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Fractional sum and fractional difference on non-uniform

lattices and analogue of Euler and Cauchy Beta formulas

CHENG Jin-fa

Abstract. As is well known, the definitions of fractional sum and fractional difference of f(z)

on non-uniform lattices x(z) = c1z
2 + c2z + c3 or x(z) = c1q

z + c2q
−z + c3 are more difficult

and complicated. In this article, for the first time we propose the definitions of the fractional

sum and fractional difference on non-uniform lattices by two different ways. The analogue of

Euler’s Beta formula, Cauchy’ Beta formula on non-uniform lattices are established, and some

fundamental theorems of fractional calculas, the solution of the generalized Abel equation on

non-uniform lattices are obtained etc.

§1 Introduction

The definitions of non-uniform lattices date back to the approximation of the following

differential equation of hypergeometric type:

σ(z)y′′(z) + τ(z)y′(z) + λy(z) = 0, (1)

where σ(z) and τ(z) are polynomials of degrees at most two and one, respectively, and λ is

a constant. Its solutions are some types of special functions of mathematical physics, such

as the classical orthogonal polynomials, the hypergeometric and cylindrical functions, see G.

E. Andrews, R. Askey, R. Roy [5, 6]. A. F. Nikiforov, V. B. Uvarov and S. K. Suslov [22,

23] generalized Eq. (1) to a difference equation of hypergeometric type case and studied the

Nikiforov-Uvarov-Suslov difference equation on a lattice x(s) with variable step size ∇x(s) =

x(s)− x(s− 1) as

σ̃[x(s)]
∆

∆x(s− 1/2)

[
∇y(s)

∇x(s)

]
+

1

2
τ̃ [x(s)]

[
∆y(s)

∆x(s)
+

∇y(s)

∇x(s)

]
+ λy(s) = 0, (2)

where σ̃(x) and τ̃(x) are polynomials of degrees at most two and one in x(s), respectively, λ is

a constant, ∆y(s) = y(s+1)− y(s), ∇y(s) = y(s)− y(s− 1), and x(s) is a lattice function that
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satisfies
x(s+ 1) + x(s)

2
= αx(s+

1

2
) + β, α, β are constants, (3)

x2(s+ 1) + x2(s) is a polynomial of degree at most two w.r.t. x(s+
1

2
). (4)

It should be pointed out that the difference equation (2) obtained as a result of approximating

the differential equation (1) on a non-uniform lattice is of independent importance and arises

in a number of other questions. Its solutions essentially generalized the solutions of the original

differential equation and are of interest in their own right [13–15, 21–25]. As it is known in

( [22], P59), the general solutions x(s) which satisfy the conditions in Eqs. (3) and (4) are

x(s) = c̃1s
2 + c̃2s+ c̃3; (5)

or

x(s) = c1q
s + c2q

−s + c3, q ̸= 1 (6)

Definition 1. ( [22, 23]) Two kinds of lattice functions x(s) are called non-uniform lattices

which have the form (5) and (6), where ci, c̃i are arbitrary constants and c1c2 ̸= 0, c̃1c̃2 ̸= 0.

When c1 = 1, c2 = c3 = 0, or c̃2 = 1, c̃1 = c̃3 = 0, these two kinds of lattice functions x(s)

x(s) = s (7)

x(s) = qs, (8)

are called uniform lattices.

Let x(s) be a non-uniform lattice, where s ∈ C. For any real γ, xγ(s) = x(s + γ
2 ) is also a

non-uniform lattice. Given a function F (s), define the difference operator with respect to xγ(s)

as

∇γF (s) =
∇F (s)

∇xγ(s)
,

and

∇k
γF (z) =

∇
∇xγ(z)

∇
∇xγ+1(z)

...
∇F (z)

∇xγ+k−1(z)
.(k = 1, 2, ...)

Althought the discrete fractional calculus on uniform lattice (7) and (8) are more current, but

great development has been made in this field [1–3,8–12,17,18,20]. In the recent monographs,

J. F. Cheng [10], C. Goodrich and A. Peterson [19] provided the comprehensive treatment of

the discrete fractional calculus with up-to-date references, and the developments in the theory

of fractional q-calculas had been well reported by M. H. Annaby and Z. S. Mansour [4].

But we should mention that, in the case of nonuniform lattices (5) or (6), even when n ∈ N,

the fomula of n−order difference on non-uniform lattices is a remarkable job, since it is very

complicated and difficult to be obtained. In fact, in [22], A. Nikiforov, V. Uvarov, S. Suslov

obtained the formula of n− th difference ∇(n)
1 [f(s)] as follows:

Definition 2. ( [22]) Let n ∈ N+, for nonuniform lattices (5) or (6), then

∇(n)
1 [f(s)] =

n∑
k=0

([−n]q)k
[k]q!

[Γ(2s− k + c)]q
[Γ(2s− k + n+ 1 + c)]q

f(s− k)∇xn+1(s− k),

where [Γ(s)]q is modified q−gamma function which is defined as

[Γ(s)]q = q−(s−1)(s−2)/4Γq(s),
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and function Γq(s) is called the q−gamma function; it is a generalization of Euler’s gamma

function Γ(s). It is defined by

Γq(s) =

{
Π∞

k=0(1−qk+1)
(1−q)s−1Π∞

k=0(1−qs+k)
, when |q| < 1;

q−(s−1)(s−2)/2Γ1/q(s), when |q| > 1.
(9)

and

[µ]q =

{ q
µ
2 −q−

µ
2

q
1
2 −q−

1
2
, if x(s) = c1q

s + c2q
−s + c3;

µ, if x(s) = c̃1s2 + c̃2s+ c̃3,
(10)

where

c =

{
log

c2
c1

log q , when x(s) = c1q
s + c2q

−s + c3,
c̃2
c̃1
, when x(s) = c̃1s

2 + c̃2s+ c̃3.

Now there exist two important and challenging problems that need to be further discussed:

(1) Assume that g(s) be a given function, f(s) be an unknown function, which satisfies the

following generalized difference equation on non-uniform lattices

∇(n)
1 [f(s)] = g(s). (11)

How to solve generalized difference equation (11)?

(2) The definitions of α−order fractional difference and α−order fractional sum on non-

uniform lattices are very difficult and interesting problems. They have not appeared since the

monographs [22, 23] were published. Can we give reasonable definitions of fractional sum and

difference on non-uniform lattices?

We believe that as the most general discrete fractional calculus on non-uniform lattices, they

should have an independent meaning and lead to many interesting new theories about them,

which may be an important extension and development of the discrete fractional calculus.

The purpose of this paper is to inquire into the feasibility of establishing discrete fractional

calculus on nonuniform lattices. In this article, for the first time we propose the definitions of

the fractional sum and fractional difference on non-uniform lattices. In order to keep this paper

to a reasonable length, we have chosen to restrict ourselves to some fundamental theorems of

discrete fractional calculus, such as the analogue of Euler Beta formula, Cauchy Beta formula on

non-uniform lattices, and the solution of the generalized Abel equation on non-uniform lattices

etc. The other important results such as Taylor formula and Leibnize formula on non-uniform

lattices will be given in a future. The results we obtain here are essentially new and have not

been found in other literature.

§2 Integer Sum and Fractional Sum on Non-uniform Lattices

Let x(s) be a non-uniform lattice, where s ∈ C. Let ∇γF (s) = f(s), then

F (s)− F (s− 1) = f(s) [xγ(s)− xγ(s− 1)] .

Choose z, a ∈ C, and z − a ∈ N . Summing from s = a+ 1 to z, we have

F (z)− F (a) =
z∑

s=a+1

f(s)∇xγ(s).
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Thus, we define ∫ z

a+1

f(s)d∇xγ(s) =

z∑
s=a+1

f(s)∇xγ(s).

It is easy to verify that

Proposition 3. Given two function F (z), f(z) with complex variable z, a ∈ C, and z−a ∈ N ,

we have

(1)∇γ

[∫ z

a+1

f(s)d∇xγ(s)

]
= f(z),

(2)

∫ z

a+1

∇γF (s)d∇xγ(s) = F (z)− F (a).

A generalized power [x(s)− x(z)](n) on nonuniform lattice is given by

[x(s)− x(z)](n) =
∏n−1

k=0
[x(s)− x(z − k)], (n ∈ N

+
),

and a more formal definition and further properties of the generalized powers [xν(s)− xν(z)]
(α)

on nonuniform lattice are very important, which are defined as follows:

Definition 4. (See [7, 25]) Let α ∈ C, the generalized powers [xν(s)− xν(z)]
(α) are defined

by

[xν(s)− xν(z)]
(α) = (12)

Γ(s−z+α)
Γ(s−z) , if x(s) = s,

c̃1
α Γ(s−z+α)Γ(s+z+ν+c+1)
Γ(s−z)Γ(s+z+ν−α+c+1) , if x(s) = c̃1s

2 + c̃2s+ c̃3,

(q − 1)αqα(ν−α+1)/2 Γq(s−z+α)
Γq(s−z) , if x(s) = qs,

[c1(1− q)2]αq−α(s+ ν
2 )

Γq(s−z+α)Γq(s+z+ν+c+1)
Γq(s−z)Γq(s+z+ν−α+c+1) , if x(s) = c1q

s + c2q
−s + c3.

(13)

Proposition 5. [7,25]. For x(s) = c1q
s+ c2q

−s+ c3 or x(s) = c̃1s
2+ c̃2s+ c̃3, the generalized

power [xν(s)− xν(z)]
(α) satisfy the following properties:

[xν(s)− xν(z)][xν(s)− xν(z − 1)](µ)= [xν(s)− xν(z)]
(µ)

[xν(s)− xν(z − µ)] (14)

=[xν(s)− xν(z)]
(µ+1); (15)

[xν−1(s+ 1)− xν−1(z)]
(µ)

[xν−µ(s)− xν−µ(z)]

= [xν−µ(s+ µ)− xν−µ(z)][xν−1(s)− xν−1(z)]
(µ)

=[xν(s)− xν(z)]
(µ+1); (16)

∆z

∆xν−µ+1(z)
[xν(s)− xν(z)]

(µ)
= − ∇s

∇xν+1(s)
[xν+1(s)− xν+1(z)]

(µ)
(17)

= −[µ]q[xν(s)− xν(z)]
(µ−1)

; (18)

∇z

∇xν−µ+1(z)
{ 1

[xν(s)− xν(z)]
(µ)

} = − ∆s

∆xν−1(s)
{ 1

[xν−1(s)− xν−1(z)]
(µ)

} (19)

=
[µ]q

[xν(s)− xν(z)]
(µ+1)

. (20)

where [µ]q is defined as (10).
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Now let us first define the integer sum on non-uniform lattices xγ(s) in detail, which is very

helpful for us to define fractional sum on non-uniform lattices xγ(s).

For γ ∈ R, the 1-th order sum of f(z) over {a+1, a+2, ..., z} on non-uniform lattices xγ(s)

is defined by

y1(z) = ∇−1
γ f(z) =

∫ z

a+1

f(s)d∇xγ(s), (21)

then by Proposion 3, we have

∇1
γ∇−1

γ f(z) =
∇y1(z)

∇xγ(z)
= f(z), (22)

and 2-th order sum of f(z) over {a+ 1, a+ 2, ..., z} on non-uniform lattices xγ(s) is defined by

y2(z) = ∇−2
γ f(z) = ∇−1

γ+1[∇−1
γ f(z)] =

∫ z

a+1

y1(s)d∇xγ+1(s)

=

∫ z

a+1

d∇xγ+1(s)

∫ s

a+1

f(t)d∇xγ(t)

=

∫ z

a+1

f(t)d∇xγ(t)

∫ z

t

d∇xγ+1(s)

=

∫ z

a+1

[xγ+1(z)− xγ+1(t− 1)]f(s)d∇xγ(s). (23)

Meanwhile, we have

∇1
γ+1∇−1

γ+1y1 (z) =
∇y2(z)

∇xγ+1(z)
= y1(z),

∇2
γ∇−2

γ f (z) =
∇

∇xγ(z)

∇y2(z)

∇xγ+1(z)
=

∇y1(z)

∇xγ(z)
= f(z), (24)

More generalaly, by the induction, we can define the k-th order sum of f(z) over {a+1, a+

2, ..., z} on non-uniform lattices xγ(s) as

yk(z) = ∇−k
γ f(z) = ∇−1

γ+k−1[∇
−(k−1)
γ f(z)] =

∫ z

a+1

yk−1(s)d∇xγ+k−1(s)

=
1

[Γ(k)]q

∫ z

a+1

[xγ+k−1(z)− xγ+k−1(t− 1)](k−1)f(t)d∇xγ(t), (k = 1, 2, ...) (25)

And then we have

∇k
γ∇−k

γ f (z) =
∇

∇xγ(z)

∇
∇xγ+1(z)

...
∇yk(z)

∇xγ+k−1(z)
= f(z).(k = 1, 2, ...) (26)

It is noted that the right hand side of (25) is still meanful when k ∈ C, so we can give the

definition of fractional sum of f(z) on non-uniform lattices xγ(s) as follows

Definition 6. (Fractional sum on non-uniform lattices) For any Reα ∈ R+, the α-th order

sum of f(z) over {a+ 1, a+ 2, ..., z} on non-uniform lattices (5) and (6) is defined by

∇−α
γ f(z) =

1

[Γ(α)]q

∫ z

a+1

[xγ+α−1(z)− xγ+α−1(t− 1)](α−1)f(s)d∇xγ(s), (27)

where

[Γ(α)]q =

{
q−(s−1)(s−2)Γq(α), if x(s) = c1q

s + c2q
−s + c3;

Γ(α), if x(s) = c̃1s2 + c̃2s+ c̃3,
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which satisfy the following

[Γ(α+ 1)]q = [α]q[Γ(α)]q.

§3 The Analogue of Euler Beta Formula on Non-uniform Lattices

Euler Beta formula is well known as∫ 1

0

(1− t)α−1tβ−1dt = B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
, (Reα > 0,Reβ > 0)

or ∫ z

a

(z − t)α−1

Γ(α)

(t− a)β−1

Γ(β)
dt =

(z − a)α+β−1

Γ(α+ β)
.(Reα > 0,Reβ > 0)

In this section, we obtain the analogue Euler Beta formula on non-uniform lattices, which

is very crucial for us to propose several new definitions in this manuscript, and is also of

independent importance.

Theorem 7. (Euler Beta formula on non-uniform lattices) For any α, β ∈ C, then for non-

uniform lattices x(s), we have∫ z

a+1

[xβ(z)− xβ(t− 1)](β−1)

[Γ(β)]q

[x(t)− x(a)](α)

[Γ(α+ 1)]q
d∇x1(t)

=
[xβ(z)− xβ(a)]

(α+β)

[Γ(α+ β + 1)]q
. (28)

The proof of Theorem 7 should use some lemmas.

Lemma 8. For any α, β,we have

[α+ β]qx(t)− [α]qx−β(t)− [β]qxα(t) = const. (29)

Proof. If we set x(t) = c̃1t
2 + c̃2t+ c̃3, then the left hand side of Eq.(29) is

LHS = c̃1[(α+ β)t2 − α(t− β

2
)2 − β(t+

α

2
)2]

+ c̃2[(α+ β)t− α(t− β

2
)− β(t+

α

2
)] (30)

= −αβ

4
(α+ β)c̃1 = const. (31)

If we set x(t) = c1q
t + c2q

−t + c3, then the left hand side of Eq.(29) is

LHS = c1[
q

α+β
2 − q−

α+β
2

q
1
2 − q−

1
2

qt − q
α
2 − q−

α
2

q
1
2 − q−

1
2

qt−
β
2 − q

β
2 − q−

β
2

q
1
2 − q−

1
2

qt+
α
2 ]

+ c2[
q

α+β
2 − q−

α+β
2

q
1
2 − q−

1
2

q−t − q
α
2 − q−

α
2

q
1
2 − q−

1
2

q−t+ β
2 − q

β
2 − q−

β
2

q
1
2 − q−

1
2

q−t−α
2 ] (32)

= 0. (33)
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Lemma 9. For any α, β,we have

[α+ 1]q[xβ(z)− xβ(t− β)]− [β]q[x1−α(t+ α)− x1−α(a)]

= [α+ 1]q[xβ(z)− xβ(a− α− β)]

− [α+ β + 1]q[x(t)− x(a− α)]. (34)

Proof. (34) is equivalent to

[α+ β + 1]qx(t)− [α+ 1]qxβ(t− β)− [β]qx1−α(t+ α)

= [α+ β + 1]qx(a− α)− [α+ 1]qxβ(a− α− β)− [β]qx1−α(a). (35)

Set α+ 1 = α̃, we only need to prove that

[α̃+ β]qx(t)− [α̃]qxβ(t− β)− [β]qx2−α̃(t+ α̃− 1)

= [α̃+ β]qx(a− α̃+ 1)− [α̃]qxβ(a− α̃+ 1− β)− [β]qx2−α̃(a). (36)

That is

[α̃+ β]qx(t)− [α̃]qx−β(t)− [β]qxα̃(t)

= [α̃+ β]qx(a− α̃+ 1)− [α]qx−β(a− α̃+ 1)− [β]qxα̃(a− α̃+ 1). (37)

By Lemma 8, Eq. (37) holds, and then Eq. (34) holds.

Using Proposition 5 and Lemma 9, now it is time for us to prove Theorem 7.

Proof of Theorem 7: Set

ρ(t) = [x(t)− x(a)](α)[xβ(z)− xβ(t− 1)](β−1), (38)

and

σ(t) = [x1−α(t+ α)− x1−α(a)][xβ(z)− xβ(t)]. (39)

By Proposition 5, since

[x1−α(t+ α)− x1−α(a)][x(t)− x(a)](α) = [x1(t)− x1(a)]
(α+1) (40)

and

[xβ(z)− xβ(t)][xβ(z)− xβ(t− 1)](β−1) = [xβ(z)− xβ(t)]
(β). (41)

so that we obtain

σ(t)ρ(t) = [x1(t)− x1(a)]
(α+1)[xβ(z)− xβ(t)]

(β), (42)

Making use of

∇t[f(t)g(t)] = g(t− 1)∆t[f(t)] + f(t)∇t[g(t)],

where

f(t) = [x1(t)− x1(a)]
(α+1), g(t) = [xβ(z)− xβ(t)]

(β),

let’s calculate the∇t[σ(t)ρ(t)]
∇x1(t)

.

From Proposition 5, we have

∇t

∇x1(t)
{[x1(t)− x1(a)]

(α+1)} = [α+ 1]q[x(t)− x(a)](α),
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and
∇t

∇x1(t)
{[xβ(z)− xβ(t)]

(β)}

=
∆t

∆x1(t− 1)
{[xβ(z)− xβ(t− 1)](β)}

= −[β]q[xβ(z)− xβ(t− 1)](β−1).

These yield

∇t

∇x1(t)
{[x1(t)− x1(a)]

(α+1)[xβ(z)− xβ(t)]
(β)}

= [α+ 1]q[x(t)− x(a)](α)[xβ(z)− xβ(t− 1)](β)

− [β]q[x1(t)− x1(a)]
(α+1)[xβ(z)− xβ(t− 1)](β−1)

= {[α+ 1]q[xβ(z)− xβ(t− β)]− [β]q[x1−α(t+ α)− x1−α(a)]}ρ(t)

≡ τ(t)ρ(t), (43)

where

τ(t) = [α+ 1]q[xβ(z)− xβ(t− β)]− [β]q[x1−α(t+ α)− x1−α(a)], (44)

this is due to

[xβ(z)− xβ(t− 1)](β) = [xβ(z)− xβ(t− β)][xβ(z)− xβ(t− 1)](β−1).

Then from Lemma 9, it yields

τ(t) = [α+ 1]q[xβ(z)− xβ(a− α− β)]− [α+ β + 1]q[x(t)− x(a− α)]. (45)

So that we get
∇t

∇x1(t)
{[x1(t)− x1(a)]

(α+1)[xβ(z)− xβ(t)]
(β)}

= {[α+ 1]q[xβ(z)− xβ(a− α− β)]

− [α+ β + 1]q[x(t)− x(a− α)]}ρ(t).
Or

∇t{[x1(t)− x1(a)]
(α+1)[xβ(z)− xβ(t)]

(β)}

= {[α+ 1]q[xβ(z)− xβ(a− α− β)]

− [α+ β + 1]q[x(t)− x(a− α)]}

· [x(t)− x(a)](α)[yβ(z)− xβ(t− 1)](β−1)∇x1(t). (46)

Summing from a+ 1 to z, we have
z∑

t=a+1

∇t{[x1(t)− x1(a)]
(α+1)[xβ(z)− xβ(t)]

(β)}

=

∫ z

a+1

{[α+ 1]q[xβ(z)− xβ(a− α− β)]

(47)
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− [α+ β + 1]q[x(t)− x(a− α)]}

· [x(t)− x(a)](α)[xβ(z)− xβ(t− 1)](β−1)d∇x1(t). (48)

Set

I(α) =

∫ z

a+1

[xβ(z)− xβ(t− 1)](β−1)[x(t)− x(a)](α)d∇x1(t), (49)

and

I(α+ 1) =

∫ z

a+1

[xβ(z)− xβ(t− 1)](β−1)[x(t)− x(a)](α+1)d∇x1(t). (50)

Then from (48) and by the use of Proposition 5, one has

z∑
t=a+1

∇t{[x1(t)− x1(a)]
(α+1)[xβ(z)− xβ(t)]

(β)}

= [α+ 1]q[xβ(z)− xβ(a− α− β)]

∫ z

a+1

[x(t)− x(a)](α)[xβ(z)− xβ(t− 1)](β−1)d∇x1(t)

− [α+ β + 1]q

∫ z

a+1

[x(t)− x(a− α)][x(t)− x(a)](α)[xβ(z)− xβ(t− 1)](β−1)d∇x1(t)

= [α+ 1]q[xβ(z)− xβ(a− α− β)]

∫ z

a+1

[x(t)− x(a)](α)[xβ(z)− xβ(t− 1)](β−1)d∇x1(t)

− [α+ β + 1]q

∫ z

a+1

[x(t)− x(a)](α+1)[xβ(z)− xβ(t− 1)](β−1)d∇x1(t)

= [α+ 1]q[xβ(z)− xβ(a− α− β)I(α)− [α+ β + 1]qI(α+ 1).

Since
z∑

t=a+1

∇t{[x1(t)− x1(a)]
(α+1)[xβ(z)− xβ(t)]

(β)} = 0, (51)

therefore, we have prove that

I(α+ 1)

I(α)
=

[α+ 1]q
[α+ β + 1]q

[xβ(z)− xβ(a− α− β)]. (52)

From (52), one has

I(α+ 1)

I(α)
=

[Γ(α+2)]q
[Γ(α+β+2)]q

[xβ(z)− xβ(a)]
(α+β+1)

[Γ(α+1)]q
[Γ(α+β+1)]q

[xβ(z)− xβ(a)](α+β)
.

So that we can set

I(α) = k
[Γ(α+ 1)]q

[Γ(α+ β + 1)]q
[xβ(z)− xβ(a)]

(α+β), (53)

where k is undetermined.

Set α = 0, then

I(0) = k
1

[Γ(β + 1)]q
[xβ(z)− xβ(a)]

(β), (54)

From (49), one has
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I(0) =

∫ z

a+1

[xβ(z)− xβ(t− 1)](β−1)d∇x1(t)

=
1

[β]q
[xβ(z)− xβ(a)]

(β), (55)

From (54) and (55), one gets

k =
[Γ(β + 1)]q

[β]q
= [Γ(β)]q.

Hence, we obtain that

I(α) =
[Γ(β)]q[Γ(α+ 1)]q
[Γ(α+ β + 1)]q

[xβ(z)− xβ(a)]
(α+β), (56)

and the proof of Theorem 7 is completed.

§4 Generalized Abel Equation and Fractional Difference on

Non-uniform Lattices

The definition of fractional difference of f(z) on non-uniform lattices xγ(s) seems more

difficult and complicated. Our idea is to start by solving the generalized Abel equation on

non-uniform lattices. In detail, an important question is: Let m − 1 < Reα ≤ m, f(z) over

{a+ 1, a+ 2, ..., z} be a given function, g(z) over {a+ 1, a+ 2, ..., z} be an unknown function,

which satisfies the following generalized Abel equation

∇−α
γ g(z) =

∫ z

a+1

[xγ+α−1(z)− xγ+α−1(t− 1)](α−1)

[Γ(α)]q
g(t)d∇xγ(t) = f(t). (57)

How to solve generalized Abel equation (57)?

In order to solve equation (57), we should use the fundamental analogue of Euler Beta

Theorem 7 on non-uniform lattices.

Theorem 10. (Solution1 for Abel equation) Set functions f(z) and g(z) over {a+1, a+2, ..., z}
satisfy

∇−α
γ g(z) = f(z), 0 < m− 1 < Reα 6 m.

Then

g(z) = ∇m
γ ∇−m+α

γ+α f(z) (58)

holds.

Proof. We only need to prove that

∇−m
γ g(z) = ∇−(m−α)

γ+α f(z),

that is

∇−(m−α)
γ+α f(z) = ∇−(m−α)

γ+α ∇−α
γ g(z) = ∇−m

γ g(z).
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In fact, by Definition 6, we have

∇−(m−α)
γ+α f(z) =

∫ z

a+1

[xγ+m−1(z)− xγ+m−1(t− 1)](m−α−1)

[Γ(m− α)]q
f(t)d∇xγ+α(t)

=

∫ z

a+1

[xγ+m−1(z)− xγ+m−1(t− 1)](m−α−1)

[Γ(m− α)]q
d∇xγ+α(t)

·
∫ z

a+1

[xγ+α−1(t)− xγ+α−1(s− 1)](α−1)

[Γ(α)]q
g(s)d∇xγ(s)

=

∫ z

a+1

g(s)∇xγ(s)

∫ z

s

[xγ+m−1(z)− xγ+m−1(t− 1)](m−α−1)

[Γ(m− α)]q

· [xγ+α−1(t)− xγ+α−1(s− 1)](α−1)

[Γ(α)]q
d∇xγ+α(t).

In Theorem 7, replacing a + 1 with s;α with α − 1;β with m − α, and replacing x(t) with

xν+α−1(t), then xβ(t) with xν+m−1(t), we can obtain the following equality∫ z

s

[xγ+m−1(z)− xγ+m−1(t− 1)](m−α−1)

[Γ(m− α)]q

[xγ+α−1(t)− xγ+α−1(s− 1)](α−1)

[Γ(α)]q
d∇xγ+α(t)

=
[xγ+m−1(z)− xγ+m−1(s− 1)](−m−1)

[Γ(m)]q
,

therefore, we have

∇−(m−α)
γ+α f(z) =

∫ z

a+1

[xγ+m−1(z)− xγ+m−1(s− 1)](−m−1)

[Γ(m)]q
g(s)d∇xγ(s) = ∇−m

γ g(z),

which yields

∇m
γ ∇−(m−α)

γ+α f(z) = ∇m
γ ∇−m

γ g(z) = g(z).

Inspired byTheorem 10, This is natural that we give the α-th order (0 < m−1 < Reα ≤ m)

Riemann-Liouvile difference of f(z) as follows:

Definition 11. (Riemann-Liouvile fractional defference1) Let m be the smallest integer exceed-

ing Reα, α-th order Riemann-Liouvile difference of f(z) over {a+1, a+2, ..., z} on non-uniform

lattices is defined by

∇α
γ f(z) = ∇m

γ (∇α−m
γ+α f(z)). (59)

Formally, in Definition 6, if α is replaced by −α, then the RHS of (27) become

∫ z

a+1

[xγ−α−1(z)− xγ−α−1(t− 1)]
(−α−1)

[Γ(−α)]q
f(t)d∇xγ(t)

=
∇

∇xγ−α(t)
(

∇
∇xγ−α+1(t)

...
∇

∇xγ−α+n−1(t)
)

·
∫ z

a+1

[xγ+n−α−1(z)− xγ+n−α−1(t− 1)]
(n−α−1)

[Γ(n− α)]q
f(t)d∇xγ(t) (60)

= ∇n
γ−α∇−n+α

γ f(z) = ∇α
γ−αf(z). (61)
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From (61), we can also obtain α-th order difference of f(z) as follows

Definition 12. (Riemann-Liouvile fractional defference2) Let Reα > 0, α-th order Riemann-

Liouvile difference of f(z) over {a+ 1, a+ 2, ..., z} on non-uniform lattices can be defined by

∇α
γ−αf(z) =

∫ z

a+1

[xγ−α−1(z)− xγ−α−1(t− 1)]
(−α−1)

[Γ(−α)]q
f(t)d∇xγ(t). (62)

Replacing xγ−α(t) with xγ(t), Then

∇α
γ f(z) =

∫ z

a+1

[xγ−1(z)− xγ−1(t− 1)]
(−α−1)

[Γ(−α)]q[
f(t)d∇xγ+α(t), (63)

where α /∈ N.

§5 Caputo fractional Difference on Non-uniform Lattices

In this section, we give suitable definition of Caputo fractional difference on non-uniform

lattices. By the use of ∇ν(f(s)g(s)) = f(s− 1)∇νg(s)+ g(s)∇νf(s), the following theorem can

be verified straight forwardly.

Theorem 13. (Sum by parts formula) Given two functions Let f(s), g(s) with complex variable

s, then ∫ z

a+1

g(s)∇γf(s)d∇xγ(s) = f(z)g(z)− f(a)g(a)−
∫ z

a+1

f(s− 1)∇γg(s)d∇xγ(s),

where z, a ∈ C, and z − a ∈ N.

The idea of the definition of Caputo fractional difference on non-uniform lattices is also

inspired by the the solution of generalized Abel equation (57). In section 4, we have obtained

that the solution of the generalized Abel equation

∇−α
γ g(z) = f(z), 0 < m− 1 < α 6 m

is

g(z) = ∇α
γ f(z) = ∇m

γ ∇−m+α
γ+α f(z). (64)

Now we will give a new expression of (64) by parts formula. In fact, we have

∇α
γ f(z) = ∇m

γ ∇−m+α
γ+α f(z)

= ∇m
γ

∫ z

a+1

[xγ+m−1(z)− xγ+m−1(s− 1)](m−α−1)

[Γ(m− α)]q
f(s)d∇xγ+α(s). (65)

In view of the identity

∇(s)[xγ+m−1(z)− xγ+m−1(s)]
(m−α)

∇xγ+α(s)
=

∆(s)[xγ+m−1(z)− xγ+m−1(s− 1)](m−α)

∆xγ+α(s− 1)

= −[m− α]q[xγ+m−1(z)− xγ+m−1(s− 1)](m−α−1),

then the expression∫ z

a+1

[xγ+m−1(z)− xγ+m−1(s− 1)](m−α−1)

[Γ(m− α)]q
f(s)d∇xγ+α(s)
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can be written as∫ z

a+1

f(s)∇(s){
−[xγ+m−1(z)− xγ+m−1(s)]

(m−α)

[Γ(m− α+ 1)]q
}d∇s

=

∫ z

a+1

f(s)∇γ+α−1{
−[xγ+m−1(z)− xγ+m−1(s)]

(m−α)

[Γ(m− α+ 1)]q
}d∇xγ+α−1(s).

Summing by parts formula, we get∫ z

a+1

f(s)∇γ+α−1{
−[xγ+m−1(z)− xγ+m−1(s)]

(m−α)

[Γ(m− α+ 1)]q
}d∇xγ+α−1(s)

= f(a)
[xγ+m−1(z)− xγ+m−1(a)]

(m−α)

[Γ(m− α+ 1)]q

+

∫ z

a+1

[xγ+m−1(z)− xγ+m−1(s− 1)](m−α)

[Γ(m− α+ 1)]q
∇γ+α−1[f(s)]d∇xγ+α−1(s).

Therefore, we lead to∫ z

a+1

[xγ+m−1(z)− xγ+m−1(s− 1)](m−α−1)

[Γ(m− α)]q
f(s)d∇xγ+α(s) (66)

= f(a)
[xγ+m−1(z)− xγ+m−1(a)]

(m−α)

[Γ(m− α+ 1)]q

+

∫ z

a+1

[xγ+m−1(z)− xγ+m−1(s− 1)](m−α)

[Γ(m− α+ 1)]q
∇γ+α−1[f(s)]d∇xγ+α−1(s).

By mathematical induction we can obtain∫ z

a+1

[xγ+m−1(z)− xγ+m−1(s− 1)](m−α+k−1)

[Γ(m− α+ k)]q
∇k

γ+α−k[f(s)]d∇xγ+α−k(s)

= ∇k
γ+α−kf(a)

[xγ+m−1(z)− xγ+m−1(a)]
(m−α+k)

[Γ(m− α+ k + 1)]q
+

+

∫ z

a+1

[xγ+m−1(z)− xγ+m−1(s− 1)](m−α+k)

[Γ(m− α+ k + 1)]q
∇k+1

γ+α−(k+1)f(s)d∇xγ+α−(k+1)(s). (67)

(k = 0, 1, ...,m− 1)

Substituting (66) and (67) into (65), we get

∇α
γ f(z) = ∇m

γ {f(a) [xγ+m−1(z)− xγ+m−1(a)]
(m−α)

[Γ(m− α+ 1)]q
+

+∇γ+α−1f(a)
[xγ+m−1(z)− xγ+m−1(a)]

(m−α+1)

[Γ(m− α+ 2)]q
+

+∇k
γ+α−kf(a)

[xγ+m−1(z)− xγ+m−1(a)]
[m−α+k]

[Γ(m− α+ k + 1)]q

+ ...+∇m−1
γ+α−(m−1)f(a)

[xγ+m−1(z)− xγ+m−1(a)]
(2m−α−1)

[Γ(2m− α)]q
+

+

∫ z

a+1

[xγ+m−1(z)− xγ+m−1(s− 1)](2m−α−1)

[Γ(2m− α)]q
∇m

γ+α−mf(s)d∇xγ+α−m(s)}
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= ∇m
γ {

m−1∑
k=0

∇k
γ+α−kf(a)

[xγ+m−1(z)− xγ+m−1(a)]
(m−α+k)

[Γ(m− α+ k + 1)]q
+

+∇α−2m
γ+α−m∇m

γ+α−mf(z)}

=
m−1∑
k=0

∇k
γ+α−kf(a)

[xγ−1(z)− xγ−1(a)]
(−α+k)

[Γ(−α+ k + 1)]q
+∇α−m

γ+α−m∇m
γ+α−mf(z).

As a result, we have the following

Theorem 14. (Solution2 for Abel equation) Set functions f(z) and g(z) over {a+1, a+2, ..., z}
satisfy

∇−α
γ g(z) = f(z), 0 < m− 1 < Reα 6 m,

then

g(z) =

m−1∑
k=0

∇k
γ+α−kf(a)

[xγ−1(z)− xγ−1(a)]
(−α+k)

[Γ(−α+ k + 1)]q
+∇α−m

γ+α−m∇m
γ+α−mf(z) (68)

holds.

Inspired by Theorem 14, this is also natural that we give the α-th order (0 < m < Reα ≤
m− 1) Caputo fractional difference of f(z) as follows:

Definition 15. (Caputo fractional difference)Let m be the smallest integer exceeding Reα, α-th

order Caputo fractional difference of f(z) over {a + 1, a + 2, ..., z} on non-uniform lattices is

defined by
C∇α

γ f(z) = ∇α−m
γ+α−m∇m

γ+α−mf(z). (69)

§6 Complex Variable Approach for Riemann-Liouville Fractional

Difference On Non-uniform Lattices

In this section, we represent k ∈ N+ order difference and α ∈ C order fractional difference

on non-uniform lattices in terms of complex integration.

Theorem 16. Let n ∈ N, Γ be a simple closed positively oriented contour. If f(s) is analytic

in simple connected domain D bounded by Γ and z is any nonzero point lies inside D, then

∇n
γ−n+1f(z) =

[n]q!

2πi

log q

q
1
2 − q−

1
2

∮
Γ

f(s)∇xγ+1(s)ds

[xγ(s)− xγ(z)](n+1)
, (70)

where Γ enclosed the simple poles s = z, z − 1, ..., z − n in the complex plane.

Proof. Since the set of points {z − i, i = 0, 1, ..., n} lie inside D. Hence, from the genaralized

Cauchy’s integral formula, we obtain

f(z) =
1

2πi

∮
Γ

f(s)x′
γ(s)ds

[xγ(s)− xγ(z)],
(71)

and it yields

f(z − 1) =
1

2πi

∮
Γ

f(s)x′
γ(s)ds

[xγ(s)− xγ(z − 1)].
(72)



434 Appl. Math. J. Chinese Univ. Vol. 36, No. 3

Substitutig with the value of f(z) and f(z − 1) into ∇f(z)
∇xγ(z)

= f(z)−f(z−1)
xγ(z)−xγ(z−1) , then we have

∇f(z)

∇xγ(z)
=

1

2πi

∮
Γ

f(s)x′
γ(s)ds

[xγ(s)− xγ(z)][xγ(s)− xγ(z − 1)]

=
1

2πi

∮
Γ

f(s)x′
γ(s)ds

[xγ(s)− xγ(z)](2)
.

Substitutig with the value of ∇f(z)
∇xγ(z)

and ∇f(z−1)
∇xγ(z−1) into

∇f(z)
∇xγ (z)

− ∇f(z−1)
∇xγ (z−1)

xγ(z)−xγ(z−2) , then we have

∇f(z)
∇xγ(z)

− ∇f(z−1)
∇xγ(z−1)

xγ(z)− xγ(z − 2)
=

1

2πi

∮
Γ

f(s)x′
γ(s)ds

[xγ(s)− xγ(z)](3)
.

In view of

xγ(z)− xγ(z − 2) = [2]q∇xγ−1(z),

we obtain
∇

∇xγ−1(z)
(
∇f(z)

∇xγ(z)
) =

[2]q
2πi

∮
Γ

f(s)x′
γ(s)ds

[xγ(s)− xγ(z)](3)
.

More generalaly, by the induction, we can obtain

∇
∇xγ−n+1(z)

(
∇

∇xγ−n+2(z)
...(

∇f(z)

∇xγ(z)
)) =

[n]q!

2πi

∮
Γ

f(s)x′
γ(s)ds

[xγ(s)− xγ(z)](n+1)
,

where

[xγ(s)− xγ(z)]
(n+1) =

n∏
i=0

[xγ(s)− xγ(z − i)].

And last, by the use of identity

x′
γ(s) =

log q

q
1
2 − q−

1
2

∇xγ+1(s),

we have

∇n
γ−n+1f(z) =

[n]q!

2πi

log q

q
1
2 − q−

1
2

∮
Γ

f(s)∇xγ+1(s)dsξ

[xγ(s)− xγ(z)](n+1).
(73)

Inspired by formula (73), so we can give the definition of fractional difference of f(z) over

{a+ 1, a+ 2, ..., z} on non-uniform lattices as follows

Definition 17. (Complex fractional difference on non-uniform lattices) Let Γ be a simple closed

positively oriented contour. If f(s) is analytic in simple connected domain D bounded by Γ,

assume that z is any nonzero point inside D, a+1 is a point inside D, and z−a ∈ N , then for

any α ∈ R+, the α-th order fractional difference of f(z) over {a+1, a+2, ..., z} on non-uniform

lattices is defined by

∇α
γ−α+1f(z) =

[Γ(α+ 1)]q
2πi

log q

q
1
2 − q−

1
2

∮
Γ

f(s)∇xγ+1(s)ds

[xγ(s)− xγ(z)](α+1)
, (74)

where Γ enclosed the simple poles s = z, z − 1, ..., a+ 1 in the complex plane.

We can calculate the integral (74) by Cauchy’s residue theorem. In detail, we have

Theorem 18. (Fractional difference on non-uniform lattices)Assume z, a ∈ C, z − a ∈ N,α ∈
R+.
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(1) Let x(s) be quadratic lattices (5), then the α-th order fractional difference of f(z) over

{a+ 1, a+ 2, ..., z} on non-uniform lattices can be rewritten by

∇α
γ+1−α[f(z)] =

z−(a+1)∑
k=0

f(z − k)
Γ(2z − k + γ − α)∇xγ+1(z − k)

Γ(2z + γ + 1− k)

(−α)k
k!

; (75)

(2) Let x(s) be quadratic lattices(6), then the α-th order fractional difference of f(z) over

{a+ 1, a+ 2, ..., z} on non-uniform lattices can be rewritten by

∇α
γ+1−α[f(z)] =

z−(a+1)∑
k=0

f(z − k)
[Γ(2z − k + γ − α)]q∇xγ+1(z − k)

[Γ(2z + γ + 1− k)]q

([−α]q)k
[k]q!

. (76)

Proof. From (74), in the case of the quadratic lattices (5), one has

∇α
γ+1−α[f(z)] =

Γ(α+ 1)

2πi

∮
Γ

f(s)∇xγ+1(s)ds

[xγ(s)− xγ(z)(α+1)

=
Γ(α+ 1)

2πi

∮
Γ

f(s)∇xγ+1(s)Γ(s− z)Γ(s+ z + γ − α)ds

Γ(s− z + α+ 1)Γ(s+ z + γ + 1)
.

According to the assumption of Definition 17, Γ(s − z) has simple poles at s = z − k, k =

0, 1, 2, ..., z − (a+ 1). The residue of Γ(s− z) at the point s− z = −k is

lim
s→z−k

(s− z + k)Γ(s− z)

= lim
s→z−k

(s− z)(s− z + 1)...(s− z + k − 1)(s− z + k)Γ(s− z)

(s− z)(s− z + 1)...(s− z + k − 1)

= lim
s→z−k

Γ(s− z + k + 1)

(s− z)(s− z + 1)...(s− z + k − 1)

=
1

(−k)(−k + 1)...(−1)
=

(−1)k

k!
.

Then by the use of Cauchy’s residue theorem, we have

∇α
γ+1−α[f(z)] = Γ(α+ 1)

z−(a+1)∑
k=0

f(z − k)
Γ(2z − k + γ − α)∇xγ+1(z − k)

Γ(α+ 1− k)Γ(2z + γ + 1− k)

(−1)k

k!
.

Since
Γ(α+ 1)

Γ(α+ 1− k)
= α(α− 1)...(α− k + 1),

and

α(α− 1)...(α− k + 1)(−1)k = (−α)k,

therefore, we get

∇α
γ+1−α[f(z)] =

z−(a+1)∑
k=0

f(z − k)
Γ(2z − k + γ − α)∇xγ+1(z − k)

Γ(2z + γ + 1− k)

(−α)k
k!

.

From (74), in the case of the quadratic lattices (6), we have

∇α
γ−α+1f(z) =

[Γ(α+ 1)]q
2πi

log q

q
1
2 − q−

1
2

∮
Γ

f(s)∇xγ+1(s)ds

[xγ(s)− xγ(z)](α+1)

=
[Γ(α+ 1)]q

2πi

log q

q
1
2 − q−

1
2

∮
Γ

f(s)∇xγ+1(s)[Γ(s− z)]q[Γ(s+ z + γ − α)]qds

[Γ(s− z + α+ 1)]q[Γ(s+ z + γ + 1)]q
(77)
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From the assumption of Definition 17, [Γ(s−z)]q has simple poles at s = z−k, k = 0, 1, 2, ..., z−
(a+ 1). The residue of [Γ(s− z)]q at the point s− z = −k is

lim
s→z−k

(s− z + k)[Γ(s− z)]q

= lim
s→z−k

s− z + k

[s− z + k]q
[s− z + k]q[Γ(s− z)]q

=
q

1
2 − q−

1
2

log q
lim

s→z−k
[s− z + k]q[Γ(s− z)]q

=
q

1
2 − q−

1
2

log q
lim

s→z−k

[s− z]q[s− z + 1]q...[s− z + k − 1]q[s− z + k]q[Γ(s− z)]q
(s− z)(s− z + 1)...(s− z + k − 1)

=
q

1
2 − q−

1
2

log q
lim

s→z−k

[Γ(s− z + k + 1)]q
[s− z]q[s− z + 1]q...[s− z + k − 1]q

=
q

1
2 − q−

1
2

log q

1

[−k]q[−k + 1]q...[−1]q
=

q
1
2 − q−

1
2

log q

(−1)k

[k]q!
.

Then by the use of Cauchy’s residue theorem, we have

∇α
γ+1−α[f(z)] = [Γ(α+ 1)]q

z−(a+1)∑
k=0

f(z − k)
[Γ(2z − k + γ − α)]q∇xγ+1(z − k)

[Γ(α+ 1− k)]q[Γ(2z + γ + 1− k)]q

(−1)k

[k]q!
.

Since
[Γ(α+ 1)]q

[Γ(α+ 1− k)]q
= [α]q[α− 1]q...[α− k + 1]q,

and

[α]q[α− 1]q...[α− k + 1](−1)k = ([−α])k,

therefore, we obtain that

∇α
γ+1−α[f(z)] =

z−(a+1)∑
k=0

f(z − k)
[Γ(2z − k + γ − α)]q∇xγ+1(z − k)

[Γ(2z + γ + 1− k)]q

([−α]q)k
k!

.

So far, with respect to the definition of the R-L fractional difference on non-uniform lattices,

we have given two kinds of definitions, such as Definition 11 or Definition 12 in section 4

and Definition 17 or Theorem 18 in section 6 through two different ideas and methods. Now

let’s compare Definition 12 in section 4 and Theorem 18 in section 6.

Here follows a theorem connecting the R-L fractional difference (63) and the complex gen-

eralization of fractional difference (74) :

Theorem 19. For any α ∈ R+, let Γ be a simple closed positively oriented contour. If f(s) is

analytic in simple connected domain D bounded by Γ, assume that z is any nonzero point inside

D, a + 1 is a point inside D, such that z − a ∈ N , then the complex generalization fractional

integral (74) equals the R-L fractional defference (62) or (63):

∇α
γ+1−α[f(z)] =

z∑
k=a+1

[xγ−α(z)− xγ−α(k − 1)](−α−1)

[Γ(−α)]q
f(k)∇xγ+1(k).
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Proof. By Theorem 18, we have

∇α
γ+1−α[f(z)] =

z−(a+1)∑
k=0

([−α]q)k
[k]q!

[Γ(2z − k + γ − α)]q
[Γ(2z − k + γ + 1)]q

f(z − k)∇xγ+1(z − k).

=

z−(a+1)∑
k=0

[Γ(k − α)]q
[Γ(−α)]q[Γ(k + 1)]q

[Γ(2z − k + γ − α)]q
[Γ(2z − k + γ + 1)]q

f(z − k)∇xγ+1(z − k)

=

z−(a+1)∑
k=0

[xγ−α(z)− xγ−α(z − k − 1)](−α−1)

[Γ(−α)]q
f(z − k)∇xγ+1(z − k)

=
z∑

k=a+1

[xγ−α(z)− xγ−α(k − 1)](−α−1)

[Γ(−α)]q
f(k)∇xγ+1(k).

So that the two Theorem 12 and Theorem 18 are consistent.

Set α = γ in Theorem 18, we obtain

Corollary 20. Assume that conditions of Definition 17 and Theorem 18 hold, then

∇γ
1 [f(z)] =

[Γ(γ + 1)]q
2πi

log q

q
1
2 − q−

1
2

∮
Γ

f(s)∇xγ+1(s)ds

[xγ(s)− xγ(z)(γ+1)

=

z−(a+1)∑
k=0

f(z − k)
[Γ(2z + µ− k)]q∇xγ+1(z − k)

[Γ(2z + γ + µ+ 1− k)]q

([−γ]q)k
[k]q!

.

where Γ enclosed the simple poles s = z, z − 1, ..., a+ 1 in the complex plane.

Remark 21. When γ = n ∈ N+,we have

∇n
1 [f(z)] =

[Γ(n+ 1)]q
2πi

log q

q
1
2 − q−

1
2

∮
Γ

f(s)∇xγ+1(s)ds

[xn(s)− xn(z)(n+1)

=
n∑

k=0

f(z − k)
[Γ(2z + µ− k)]q∇xn+1(z − k)

[Γ(2z + n+ µ+ 1− k)]q

([−n]q)k
k!

, (78)

where Γ enclosed the simple poles s = z, z − 1, ..., z − n in the complex plane.

This is consistent with Definition 2 proposed by Nikiforov. A, Uvarov. V, Suslov. S in [22]

.

Finally, for complex integral of Riemann-Liouville fractional difference on non-uniform

lattices, we can establish an analogue of Cauchy Beta formula on non-uniform lattices, which

is also of independent importance:

Theorem 22. (Cauchy Beta formula) Let α, β ∈ C, and assume that∮
Γ

∆t{
1

[xβ(z)− xβ(t)](β)
1

[x−1(t)− x−1(a)](α−1)
}dt = 0,

then
1

2πi

log q

q
1
2 − q−

1
2

∮
Γ

[Γ(β + 1)]q
[xβ(z)− xβ(t)](β+1)

[Γ(α)]q∆y−1(t)dt

[x(t)− x(a)](α)
=

[Γ(α+ β)]q
[xβ(z)− xβ(a)](α+β)

,

where Γ be a simple closed positively oriented contour, a lies inside C.

In order to prove Theorem 22, we first give a lemma.
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Lemma 23. For any α, β, then we have

[1− α]q[xβ(z)− xβ(t− β)] + [β]q[x1−α(t+ α− 1)− x1−α(a)]

= [1− α]q[xβ(z)− xβ(a+ 1− α− β)] + [α+ β − 1]q[x(t)− x(a+ 1− α)]. (79)

Proof. (79) is equivalent to

[α+ β − 1]qx(t) + [1− α]qxβ(t− β)− [β]qx1−α(t+ α− 1)

= [α+ β − 1]qx(a+ 1− α) + [1− α]qxβ(a+ 1− α− β)− [β]qx1−α(a). (80)

Set α− 1 = α̃, then (80) can be written as

[α̃+ β]qx(t)− [α̃]qx−β(t)− [β]qxα̃(t)

= [α̃+ β]qx(a− α̃)− [α̃]qx−β(a− α̃)− [β]qxα̃(a− α̃). (81)

By the use of Lemma 9, then Eq. (81) holds, and then Eq. (79) holds.

Proof of Theorem 22: Set

ρ(t) =
1

[xβ(z)− xβ(t)](β+1)

1

[x(t)− x(a)](α)
,

and

σ(t) = [xα−1(t+ α− 1)− xα−1(a)][xβ(z)− xβ(t)].

Since

[xβ(z)− xβ(t)]
(β+1) = [xβ(z)− xβ(t− 1)](β)[xβ(z)− xβ(t)],

and

[x(t)− x(a)](α) = [x−1(t)− x−1(a)]
(α−1)[x1−α(t+ α− 1)− x1−α(a)],

these reduce to

σ(t)ρ(t) =
1

[xβ(z)− xβ(t− 1)](β)
1

[x−1(t)− x−1(a)](α−1)
.

Making use of

∆t[f(t)g(t)] = g(t+ 1)∆t[f(t)] + f(t)∆t[g(t)],

where

f(t) =
1

[x−1(t)− x−1(a)](α−1)
, g(t) =

1

[xβ(z)− xβ(t− 1)](β)
,

and

∆t

∆x−1(t)
{ 1

[x−1(t)− x−1(a)](α−1)
} =

[1− α]q
[x(t)− x(a)](α)

,
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∆t

∆x−1(t)
{ 1

[xβ(z)− xβ(t− 1)](β)
}

=
∇t

∇x1(t)
{ 1

[xβ(z)− xβ(t)](β)
}

=
[β]q

[xβ(z)− xβ(t)](β+1)
.

then, we have
∆t

∆x−1(t)
{σ(t)ρ(t)}

=
1

[xβ(z)− xβ(t)](β)
[1− α]q

[x(t)− x(a)](α)
+

+
1

[x−1(t)− x−1(a)](α−1)

[β]q
[xβ(z)− xβ(t)](β+1)

= {[1− α]q[xβ(z)− xβ(t− β)] + [β]q[x1−α(t+ α− 1)− x1−α(a)]}

× 1

[x(t)− x(a)](α)
1

[xβ(z)− xβ(t)](β+1)

= τ(t)ρ(t),

where

τ(t) = [1− α]q[xβ(z)− xβ(t− β)] + [β]q[x1−α(t+ α− 1)− x1−α(a)],

this is due to

[xβ(z)− xβ(t)]
(β+1) = [xβ(z)− xβ(t)]

(β)[xβ(z)− xβ(t− β)].

From Proposition 5 one has

∆t

∆x−1(t)
{σ(t)ρ(t)}

= {[1− α]q[xβ(z)− xβ(a+ 1− α− β)] + [α+ β − 1]q[x(t)− x(a+ 1− α)]}

· 1

[xβ(z)− xβ(t)](β+1)

1

[x(t)− x(a)](α)
,

or

∆t{σ(t)ρ(t)}

= {[1− α]q[xβ(z)− xβ(a+ 1− α− β)] + [α+ β − 1]q[x(t)− x(a+ 1− α)]}

· 1

[xβ(z)− xβ(t)](β+1)

1

[x(t)− x(a)](α)
∆x−1(t). (82)

Set

I(α) =
1

2πi

log q

q
1
2 − q−

1
2

∮
Γ

1

[xβ(z)− xβ(t)](β+1)

∇y1 (t) dt

[x(t)− x(a)](α)
, (83)
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and

I(α− 1) =
1

2πi

log q

q
1
2 − q−

1
2

∮
Γ

1

[xβ(z)− xβ(t)](β+1)

∇y1 (t) dt

[x(t)− x(a)](α−1)
.

Since

[x(t)− x(a)](α−1)[x(t)− x(a+ 1− α)] = [x(t)− x(a)](α),

then

I(α− 1) =
1

2πi

log q

q
1
2 − q−

1
2

∮
Γ

1

[xβ(z)− xβ(t)](β+1)

[x(t)− x(a+ 1− α)]∇x1 (t) dt

[x(t)− x(a)](α)
.

Integrating both sides of equation (82), then we have∮
Γ

∆t{σ(t)ρ(t)}dt = [1− α]q[xβ(z)− xβ(a+ 1− α− β)]I(α)

− [α+ β − 1]qI(α− 1).

If ∮
Γ

∆t{σ(t)ρ(t)}dt = 0,

then we obtain that
I(α− 1)

I(α)
=

[α− 1]q
[α+ β − 1]q

[yβ(z)− yβ(a+ 1− α− β)].

That is

I(α− 1)

I(α)
=

[Γ(α+β−1)]q
[Γ(α−1)]q

[Γ(α+β)]q
[Γ(α)]q

1
[xβ(z)−xβ(a)](α+β−1)

1
[xβ(z)−xβ(a)](α+β)

. (84)

From (84), we set

I(α) = k
[Γ(α+ β)]q
[Γ(α)]q

1

[xβ(z)− xβ(a)](α+β)
, (85)

where k is undetermined.

Set α = 1, one has

I(1) = k[Γ(1 + β)]q
1

[xβ(z)− xβ(a)](1+β)
, (86)

and from (83) and generalized Cauchy residue theorem, one has

I(1) =
1

2πi

log q

q
1
2 − q−

1
2

∮
Γ

1

[xβ(z)− xβ(t)](β+1)

∇x1 (t) dt

[x(t)− x(a)](1)

=
1

2πi

∮
Γ

1

[xβ(z)− xβ(t)](β+1)

x′ (t) dt

[x(t)− x(a)]

=
1

[xβ(z)− xβ(a)](β+1)
, (87)

From (86) and (87), we get

k =
1

[Γ(1 + β)]q
.

Therefore, we obtain that
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I(α) =
[Γ(α+ β)]q

[Γ(β + 1)]q[Γ(α)]q

1

[xβ(z)− xβ(a)](α+β)
,

and Theorem 22 is completed.
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