ≤ b,

x1 ≥ 0.

(4)

A method to check whether a weak solution is a weak optimal solution can be found in [23].

Lemma 2.2. (Theorem 3 in [23]) Define

F = {ri|i = 1, · · · , p, x1
ri = 0},

(A+, B+, a+) = Ty1(A,B, a), (C+, D+, b+) = Ty2(C,D, b).

A weak solution (x1, x2), x1 ∈ Rn1 , x2 ∈ Rn2 , is weak optimal solution to FP(c,d) if and

only if the system 

A+ ∈ Ty1A, B+ ∈ Ty1B, a+ ∈ Ty1a,

C+ ∈ Ty2C, D+ ∈ Ty2D, b+ ∈ Ty2b,

A+x1 +B+x2 = a+,

C+x1 +D+x2 = b+,

eTB+ + eTD+ ∈ d,

(eTA+ + eTC+)ri ∈ cri , i = p+ 1, · · · , n1

(eTA+ + eTC+)ri ≤ cri , i = 1, · · · , p
y2 ≤ 0,

Tσy
1 ≥ 0

(5)

is feasible for some σ ∈ {±1}m1 .

Lemma 2.3. ( [22]) The solution set to Ax = b is described by

|Acx− bc| ≤ A∆|x|+ b∆.

Lemma 2.4. ( [7]) An interval system Ax ≤ b is weakly feasible if and only if the system

Acx−A∆|x| ≤ b

is feasible.

Theorem 2.1. Let x = (x1, x2) be a weak solution to the interval linear system

Ax1 +Bx2 = a,Cx1 +Dx2 ≤ b, x1 ≥ 0. (6)

Then x solves

Ãx1 + B̃x2 = ã, C̃x1 + D̃x2 ≤ b̃, x1 ≥ 0 (7)

with

Ã = Ac − TuA
∆, B̃ = Bc − TuB

∆Tz, C̃ = C, D̃ = Dc −D∆Tz, ã = ac + Tua
∆, b̃ = b,

where z = sign x2 and

ui =


(Acx1+Bcx2−ac)i

(A∆x1+B∆|x2|+a∆)i
if (A∆x1 +B∆|x2|+ a∆)i > 0

α otherwise, α ∈ [−1, 1]
i = 1, · · · ,m1.
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Proof. As x is a weak solution to Ax1 +Bx2 = a, x1 ≥ 0, according to Lemma 2.3, we have

|Acx1 +Bcx2 − ac| ≤ A∆|x1|+B∆|x2|+ a∆ = A∆x1 +B∆|x2|+ a∆. (8)

Let

ui =


(Acx1+Bcx2−ac)i

(A∆x1+B∆|x2|+a∆)i
if (A∆x1 +B∆|x2|+ a∆)i > 0

α otherwise, α ∈ [−1, 1]
i = 1, · · · ,m1.

By (8), |u| ≤ e, and

Acx1 +Bcx2 − ac = Tu(A
∆x1 +B∆|x2|+ a∆).

Let z = sign x2, then |x2| = Tzx
2. So

(Ac − TuA
∆)x1 + (Bc − TuB

∆Tz)x
2 = ac + Tua

∆.

Because |u| ≤ e, |z| = e, we know |TuA
∆| ≤ A∆, |TuB

∆Tz| ≤ B∆, |Tua
∆| ≤ a∆. Let

Ã = Ac − TuA
∆, B̃ = Bc − TuB

∆Tz, ã = ac + Tua
∆,

then Ã ∈ A, B̃ ∈ B, ã ∈ a, and x solves Ãx1 + B̃x2 = ã, x1 ≥ 0.

As x is a weak solution to Cx1 +Dx2 ≤ b, x1 ≥ 0, according to Lemma 2.4, we have

Ccx1 +Dcx2 − C∆|x1| −D∆|x2| = Ccx1 +Dcx2 − C∆x1 −D∆|x2| ≤ b.

That is, Cx1 + (Dc −D∆Tz)x
2 ≤ b. Let

C̃ = C, D̃ = Dc −D∆Tz, b̃ = b.

Obviously, C̃ ∈ C, D̃ ∈ D, b̃ ∈ b, and x solves C̃x1 + D̃x2 ≤ b̃, x1 ≥ 0.

Hence, the proof is completed.

We next recall KKT conditions.

Every scenario of FP(c,d) can be stated as the LP problem FP(c, d), its corresponding dual

linear program is defined as

DFP(c, d) : max y1a+ y2b s.t. y1A+ y2C ≤ c, y1B + y2D = d, y2 ≤ 0.

KKT conditions [3] of FP(c, d) is presented as follows.

Theorem 2.2. A vector x is an optimal solution to FP(c, d) if and only if there exists row

vector y1 ∈ R1×m1 , y2 ∈ R1×m2 which solves

Ax1 +Bx2 = a, (9a)

Cx1 +Dx2 ≤ b, (9b)

x1 ≥ 0, (9c)

y1A+ y2C ≤ c, (9d)

y1B + y2D = d, (9e)

y2 ≤ 0, (9f)[
c−

(
y1A+ y2C

)]
x1 = 0, (9g)

y2
(
Cx1 +Dx2 − b

)
= 0. (9h)
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§3 Solving Weak Optimal Inverse IvLP Problems

3.1 An Equivalent Characterization of Weak Optimal Inverse IvLP

Problems

Now we introduce the result of the inverse problem of LP problem min{cx|Ax = b, x ≥ 0}
in [27].

Lemma 3.1. (Theorem 2.4 in [27]) Denote by

F(x) = {ĉ ∈ R1×n|min{ĉx|Ax = b, x ≥ 0} = ĉx}.

The inverse LP problem

min {∥c− ĉ∥1|ĉ ∈ F(x)}
is equivalent to

min ∥θ∥1
s.t. yA.,k − θk = ck, k ∈ K,

yA.,k − θk ≤ ck, k ∈ K,

θk ≥ 0, k ∈ K,

where K = {k|xk = 0},K = {k|xk > 0}.

In order to find the equivalent form like Lemma 3.1 for the weak optimal inverse IvLP

problem WIP(c,d), the following lemma is first derived.

Lemma 3.2. Let x ∈ X(A,B,C,D, a, b). Define

F = {ri|i = 1, · · · , p, x1
ri = 0},

G = {tj |j = 1, · · · , q, Ctj ,.x
1 +Dtj ,.x

2 = btj}.
Then x is an optimal solution to FP(c, d) if and only if there exists y such that

y1A.,ri + y2C.,ri ≤ cri , i = 1, . . . , p, (10a)

y1A.,ri + y2C.,ri = cri , i = p+ 1, . . . , n1, (10b)

y1B + y2D = d, (10c)

y2tj ≤ 0, j = 1, . . . , q, (10d)

y2tj = 0, j = q + 1, . . . ,m2. (10e)

Proof. “Only if”: If x is an optimal solution to FP(c, d), according to Theorem 2.2, then there

exists y solves (9a-9h). Thus we have

y1B + y2D = d.

By (9g) and F ,

y1A.,ri + y2C.,ri ≤ cri , i = 1, . . . , p,

y1A.,ri + y2C.,ri = cri , i = p+ 1, . . . , n1.
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By (9h) and G, we have

y2tj ≤ 0, j = 1, . . . , q,

y2tj = 0, j = q + 1, . . . ,m2.

Therefore, y solves (10a-10e).

“If”: As x ∈ X(A,B,C,D, a, b), (9a-9c) apparently holds. If there exists y solves (10a-10e),

then we have 
y1A+ y2C ≤ c, (11a)

y1B + y2D = d, (11b)

y2 ≤ 0. (11c)

By (10a),(10b) and F , we obtain that[
cri −

(
y1A.,ri + y2C.,ri

)]
x1 =

{ [
cri −

(
y1A.,ri + y2C.,ri

)]
· 0 = 0, i = 1, . . . , p,

0 · x1 = 0, i = p+ 1, . . . , n1.
(12)

Therefore, [
c−

(
y1A+ y2C

)]
x1 = 0.

By (10d),(10e) and G, we obtain that

y2tj
(
Ctj ,.x

1 +Dtj ,.x
2 − btj

)
=

{
y2tj · 0 = 0, j = 1, . . . , q,

0 ·
(
Ctj ,.x

1 +Dtj ,.x
2 − btj

)
= 0, j = q + 1, . . . ,m2.

(13)

Thus,

y2
(
Cx1 +Dx2 − b

)
= 0.

Hence, there exists y satisfying (9a-9h). According to Theorem 2.2, x is an optimal solution

to FP(c, d).

Lemma 3.3. Let

F = {ri|i = 1, · · · , p, x1
ri = 0},

G = {tj |j = 1, · · · , q, Ctj ,.x
1 +Dtj ,.x

2 = btj}.
Define

G(x) = {ĉ ∈ R1×n1 , d̂ ∈ R1×n2 |min{ĉx1 + d̂x2|(x1, x2) ∈ X(A,B,C,D, a, b)} = ĉx1 + d̂x2}.

G
′
(x) = {c∗ ∈ R1×n1 , d∗ ∈ R1×n2 |min{c∗x1 + d∗x2|(x1, x2) ∈ X(A,B,C,D, a, b)}

= c∗x1 + d∗x2},

where c∗ = c+ θ, d∗ = d+ η, (y1, y2, θ, η) is a solution to the system

y1A.,ri + y2C.,ri − θri ≤ cri , i = 1, . . . , p,

y1A.,ri + y2C.,ri − θri = cri , i = p+ 1, . . . , n1,

y1B + y2D − η = d,

y2tj ≤ 0, j = 1, . . . , q,

y2tj = 0, j = q + 1, . . . ,m2,

θri ≥ 0, i = 1, . . . , p.

(14)
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Then

min {∥c− c∗∥1 + ∥d− d∗∥1|(c∗, d∗) ∈ G
′
(x)} = min {∥c− ĉ∥1 + ∥d− d̂∥1|(ĉ, d̂) ∈ G(x)}.

Proof. For any (c∗, d∗) ∈ G′
(x), as (y1, y2, θ, η) is the solution to the system (14), and

c∗ = c+ θ, d∗ = d+ η, we have

y1A.,ri + y2C.,ri ≤ c∗ri , i = 1, . . . , p,

y1A.,ri + y2C.,ri = c∗ri , i = p+ 1, . . . , n1,

y1B + y2D = d∗,

y2tj ≤ 0, j = 1, . . . , q,

y2tj = 0, j = q + 1, . . . ,m2.

(15)

From Lemma 3.2, we know (c∗, d∗) ∈ G(x). So G′
(x) ⊆ G(x). Thus,

min {∥c− c∗∥1 + ∥d− d∗∥1|(c∗, d∗) ∈ G
′
(x)} ≥ min {∥c− ĉ∥1 + ∥d− d̂∥1|(ĉ, d̂) ∈ G(x)}.

By Lemma 3.2, for any (ĉ, d̂) ∈ G(x), there exist (y1, y2), y1 ∈ R1×m1 , y2 ∈ R1×m2 such that

y1A.,ri + y2C.,ri ≤ ĉri , i = 1, . . . , p,

y1A.,ri + y2C.,ri = ĉri , i = p+ 1, . . . , n1,

y1B + y2D = d̂,

y2tj ≤ 0, j = 1, . . . , q,

y2tj = 0, j = q + 1, . . . ,m2.

(16)

If ĉri ≥ cri , i = 1, . . . , p, put c∗ = ĉ = c+ θ, d∗ = d̂ = d+ η, then θri ≥ 0, i = 1, . . . , p. And

(16) can be reduced to

y1A.,ri + y2C.,ri ≤ cri + θri , i = 1, . . . , p,

y1A.,ri + y2C.,ri = cri + θri , i = p+ 1, . . . , n1,

y1B + y2D = d+ η,

y2tj ≤ 0, j = 1, . . . , q,

y2tj = 0, j = q + 1, . . . ,m2.

(17)

So we know (y1, y2, θ, η) is a solution to (14). Thus (ĉ, d̂) ∈ G′
(x), (c∗, d∗) ∈ G′

(x) and

∥c− c∗∥1 + ∥d− d∗∥1 = ∥c− ĉ∥1 + ∥d− d̂∥1.

If ĉri < cri , i = 1, . . . , p, let

c∗ri =

cri = cri + θri , i = 1, . . . , p,

ĉri = cri + θri , i = p+ 1, . . . , n1,

d∗ = d̂ = d+ η.

Then θri = 0, i = 1, . . . , p. Hence we have

y1A.,ri + y2C.,ri ≤ ĉri < cri + θri , i = 1, . . . , p,

y1A.,ri + y2C.,ri = ĉri = cri + θri , i = p+ 1, . . . , n1,

y1B + y2D = d̂ = d∗,

y2tj ≤ 0, j = 1, . . . , q,

y2tj = 0, j = q + 1, . . . ,m2.

(18)
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So we know (y1, y2, θ, η) is a solution to (14). Thus (c∗, d∗) ∈ G′
(x) and

|cri − c∗ri | =

0 i = 1, . . . , p,

|cri − ĉri | i = p+ 1, . . . , n1.

That is |c− c∗| ≤ |c− ĉ| and it follows that

∥c− c∗∥1 + ∥d− d∗∥1 ≤ ∥c− ĉ∥1 + ∥d− d̂∥1. (19)

Thus for any (ĉ, d̂) ∈ G(x), there exists (c∗, d∗) ∈ G′
(x) such that (19) holds.

So

min {∥c− c∗∥1 + ∥d− d∗∥1|(c∗, d∗) ∈ G
′
(x)} ≤ min {∥c− ĉ∥1 + ∥d− d̂∥1|(ĉ, d̂) ∈ G(x)}.

Therefore,

min {∥c− c∗∥1 + ∥d− d∗∥1|(c∗, d∗) ∈ G
′
(x)} = min {∥c− ĉ∥1 + ∥d− d̂∥1|(ĉ, d̂) ∈ G(x)}.

Note that in (14), the adjustment of θri < 0, i = 1, . . . , p is unnecessary.

As θri = 0, i = 1, . . . , p has met the optimality, and the less adjustment, the better, so we

just need set θri ≥ 0, i = 1, . . . , p.

In combination with Lemma 3.1, Lemma 3.2 and Lemma 3.3, we have the following result.

Theorem 3.1. Define

M(x) = {A ∈ A, B ∈ B, C ∈ C, D ∈ D, a ∈ a, b ∈ b|x ∈ X(A,B,C,D, a, b)}.

The weak optimal inverse IvLP problem WIP(c,d) is equivalent to the optimization problem

min ∥θ∥1 + ∥η∥1
s.t. y1A.,ri + y2C.,ri − θri ≤ cri , i = 1, . . . , p,

y1A.,ri + y2C.,ri − θri = cri , i = p+ 1, . . . , n1,

y1B + y2D − η = d, (20)

y2tj ≤ 0, j = 1, . . . , q,

y2tj = 0, j = q + 1, . . . ,m2,

θri ≥ 0, i = 1, . . . , p,

for any (A,B,C,D, a, b) ∈ M(x) and any c ∈ c, d ∈ d.

3.2 The Simplification of Weak Optimal Inverse IvLP Problems

Let

F = {ri|i = 1, · · · , p, x1
ri = 0},

H = {sh|h = 1, · · · , k, x2
sh

= 0}.
For variables x1

ri = 0, i = 1, . . . , p, x2
sh

= 0, h = 1, . . . , k, no matter how much their cost

coefficients are adjusted,

(cri + θri)x
1
ri = 0, i = 1, . . . , p,
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(dsh + ηsh)x
2
sh

= 0, h = 1, . . . , k.

That is, they have no effect on the objective function value. Because the weak optimal

inverse IvLP problem WIP(c,d) is to adjust the minimum change of c ∈ c, d ∈ d to obtain

new cost coefficients (ĉ, d̂) such that x ∈ XOP (ĉ, d̂), we had better not adjust the cost coefficient

θri = 0, i = 1, . . . , p, ηsh = 0, h = 1, . . . , k.

Thus we have

θri = 0, i = 1, . . . , p,

ηsh = 0, h = 1, . . . , k.

It not only simplifies the weak optimal inverse IvLP problem WIP(c,d) but also signifi-

cantly reduces the amount of calculation.

The objective function in (20) is

min

n1∑
j=1

|θri |+
n2∑
h=1

|ηsh |,

which can be transformed to a LP problem.

Put

θri = θ1ri − θ2ri , |θri | = θ1ri + θ2ri , θ
1
ri , θ

2
ri ≥ 0, i = p+ 1, . . . , n1,

ηsh = η1sh − η2sh , |ηsh | = η1sh + η2sh , η
1
sh
, η2sh ≥ 0, h = k + 1, . . . , n2,

then there is no absolute value in (20).

From the above discussion, we have the following result.

Theorem 3.2. The weak optimal inverse IvLP problem WIP(c,d) is equivalent to the opti-

mization problem

min

n1∑
i=p+1

(θ1ri + θ2ri) +

n2∑
h=k+1

(η1sh + η2sh)

s.t. y1A.,ri + y2C.,ri ≤ cri , i = 1, . . . , p,

y1A.,ri + y2C.,ri − θ1ri + θ2ri = cri , i = p+ 1, . . . , n1,

y1B.,sh + y2D.,sh = dsh , h = 1, . . . , k,

y1B.,sh + y2D.,sh − η1sh + η2sh = dsh , h = k + 1, . . . , n2, (21)

y2tj ≤ 0, j = 1, . . . , q,

y2tj = 0, j = q + 1, . . . ,m2,

θ1ri , θ
2
ri ≥ 0, i = p+ 1, . . . , n1,

η1sh , η
2
sh

≥ 0, h = k + 1, . . . , n2,

for any (A,B,C,D, a, b) ∈ M(x) and any c ∈ c, d ∈ d.

Then we can get the new cost coefficient (ĉ, d̂) as

ĉ = c+ θ,

d̂ = d+ η,
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where

θri = 0, i = 1, . . . , p,

θri = θ1ri − θ2ri , i = p+ 1, . . . , n1,

ηsh = 0, i = 1, . . . , p,

ηsh = η1sh − η2sh , h = k + 1, . . . , n2.

Algorithm. The complete description of the algorithm for solving the weak optimal inverse

IvLP problem WIP(c,d) can be stated as follows.

Step 1: Input x, verify whether there is some s ∈ {±1}n2 such that (4) is feasible.

If not, x is not weak solution to FP(c,d), end;

else, next.

Step 2: Test whether there is some σ ∈ {±1}m1 such that (5) is feasible.

If it is, x is weak optimal solution to FP(c,d), end;

else, next.

Step 3: Construct (A,B,C,D, a, b) ∈ M(x).

Step 4: Traverse c, d in [c, c], [d, d] to solve (21).

Step 5: Return (y1, y2, θ1, η), optimal value, and the new cost coefficient (ĉ, d̂).

Remark. In step 1 and step 2, there are 2n2 and 2m1 linear systems respectively. For step 1,

we can continue as soon as we find some s ∈ {±1}n2 such that (4) is feasible. However, for step

2, we can not continue until all the systems have been judged. For step 3, we put x into the

constraint system of FP(c,d), as x is given, it can be transformed into a system of equations

and inequalities about A,B,C,D, a, b, which can be solvable by software. Usually, there are an

infinite number of solutions, which can be assigned according to actual requirements. They can

also be constructed according to some special conclusions, such as the case in Theorem 2.1, for

the fact that (Ã, B̃, C̃, D̃, ã, b̃) ∈ M(x).

§4 Conclusion

In this paper, we introduced weak optimal inverse IvLP problems. An equivalent charac-

terization of weak optimal inverse IvLP problems was given, and the problem was simplified

without adjusting the cost coefficient of null variable. Future works will include inverse IvLP

problems when the feasible region also needs to be changed and problems in other formulations,

for example, strong optimal inverse IvLP problems.
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