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Quantile inference for nonstationary processes with

infinite variance innovations

LIU Qi-meng LIAO Gui-li ∗ ZHANG Rong-mao

Abstract. Based on the quantile regression, we extend Koenker and Xiao (2004) and Ling

and McAleer (2004)’s works from finite-variance innovations to infinite-variance innovations.

A robust t-ratio statistic to test for unit-root and a re-sampling method to approximate the

critical values of the t-ratio statistic are proposed in this paper. It is shown that the limit

distribution of the statistic is a functional of stable processes and a Brownian bridge. The

finite sample studies show that the proposed t-ratio test always performs significantly better

than the conventional unit-root tests based on least squares procedure, such as the Augmented

Dick Fuller (ADF) and Philliphs-Perron (PP) test, in the sense of power and size when infinite-

variance disturbances exist. Also, quantile Kolmogorov-Smirnov (QKS) statistic and quantile

Cramer-von Mises (QCM) statistic are considered, but the finite sample studies show that they

perform poor in power and size, respectively. An application to the Consumer Price Index for

nine countries is also presented.

§1 Introduction

An extensive literature in economics and finance suggests that many economic time series

are well characterized as autoregressive processes with a unit root. The augmented Dickey-

Fuller (ADF) test, proposed by Dickey and Fuller (1979, 1981), the Phillips and Perron (PP)

(1988) test, and the Kwiatkowski, Phillips, Schmidt and Shin (KPSS) (1992) test are the most

frequently used unit root tests, and are vital tools in time series econometrics. The afore-

mentioned test statistics were all derived under the ordinary least squares (OLS) framework.

However, as Koenker and Xiao (2004) pointed out, if an innovation distribution deviates from

the normal distribution, these tests exhibit poor power performance.

For a (nearly) unit-root process with finite variance innovations, many robust approaches

have been proposed to avoid imposing the restrictive normality assumption. For example, Cox
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and Llatas (1991) developed a test based on M -estimate for an AR(1) process with a (near)

unit root; Lucas (1995) considered a unit root test based on a nonparametric modification of

M -estimate, focusing on the Huber and Student t procedures; Breitung and Gourieroux (1997)

and Hasan and Koenker (1997) proposed rank-type tests within the ADF framework; Koenker

and Xiao (2004) proposed a t-ratio test at selected quantiles, a Kolmogorov-Smirnov test and a

Cramer-von Mises test in a quantile autoregressive framework; Galvao (2009) extended the tests

of Koenker and Xiao (2004) by including stationary covariates in the quantile autoregression.

However, large number empirical studies in macroeconomics and finance, indicate that time

series with heavy tails provide better models for such data. For example, Fama (1965) and

Mandelbrot (1963, 1967) argued that distributions of commodity and stock returns are often

heavy-tailed with possible infinite variance, Rachev and Mittnik (2000) considered stable pare-

tian models in finance, Lux and Marchesi (2000) studied agent-based models and Charemza,

Hristova and Burridge (2005) studied the inflation data with heavy tails. More background

information on heavy-tailed time series and their applications can be found in Finkenstädt and

Rootzén (2003).

Due to its important applications in real data, unit-root tests for cases with infinite variance

innovations have attracted more and more attentions in recent years. For example, Chan and

Tran (1989) and Rachev, Mittnik and Kim (1998) considered the limit distribution for LSE-

based tests, and Knight (1989) developed M and least absolute deviation (LAD) estimate

based tests for case with i.i.d. heavy-tailed noise, while Knight (1991) extended these results to

the case with infinite-order moving average dynamics; Phillips (1990) generalized the Phillips

and Perron’s test (1988) to the context of processes driven by weakly dependent shocks whose

innovations display infinite variance; Samarakoon and Knight (2009) consider a M -estimate

based test for finite-order autoregressive processes driven by infinite variance innovations; Chan

and Zhang(2009) study the least squares estimate of the autoregressive coefficient of a nearly

nonstationary autoregressive model with strong dependet and infinite variance innovations;

Chan and Zhang (2010) consider the quantile estimate and the semi-parametric estimate of the

autoregressive parameters with long- and short-range dependent innovations.

It is well known that when the noise is dependent, a more powerful unit-root test is based on

the differenced process. A typical test is the augmented Dickey and Fuller (ADF) test. In this

paper, the first contribution is that we extend Koenker and Xiao (2004) and Ling and McAleer

(2004)’s works from finite-variance innovations to infinite-variance innovations by adopting this

idea. More precisely, in this paper, we consider the following model

∆yt = δyt−1 +

p∑
i=1

ϕi∆yt−i + ut, t = p+ 1, . . . , n, (1.1)

where ∆yt = yt − yt−1, {ut} is an i.i.d. sequence lying in the domain of attraction of a stable

law with tail index α ∈ (0, 2), i.e., there exist two sequences {an} and {bn} such that

1

an

n∑
i=1

ui − bn
d−→ Zα, (1.2)

where
d−→ denotes convergence in distribution, and Zα is a stable variable with tail index α.
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For simplicity, we also write such {ut} as ut ∈ ND(α). By (1.1), the unit-root hypothesis is

equivalent to test whether δ = 0. The second contribution is that three statistics to test for

unit-root and a re-sampling method to approximate the critical values of the t-ratio statistic

are proposed. The first statistic is a t-ratio test using a given quantile level, and the other

two tests are the quantile Kolmogorov-Smirnov (QKS) and quantile Cramer-von Mises (QCM)

tests, which use all the quantiles information in some interval. It is shown that these tests

converge to functionals of stable process and a Brownian bridge and perform better than that

based on LSE procedure, especially the t-ratio statistics.

The paper is organized as follows. In Section 2, we introduce the model and estimation.

In Section 3, the asymptotic results are given for the quantile autoregression parameters. The

test statistics and the large sample distributions are presented in Section 4. The finite sample

properties using a Monte Carlo simulation are showed in Section 5. A real data example is

given in Section 6. The proofs are given in Section 7. Throughout the paper, the symbol “
d−→”

denotes convergence in distribution, “=⇒” denotes weak convergence on M-topology.

§2 Parameters Estimate

2.1 Quantile Regression

In this subsection, we consider the estimate for the parameter (δ, ϕ1, . . . , ϕp)
′ in model (1.1).

Let Qu(τ) be the τ -th quantile of ut and Ft be the σ-field generated by {us, s ≤ t}. The τ -th

conditional quantile of ∆yt with respect to Ft−1 is given by

Q∆yt(τ |Ft−1) = Qu(τ) + δyt−1 +

p∑
i=1

ϕi∆yt−i. (2.1)

Let ϕ(τ) = (Qu(τ), δ, ϕ1, . . . , ϕp)
′
and xt = (1, yt−1,∆yt−1, . . . ,∆yt−p)

′
. Then

Q∆yt(τ |Ft−1) = x
′

tϕ(τ), (2.2)

and the estimator ϕ̂(τ) for the ϕ(τ) can be obtained as follows:

ϕ̂(τ) = argmin
ϕ∈Rp+2

n∑
t=1

ρτ (∆yt − x
′

tϕ), (2.3)

where ρτ (u) = u(τ − I(u < 0)). The above (2.2) is a linear conditional quantile function, and

the solution to (2.3) can be obtained using usual linear programming.

2.2 Asymptotic properties

Let models (1.1) and (1.2) hold. Under the null hypothesis that yt is a unit-root process

(i.e. δ = 0), the convergence rates of the components in ϕ̂(τ) are different. Specifically, Q̂u(τ)

converges at rate
√
n, δ̂ converges at rate

√
nan, while other components converge at rate

an, where an = inf{x : P (ut > x) < 1/n} is given as in (1.2). Therefore, we introduce the

standardization matrix Dn = diag(
√
n,

√
nan, an, . . . , an), and denote v̂ = Dn(ϕ̂(τ) − ϕ(τ)).
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Then,

∆yt − x
′

tϕ̂(τ) = ∆yt − x
′

tϕ(τ)− x
′

t(ϕ̂(τ)− ϕ(τ)) ≡ utτ − (D−1
n v̂)

′
xt,

where utτ = ∆yt − x
′

tϕ(τ) and minimizing the right-hand side of (2.3) is equivalent to

min
v

n∑
t=1

[ρτ (utτ − (D−1
n v)

′
xt)− ρτ (utτ )] =: min

v
Ωn(v).

If v̂ minimizes Ωn(v), then v̂ = Dn(ϕ̂(τ)−ϕ(τ)) and the original function in (2.3) is represented

as a convex objective function of Ωn(v). As a result, we can use the convexity lemma in Knight

(1989, 1991) and Pollard (1991) to show the asymptotic properties of the function. By the

convexity lemma, if the finite-dimensional distributions of Ωn(v) converge weakly to those of

Ω(v), and Ω(v) has a unique minimum, then the convexity of Ωn(v) implies that v̂ converges in

distribution to the minimizer of Ω(v). By Knight’s identity (Knight, 1989,1998), Ωn(v) can be

divided into two parts as follows:

Ωn(v) = −
n∑
t=1

v
′
D−1
n xtψτ (utτ ) +

n∑
t=1

∫ v
′
D−1

n xt

0

[I(utτ ≤ s)− I(utτ ≤ 0)] ds, (2.4)

where ψτ (u) = τ − I(u ≤ 0). To show the weak convergence of Ωn(v), we need to show

the convergence of each part. Once Ωn(v) is shown to converge weakly to Ω(v), then v̂ =

Dn(ϕ̂(τ)− ϕ(τ)) will converge in distribution to the minimizer of Ω(v).

To show the asymptotic properties, we impose the following assumptions.

Assumption 1. {ut} is an i.i.d. symmetric sequence belonging to ND(α) with α ∈ (0, 2).

Assumption 2. ut has a positive continuous density f(u) on R.

Assumption 3. |
∑p
i=1 ϕiz

i − 1| ̸= 0 if |z| < 1.

Let Bτ (r) = B(τ, r) be a two-parameter rescaled Brownian bridge [see Goodman (1976)],

that is, (a) for given r, B(τ, r) is a Brownian bridge with respect to τ ∈ [0, 1]. Hence, the two-

parameter process, B(τ, r), is partially a Brownian motion and partially a Brownian bridge;

(b) for given τ , (τ(1− τ))−1/2B(τ, r) is a Brownian motion. Under the assumption that yt is a

unit-root process, we have the following asymptotic results.

Theorem 1. Let yt be determined by (1.1) with δ = 0. Under Assumption 1-3, we have

D−1
n

n∑
t=1

xtψτ (utτ ) ⇒

[∫ 1

0
η̄α(r) dBτ (r)

Φτ

]
,

n∑
t=1

∫ v
′
D−1

n xt

0

[I(utτ ≤ s)− I(utτ ≤ 0)] ds⇒ 1

2
f(F−1(τ))v

′
Γv,

where η̄α(r) = [1, (1 −
∑p
i=1 ϕi)

−1ηα(r)]
′
, ηα(r) is a stable process with index α and Φτ =

[ηα(1), . . . , ηα(1)]
′
is a p-dimensional stable process vector. In addition,

Γ ≡

[∫ 1

0
η̄α(r)η̄

′

α(r) dr 02×p

0p×2 Ψ

]
,

where Ψij = diag(ηα/2, . . . , ηα/2) and ηα/2 is a stable variable with index α/2.
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Corollary 1. Under the Assumption of Theorem 1, we have

(i) for the τ -quantile ϕ(τ),

Dn(ϕ̂(τ)− ϕ(τ)) ⇒ 1

f(F−1(τ))

[∫ 1

0
η̄α(r)η̄

′

α(r) dr 02×p

0p×2 Ψ

]−1 [∫ 1

0
η̄α(r) dBτ (r)

Φτ

]
.

(ii) for the unit-root parameter δ,

√
nanδ̂ ⇒

1

f(F−1(τ))
[

∫ 1

0

η2
α
(r) dr]−1

∫ 1

0

η
α
(r) dBτ (r), (2.5)

where η
α
(r) = (1−

∑p
i=1 ϕi)

−1(ηα(r)−
∫ 1

0
ηα(r) dr).

§3 Quantile Inference for Unit-root

In this section, we consider the unit root test with the null hypothesis H0 : δ = 0, and the

alternative hypothesis H1 : δ < 0. To this end, we propose three statistics based on t-ratio,

quantile Kolmogorov-Smirnov (QKS) and quantile Cramer-von Mises (QCM).

3.1 t-ratio Statistic

Inference based on the quantile regression provides a more robust approach to testing the

unit root hypothesis. Based on the asymptotic distribution of δ̂, we can construct a t-ratio test

statistic as follows:

tn(τ) = (τ(1− τ))−1/2f(F̂−1(τ))(Y
′

−1PXY−1)
1/2δ̂,

where f(F̂−1(τ)) is a consistent estimator of f(F−1(τ)). Here, Y−1 is the vector of lagged

dependent variables (yt−1), and PX is the projection matrix onto the space orthogonal to

Xt = (1,∆yt−1, . . . ,∆yt−p)
′. In particular,

Y
′

−1PXY−1 =
n∑
t=1

y2t−1 −
n∑
t=1

yt−1X
′
t(

n∑
t=1

XtX
′
t)

−1
n∑
t=1

Xtyt−1. (3.1)

By Lemma 1 below, it holds that
∑n
t=1 y

2
t−1 = O(na2n), the elements of∑n

t=1 yt−1X
′
t(
∑n
t=1XtX

′
t)

−1
∑n
t=1Xtyt−1 are O(na2n) or O(a2n), so Y

′

−1PXY−1 = O(na2n).

Theorem 2. Under the null hypothesis, and using the result for the asumptotic distribution of

δ̂, we have

tn(τ) ⇒ [

∫ 1

0

η2
α
(t) dt]−1/2

∫ 1

0

η
α
(t) dB(t),

where B(t) is a standard Brownian motion.

We consider the following simulation procedure generating the asymptotic critical values of

tn(τ) similarly to Koenker and Xiao (2004) and Li and Park (2018):

1 Let wt = ∆yt, t = 2, . . . , n, then fit wt by the following qth order autoregression

wt =

q∑
j=1

βjwt−j + ut, t = q + 1, . . . , n,
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estimate β1, . . . , βq by quantile regression (QR), and obtain the residuals ût.

2 Draw i.i.d variables {u∗t }nt=q+1 by Bootstrap method from the centered residuals ût −
1

n−q
∑n
j=q+1 ûj and generate w∗

t from u∗t using the fitted autoregression

w∗
t =

q∑
j=1

β̂jw
∗
t−j + û∗t , t = q + 1, . . . , n,

with w∗
j = ∆yj for j = 1, . . . , q.

3 Generate y∗t under the null restriction of a unit root, y∗t = y∗t−1 + w∗
t , with y

∗
1 = y1.

4 Generate random normal vector et for t = 1, . . . , n.

5 Approximate t(τ) by

t̂(τ) ≡ [
∑
t

(y∗t − ȳ∗)2]−1/2[
∑
t

(y∗t − ȳ∗)et],

where ȳ∗ = n−1
∑
t y

∗
t .

6 Repeat steps 2 to 5 many times.

Let CV (τ, θ) be the 100θ quantiles (i.e., P (t̂(τ) ≤ CV (τ, θ)) = θ). Then, the unit root hypoth-

esis will be rejected at the (1 − θ) level if tn(τ) ≤ CV (τ, θ). To obtain the asymptotic critical

values, we let the sample size, n, be 1000. The Monte Carlo simulation is repeated 10,000

times. In order to obtain the feasible t-ratio test, we should obtain consistent estimators for

f(F−1(τ)). Noting that dF−1/dt = (f(F−1(t)))−1, so f(F−1(τ)) can be estimated consistently

by

f(F̂−1(τ)) =
2hn

F̂−1
n (τ + hn)− F̂−1

n (τ − hn)
,

where hn is the bandwidth and F̂−1
n is the estimator for F−1(s).

In order to select the bandwidth, Koenker and Xiao (2006) suggest two choices. One is the

bandwidth rule suggested by Hall and Sheather (1988):

hHS = n−1/3z2/3α

[ 1.5ϕ2(Φ−1(τ))

2(Φ−1(τ))2 + 1

]1/3
,

where zα satisfies Φ(zα) = 1− α/2 for the α-level test. The other is Bofinger’s (1975) rule:

hB = n−1/5
[ 4.5ϕ4(Φ−1(t))

(2Φ−1(t)2 + 1)2

]1/5
,

where ϕ(·) and Φ(·) are the density and cumulative distribution function of the standard normal

distribution, respectively.

3.2 QKS and QCM

In addition to the t-ratio statistic tn(τ), which uses only a given quantile τ , just as the ADF

coefficient test Zδ, we may also use the coefficient-based statistic in the QAR model. Define

the coefficient-based statistic

Un(τ) =
√
nanδ̂.
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By Corollary 1, under the unit-root hypothesis and Assumptions 1-3,

Un(τ) ⇒ U(τ) =
1

f(F−1(τ))

[ ∫ 1

0

η2
α

]−1
∫ 1

0

η
α
dBτ ,

Let τ ∈ T = [τ0, 1 − τ0], for small τ0 > 0. We define the QKS and QCM tests similarly to

Koenker and Xiao (2004) and Galvao (2009) as follows:

QKS ≡ sup
τ∈T

|Un(τ)| and QCM ≡
∫
τ∈T

|Un(τ)|2 dτ.

Theorem 3. Suppose that δ = 0 and Assumptions 1-3 hold, then

QKS
d−→ sup

τ∈T
|U(τ)|, and QCM

d−→
∫
τ∈T

|U(τ)|2 dτ.

In practice, we may calculate Un(τ) at {τi = i/n}ni=1, and thus the statistics QKS can be

constructed by taking maximum over τi ∈ T and QCM are obtained using numerical integration.

The critical values of the QKS and QCM tests can be obtained by resample method, which was

used above to calculating critical value of tn(τ).

§4 Finite sample evaluation

To study the finite sample properties of the proposed tests, we consider the following design,

which is the leading case studied in the literature:

yt = ϕyt−1 + ut,

where {ut} are i.i.d random variables. We examined different values of ϕ and different type-

s of error distributions in the experiment. In particular, we consider four values of ϕ ∈
{1.0, 0.95, 0.90, 0.85}, and ut ∼ S(α, 0, 1, 0), with α ∈ {0.4, 0.8, 1.0, 1.2, 1, 6, 2}. Also,

ut ∼ t(2) is included.

For the following tests: (1) the classical ADF coefficient-based test; (2) the Phillips-Perron

semiparametric Zϕ test; (3) Breitung’s variance ratio test (VPT ); (4) M unit root test (MZϕ

); (5) the KS-type test (QKS) based on QAR with T = [0.1, 0.9]; (6) the CM-type test (QCM)

with T = [0.1, 0.9]; (7) the t-ratio test tn(τ) based on QAR at τ = 0.5, the empirical size and

the empirical power are given in Table 1-4.

Table 1 reports the size performance of the tests. First, the ADF and PP tests show severe

size distortion for all sample sizes and all distributions. Second, the VRT and MZϕ tests show

good size performance, similar to that of the tn(0.5) test. In addition, when the sample size

is n = 50, the QKS test has severe size distortion, while, it has good size performance when

n = 200. Finally, the size performance of the QKS test is better than that of the QCM test.

Moreover, as the sample size increases, the size performances of the QKS and QCM tests

improve.

Table 2-4 give the empirical power of the tests. First, the ADF and PP tests have low

power for different ϕ. second, the power performance of the VRT test is poor but improves

with the sample size increasing. In addition, the MZϕ, QCM and tn(0.5) tests show good

performance. However, the power of QKS test is poor, the possible reason is that when τ
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tends to 0 or 1, the sample used to calculate Un(τ) could be quite small, which may lead to

huge error in calculating the critical values of QKS.

Table 1. Size of the tests (ϕ = 1).

ADF PP VRT MZϕ QKS QCM tn(0.5)
n = 50

t(2) 0.200 0.189 0.043 0.037 0.066 0.232 0.046
S(0.4, 0, 1, 0) 0.169 0.352 0.036 0.056 0.137 0.209 0.025
S(0.8, 0, 1, 0) 0.270 0.241 0.039 0.043 0.108 0.225 0.020
S(1, 0, 1, 0) 0.270 0.253 0.057 0.042 0,083 0.193 0.033
S(1.2, 0, 1, 0) 0.229 0.257 0.038 0.052 0.058 0.184 0.029
S(1.6, 0, 1, 0) 0.229 0.267 0.034 0.053 0.074 0.251 0.044
S(2, 0, 1, 0) 0.185 0.193 0.042 0.034 0.148 0.476 0.055

n = 100
t(2) 0.210 0.223 0.045 0.042 0.030 0.173 0.034

S(0.4, 0, 1, 0) 0.328 0.328 0.060 0.061 0.089 0.121 0.032
S(0.8, 0, 1, 0) 0.243 0.253 0.036 0.044 0.053 0.117 0.038
S(1, 0, 1, 0) 0.255 0.292 0.046 0.062 0.037 0.106 0.045
S(1.2, 0, 1, 0) 0.218 0.259 0.039 0.052 0.032 0.115 0.030
S(1.6, 0, 1, 0) 0.248 0.224 0.034 0.041 0.039 0.182 0.025
S(2, 0, 1, 0) 0.211 0.218 0.042 0.046 0.080 0.341 0.045

n = 200
t(2) 0.185 0.230 0.053 0.063 0.036 0.145 0.041

S(0.4, 0, 1, 0) 0.324 0.307 0.057 0.054 0.023 0.040 0.030
S(0.8, 0, 1, 0) 0.251 0.261 0.060 0.049 0.036 0.066 0.037
S(1, 0, 1, 0) 0.253 0.247 0.051 0.046 0.022 0.089 0.047
S(1.2, 0, 1, 0) 0.225 0.283 0.043 0.051 0.012 0.072 0.036
S(1.6, 0, 1, 0) 0.252 0.239 0.054 0.053 0.033 0.139 0.034
S(2, 0, 1, 0) 0.188 0.215 0.038 0.039 0.032 0.233 0.053

To gain a further understanding of these phenomena, the empirical density functions of

tn(0.5) under the null hypothesis H0 and the alternative H1 with t(2) noises are plotted in

figure 1(a). The black line is the approximated distribution of the limiting distribution t(0.5).

The red line is the empirical density of tn(0.5) under null hypothesis H0, and the rest are the

empirical density of tn(0.5) for different ϕ. It shows that the smaller of ϕ, the bigger of the

empirical power. Similarly, the empirical density functions of QKS and QCM are plotted in

figure 1(b) and figure 2. In figure 2(a), empirical density of QCM under H0 and H1 are plotted,

and the asymptotic distribution of
∫
τ∈T |U(τ)|2 dτ is also plotted in figure 2(b). Figure 1(b)

shows that QKS has a good size performance, but performs poor in power. Figure 2 shows that

QCM has severe size distortion, but performs well in power.

§5 Real example

In this section, we study the unit root properties of the monthly Consumer Price Index (CPI)

for several countries. The series vary in length from 241 to 723 observations, and cover various
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Table 2. Power of the tests (ϕ = 0.95).

ADF PP VRT MZϕ QKS QCM tn(0.5)
n = 50

t(2) 0.195 0.192 0.076 0.091 0.039 0.162 0.309
S(0.4, 0, 1, 0) 0.272 0.295 0.053 0.137 0.252 0.652 0.982
S(0.8, 0, 1, 0) 0.187 0.202 0.048 0.109 0.067 0.374 0.870
S(1, 0, 1, 0) 0.222 0.226 0.069 0.155 0.036 0.264 0.666
S(1.2, 0, 1, 0) 0.184 0.230 0.068 0.113 0.027 0.180 0.503
S(1.6, 0, 1, 0) 0.229 0.222 0.070 0.106 0.047 0.166 0.277
S(2, 0, 1, 0) 0.220 0.252 0,060 0.110 0.120 0.316 0.251

n = 100
t(2) 0.201 0.207 0.113 0.263 0.029 0.284 0.640

S(0.4, 0, 1, 0) 0.152 0.202 0.036 0.802 0.540 0.932 0.995
S(0.8, 0, 1, 0) 0.164 0.193 0.061 0.284 0.145 0.802 0.995
S(1, 0, 1, 0) 0.171 0.236 0.102 0.366 0.062 0.644 0.951
S(1.2, 0, 1, 0) 0.177 0.254 0.088 0.359 0.036 0.444 0.837
S(1.6, 0, 1, 0) 0.227 0.226 0.109 0.317 0.041 0.274 0.535
S(2, 0, 1, 0) 0.227 0,247 0.100 0.296 0.063 0.290 0.452

n = 200
t(2) 0.196 0.202 0.242 0.725 0.098 0.750 0.904

S(0.4, 0, 1, 0) 0.131 0.162 0.076 0.988 0.904 0.999 1
S(0.8, 0, 1, 0) 0.174 0.188 0.111 0.958 0.491 0.996 1
S(1, 0, 1, 0) 0.168 0.203 0.156 0.935 0.296 0.986 1
S(1.2, 0, 1, 0) 0.180 0.198 0.155 0.902 0.163 0.938 0.991
S(1.6, 0, 1, 0) 0.224 0.251 0.232 0.842 0.141 0.724 0.841
S(2, 0, 1, 0) 0.231 0.259 0.234 0.751 0.045 0.542 0.723

Figure 1. Empirical density functions of tn(τ) and QKS under the null hypothesis H0 and the
alternative H1.
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Table 3. Power of the tests (ϕ = 0.9).

ADF PP VRT MZϕ QKS QCM tn(0.5)
n = 50

t(2) 0.182 0.169 0.146 0.245 0.041 0.303 0.583
S(0.4, 0, 1, 0) 0.165 0.204 0.041 0.772 0.339 0.772 0.979
S(0.8, 0, 1, 0) 0.151 0.161 0.065 0.248 0.095 0.615 0.961
S(1, 0, 1, 0) 0.167 0.201 0.098 0.290 0.050 0.467 0.865
S(1.2, 0, 1, 0) 0.184 0.189 0.095 0.265 0.022 0.359 0.729
S(1.6, 0, 1, 0) 0.208 0.198 0.101 0.249 0.036 0.284 0.507
S(2, 0, 1, 0) 0.213 0.226 0,123 0.275 0.105 0.445 0.482

n = 100
t(2) 0.178 0.217 0.231 0.769 0.096 0.758 0.897

S(0.4, 0, 1, 0) 0.156 0.185 0.063 0.980 0.688 0.986 0.997
S(0.8, 0, 1, 0) 0.143 0.164 0.097 0.928 0.342 0.956 0.999
S(1, 0, 1, 0) 0.158 0.192 0.159 0.918 0.177 0.928 0.993
S(1.2, 0, 1, 0) 0.181 0.234 0.178 0.885 0.118 0.852 0.962
S(1.6, 0, 1, 0) 0.236 0.204 0.194 0.793 0.127 0.699 0.774
S(2, 0, 1, 0) 0.211 0,253 0.217 0.721 0.191 0.716 0.725

n = 200
t(2) 0.250 0.238 0.396 1 0.429 0.990 0.992

S(0.4, 0, 1, 0) 0.125 0.164 0.099 0.992 0.969 1 1
S(0.8, 0, 1, 0) 0.157 0.197 0.183 0.996 0.755 1 1
S(1, 0, 1, 0) 0.170 0.225 0.281 0.999 0.605 1 1
S(1.2, 0, 1, 0) 0.208 0.226 0.284 0.997 0.469 0.997 1
S(1.6, 0, 1, 0) 0.239 0.270 0.360 0.998 0.509 0.983 0.965
S(2, 0, 1, 0) 0.260 0.270 0.413 0.999 0.651 0.928 0.911

Figure 2. Empirical density functions of QCM under the null hypothesis H0 and the alternative
H1.
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Table 4. Power of the tests (ϕ = 0.85).

ADF PP VRT MZϕ QKS QCM tn(0.5)
n = 50

t(2) 0.198 0.153 0.176 0.408 0.050 0.553 0.764
S(0.4, 0, 1, 0) 0.133 0.169 0.064 0.948 0.410 0.814 0.989
S(0.8, 0, 1, 0) 0.163 0.143 0.076 0.710 0.146 0.756 0.983
S(1, 0, 1, 0) 0.146 0.181 0.116 0.693 0.085 0.674 0.940
S(1.2, 0, 1, 0) 0.152 0.193 0.108 0.641 0.059 0.597 0.866
S(1.6, 0, 1, 0) 0.205 0.161 0.154 0.471 0.076 0.515 0.641
S(2, 0, 1, 0) 0.193 0.212 0,195 0.471 0.181 0.687 0.653

n = 100
t(2) 0.216 0.213 0.337 0.960 0.232 0.938 0.963

S(0.4, 0, 1, 0) 0.124 0.145 0.063 0.989 0.757 0.992 1
S(0.8, 0, 1, 0) 0.149 0.142 0.140 0.986 0.462 0.990 1
S(1, 0, 1, 0) 0.170 0.204 0.224 0.987 0.314 0.979 0.999
S(1.2, 0, 1, 0) 0.163 0.222 0.230 0.991 0.226 0.960 0.989
S(1.6, 0, 1, 0) 0.198 0.216 0.310 0.9763 0.298 0.925 0.926
S(2, 0, 1, 0) 0.210 0,246 0.330 0.967 0.573 0.905 0.873

n = 200
t(2) 0.248 0.236 0.510 1 0.768 1 0.999

S(0.4, 0, 1, 0) 0.124 0.140 0.105 0.995 0.973 1 1
S(0.8, 0, 1, 0) 0.157 0.148 0.287 0.994 0.888 1 1
S(1, 0, 1, 0) 0.174 0.236 0.399 0.998 0.810 1 1
S(1.2, 0, 1, 0) 0.181 0.256 0.421 0.997 0.717 1 1
S(1.6, 0, 1, 0) 0.249 0.264 0.505 0.999 0.814 0.999 0.988
S(2, 0, 1, 0) 0.243 0.280 0.557 1 0.956 0.990 0.974
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time periods between January 1947 and January 2020. The time series and their ACF are

showed in Figure 3. The distribution of CPI (defined as the first difference of the logarithm of

prices) are often skewed and leptocurtic, differing markedly in shape from the normal, therefore,

an alternative assumption about the behaviour of the innovations is that they are draws from

a symmetric stable Paretian distribution. Table 5 gives the test results for a unit root using

tn(0.5), QKS and QCM.

Figure 3. Time series plots of the monthly CPI and their ACF.

The columns of 3, 5 and 7 are the values of test statistics tn(0.5), QKS and QCM, and the

column of 2, 4 and 6 are the critical values at the 5% significance level, except for the row

corresponding to Australia, which are the critical values at the 10% significance level. Table

5 shows the CPI for Japan, China, UK, Euro, Mexico, Brazil, Korea and U.S. are unit root

processes for different test statistics. These critical values are calculated under the unit root null

using the resampling procedure described in Section 4.1. While, for the CPI of Australia, the

unit root hypothesis is marginally rejected by the KS-type and CM-type tests at the 10% level,

but not rejected by tn(0.5), while the unit root hypothesis for the CPI of Australia shouldn’t

be rejected from the Figure 3. This also indicates that the tn test performs better in testing

unit-root.
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Table 5. Unit root tests for CPI.

tn(0.5) QKS QCM
Japan -8.030 0.418 0.313 0.128 0.029 0.001
China -4.294 0.304 0.150 0.097 0.010 0.001
UK -6.504 0.387 0.150 0.082 0.011 0.001
Euro -3.560 0.397 0.153 0.071 0.016 0.001

Australia -5.728 0.460 0.072 0.151 0.001 0.002
Mexico -16.371 -0.119 0.205 0.167 0.007 0.001
Brazil -27.263 -0.535 0.699 0.171 0.060 0.002
Korea -8.618 0.061 0.877 0.266 0.178 0.004
U.S. -9.223 0.206 0.081 0.043 0.002 0.0002

§6 Proofs

Before the proof of Theorem 1, we first give a weak convergence result need to be used.

Lemma 1. Under the assumptions of Theorem 1, we have

(i)
[ 1

an

n∑
t=1

∆yt−1ψτ (utτ ), . . . ,
1

an

n∑
t=1

∆yt−pψτ (utτ )
]′

d−→ Φτ ,

(ii)
( ys
an
,

1√
n

[ns]∑
t=1

ψτ (utτ )
)
=⇒ (ηα(s), B(τ, s)), on [0, 1]× [0, 1],

(iii)
( 1

a2n

n∑
t=1

∆y2t−i,
1

a2n

n∑
t=1

∆yt−i∆yt−j)
d−→ (ηα/2, 0), for 1 ≤ i ̸= j ≤ p,

where ηα/2 is a stable variable with tail index α/2. Further,( 1

an

n∑
t=1

∆yt−1ψτ (utτ ), . . . ,
1

an

n∑
t=1

∆yt−pψτ (utτ ),
ys
an
,

1√
n

[ns]∑
t=1

ψτ (utτ ),
1

a2n

n∑
t=1

∆y2t−i

)
converge jointly to their limit processes.

Proof. (ii) can be shown similar to Lemma A.1. of Chan and Zhang (2009). (iii) and the joint
convergence follows from Lemma 3.3 of Chan and Zhang (2010). We will only give the proof of
(i) in the following.

Note that ψτ (utτ ) are independent with ∆yt−i, (i = 1, . . . , p), and nP (|∆yt| > an) ∼ 1, then

nP (|∆yt−iψτ (utτ )| > an) ∼ E|ψτ (utτ )|α. (6.1)

And following Resnick (1986), it holds
n∑
j=1

δa−1
n ∆yt−iψτ (utτ )

d−→ N, (6.2)

where N is a Poisson random process.

When 0 < α < 1, by Theorem 3.1 of Davis and Hsing (1995), (6.1) and (6.2), we obtain

1

an

n∑
t=1

∆yt−iψτ (utτ )
d−→ ηα(1). (6.3)

Next, we consider the case α ≥ 1. Denote Sn = 1
an

∑n
t=1 ∆yt−iψτ (utτ ), where ∆yt =
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∑∞
j=0 cjut−j . And S

(M)
n = 1

an

∑n
t=1 ∆yt−i,Mψτ (utτ ), where ∆yt,M =

∑M
j=0 cjut−j . Then

|Sn − S(M)
n | =a−1

n |
n∑
t=1

∞∑
j=M+1

cjut−1−jψτ (utτ )|

≤a−1
n |

n∑
t=1

∞∑
j=M+1

cjψτ (utτ)[ut−1−jI(ut−1−j ≤ an)− Eu1I(u1 ≤ an)]|

+ a−1
n |

n∑
t=1

∞∑
j=M+1

cjψτ (utτ)ut−1−jI(ut−1−j > an)|

+ a−1
n |

n∑
t=1

∞∑
j=M+1

cjψτ (utτ)Eu1I(u1 ≤ an)|

=:V1 + V2 + V3.

Let b = sup
t,τ

|ψτ (utτ )|. By Karamata’s theorem, we have

E|V2| ≤ ba−1
n n

∞∑
j=M+1

|cj |E|ut−1−jI(ut−1−j > an)| −→
bα

α− 1

∞∑
j=M+1

|cj | (6.4)

and

|V3| ≤ ba−1
n n

∞∑
j=M+1

|cj |E|ut−1−jI(ut−1−j > an)| −→
bα

α− 1

∞∑
j=M+1

|cj |. (6.5)

Also,

E|V1|2 =a−2
n

n∑
t=1

∞∑
j=M+1

c2jE[ψ2
τ (utτ)]V ar(u1I(u1 ≤ an))

≤ τ(1− τ)na−2
n (Eu21I(u1 ≤ an))

( ∞∑
j=M+1

|cj |2
)

−→ τ(1− τ)α

2− α

( ∞∑
j=M+1

|cj |2
)
. (6.6)

By Markov’s inequality and (6.4)-(6.6), we then have for any ϵ > 0,

lim sup
n→∞

P [|Sn − S(M)
n | > ϵ] (6.7)

≤ϵ−1[(E|V1|2)1/2 + E|V2|+ |V3|]

≤ 2bα

α− 1

∞∑
j=M+1

|cj |+
(τ(1− τ)α

2− α

∞∑
j=M+1

|cj |2
)1/2

→0, as M → ∞. (6.8)

Note that

S(M)
n =

M∑
j=0

cj(a
−1
n

n∑
t=1

ut−1−jψτ (utτ ))
d−→ S(M),

where S(M) is a stable process with index α. Together with (6.8), it holds that

1

an

n∑
t=1

∆yt−iψτ (utτ )
d−→ ηα(1),
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where ηα(1) = limM→∞ S(M).

The proof of Theorem 1. By Lemma 1, it follows that

D−1
n

n∑
t=1

xtψτ (utτ ) =



1√
n

∑
t ψτ (utτ )

1√
nan

∑
t yt−1ψτ (utτ )

1
an

∑
t∆yt−1ψτ (utτ )

...
1
an

∑
t∆yt−pψτ (utτ )



⇒



∫ 1

0
dBτ∫ 1

0
(1−

∑p
i=1 ϕi)

−1ηα dBτ
ηα(1)

...
ηα(1)


=

[∫ 1

0
η̄α dBτ
Φτ

]
≡ Φ∗.

We now consider the limit of

Un(v) ≡
n∑
t=1

∫ v
′
D−1

n xt

0

[I(utτ ≤ s)− I(utτ ≤ 0)] ds

=

n∑
t=1

(utτ − v
′
D−1
n xt)I(v

′
D−1
n xt < utτ < 0)

+
n∑
t=1

(v
′
D−1
n xt − utτ )I(0 < utτ < v

′
D−1
n xt)

≡U1n(v) + U2n(v).

First, we consider the limit of

U1n =
n∑
t=1

ξt(v),

where ξt(v) = (utτ − v
′
D−1
n xt)I(v

′
D−1
n xt < utτ < 0). To avoid technical problems in taking

conditional expectations, following Knight (1989), we consider truncation of v2a
−1
n yt−1 at some

finite number m < 0 and define

U1nm(v) =

n∑
t=1

ξtm(v),

where ξtm(v) = (utτ − v
′
D−1
n xt)I(v

′
D−1
n xt < utτ < 0)Mt, and Mt = I(m < v2a

−1
n yt−1 < 0).

We further define

ξ̄tm(v) = E[ξtm(v)|Ft−1] and Ū1nm(v) =
n∑
t=1

ξ̄tm(v).

Then {ξtm(v)− ξ̄tm(v)} is a martingale difference sequence.

Noting that

Ū1nm(v) =
n∑
t=1

E[(utτ − v
′
D−1
n xt)I(v

′
D−1
n xt < utτ < 0)Mt|Ft−1]
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=
n∑
t=1

∫ F−1(τ)

[v′D−1
n xt+F−1(τ)]Mt

[r − [v
′
D−1
n xt + F−1(τ)]Mt]f(r) dr

=
n∑
t=1

∫ F−1(τ)

[v′D−1
n xt+F−1(τ)]Mt

[

∫ r

[v′D−1
n xt+F−1(τ)]Mt

ds]f(r) dr

=
n∑
t=1

∫ F−1(τ)

[v′D−1
n xt+F−1(τ)]Mt

[

∫ F−1(τ)

s

f(r) dr] ds

=
n∑
t=1

∫ F−1(τ)

[v′D−1
n xt+F−1(τ)]Mt

[F−1(τ)− s] · F (F
−1(τ))− F (s)

F−1(τ)− s
ds.

Under Assumption 2,
F (F−1(τ))− F (s)

F−1(τ)− s
= f(F−1(τ)) + op(1).

It follows that

Ū1nm(v) =

n∑
t=1

∫ F−1(τ)

[v′D−1
n xt+F−1(τ)]Mt

[F−1(τ)− s]f(F−1(τ)) ds+ op(1)

=
n∑
t=1

f(F−1(τ))[
(F−1(τ)− s)2

2
|F

−1(τ)

[v′D−1
n xt+F−1(τ)]Mt

] + op(1)

=
1

2

n∑
t=1

f(F−1(τ))v
′
[D−1

n xtx
′

tD
−1
n ]vMt + op(1).

Thus,

Ū1nm(v) ⇒ 1

2
f(F−1(τ))v

′
Γ1mv,

where

Γ1m =

[∫ 1

0
η̄αη̄

′

αMt 02×p
0p×2 Ψ

]
.

In addition, (v
′
D−1
n xt)I(m < v2a

−1
n yt−1 < 0)

p−→ 0 uniformly in t, we have
n∑
t=1

E[ξtm(v)2|Ft−1] ≤ max (v
′
D−1
n xt)I(m < v2a

−1
n yt−1 < 0)

n∑
t=1

ξ̄tm(v)
p−→ 0.

Thus the summation of martingale difference sequence
n∑
t=1

[ξtm(v)− ξ̄tm(v)]
p−→ 0.

Therefore, the limiting distribution of
∑n
t=1 ξtm(v) is the same as that of

∑n
t=1 ξ̄tm(v), that is,

U1nm ⇒ 1

2
f(F−1(τ))v

′
Γ1mv.

For any small number ϵ > 0,

P [|U1n(v)− U1nm(v)| > ϵ]

< P [|U1n(v)− U1nm(v)| > 0]

= P [
n∑
t=1

(utτ − v
′
D−1
n xt)I(v

′
D−1
n xt < utτ < 0)I(v2a

−1
n yt−1 ≤ m) > 0]

≤ P [
n∪
t=1

{v2a−1
n yt−1 ≤ m}] = P ( min

1≤t≤n
v2a

−1
n yt−1 ≤ m),
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which implies that

lim
m→−∞

lim sup
n→∞

P [|U1n(v)− U1nm(v)| > ϵ] ≤ lim
m→−∞

P ( inf
0≤r≤1

v2(1−
p∑
i=1

ϕi)
−1ηα(r) ≤ m) = 0.

Therefore, as m→ −∞,

U1n(v) ⇒
1

2
f(F−1(τ))v

′
Γ1vI(v2(1−

p∑
i=1

ϕi)
−1ηα(r) < 0),

where

Γ1 =

[∫ 1

0
η̄αη̄

′

αI(v2(1−
∑p
i=1 ϕi)

−1ηα(r) < 0) 02×p
0p×2 Ψ

]
.

Similarly, we can show

U2n(v) ⇒
1

2
f(F−1(τ))v

′
Γ2vI(v2(1−

p∑
i=1

ϕi)
−1ηα(r) ≥ 0),

where

Γ2 =

[∫ 1

0
η̄αη̄

′

αI(v2(1−
∑p
i=1 ϕi)

−1ηα(r) ≥ 0) 02×p
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]
.

As a result,

Un(v) ⇒
1

2
f(F−1(τ))v

′
Γv,

where Γ =

[∫ 1

0
η̄αη̄

′

α 02×p
0p×2 Ψ

]
.

The proof of Corollary 1. By Theorem 1 and (2.4), it holds that

Ωn(v) ⇒ −v
′
Φ∗ +

1

2
f(F−1(τ))v

′
Γv := Ω(v).

By the convexity Lemma of Pollard (1991) and arguments of Knight (1989), note that Ωn(v)

and Ω(v) are minimized at v̂ = Dn(ϕ̂(τ)− ϕ(τ)) and

1

f(F−1(τ))

[∫ 1

0
η̄αη̄

′

α 02×p
0p×2 Ψ

]−1 [∫ 1

0
η̄α dB

τ
ψ

Φτ

]
.

Furthermore,

Dn(ϕ̂(τ)− ϕ(τ)) ⇒ 1

f(F−1(τ))

[∫ 1

0
η̄αη̄

′

α 02×p
0p×2 Ψ

]−1 [∫ 1

0
η̄α dB

τ
ψ

Φτ

]
,

which also implies (2.5).

Theorems 2-3 follows easily from Theorem 1, Lemma 1 and the continuous mapping theorem.

We omit the details here.
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