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The rate of convergence on fractional power dissipative

operator on some sobolev type spaces

CAO Zhen-bin WANG Meng

Abstract. In [3], Chen, Deng, Ding and Fan proved that the fractional power dissipative

operator is bounded on Lebesgue spaces Lp(Rn), Hardy spaces Hp(Rn) and general mixed norm

spaces, which implies almost everywhere convergence of such operator. In this paper, we study

the rate of convergence on fractional power dissipative operator on some sobolev type spaces.

§1 Introduction

We consider the fractional power dissipative equation ut + (−∆)αu = 0, (x, t) ∈ Rn × R,

u(x, 0) = f(x), x ∈ Rn,

where n ≥ 2, α > 0, f : Rn → C is the given initial data, and ∆ =
∑n

i=1
∂2

∂x2
i
is the Laplace

operator. This interesting equation instantiates the heat equation if α = 1 and the Poisson’s

equation if α = 1/2. The solution of the above equation can be written by

u(x, t) = e−t(−∆)αf(x) = (e−t|ξ|2α f̂)
∨
(x),

where f̂ is the Fourier transform of f , and f∨ is the inverse Fourier transform of f . We can

also write u(x, t) as a convolution operator:

u(x, t) = Kα
t ∗ f(x),

where

Kα
t (x) =

1

t
n
2α

Kα(
x

t
1
2α

),

and

Kα(x) =

∫
Rn

e−|ξ|2αe2πix·ξdξ.

In [10], Miao, Yuan and Zhang proved that Kα(x) satisfies that

|Kα(x)| . (1 + |x|)−(n+2α),
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for all α > 0, which immediately implies e−t(−∆)αf is bounded on Lebesgue spaces Lp(Rn)

for 1 ≤ p < ∞. Also, by the multiplier theorem of Calderón and Torchinsky [1], e−t(−∆)αf

is bounded on Hardy spaces Hp(Rn) for all 0 < p < ∞. We can see [3] on the boundedness

of e−t(−∆)αf on other spaces. Also we can see [6,8-11,15] on the fractional power dissipative

equations with different potentials.

For λ > 0, let I−λ denote the Riesz potential, i.e.

I−λ(f) = (|ξ|λf̂(ξ))∨.
Let Hp(Rn) denote the Hardy space, which is defined by

∥f∥Hp(Rn) =

∥∥∥∥sup
t>0

|(Pt ∗ f)(x)|
∥∥∥∥
Lp(Rn)

,

where P is the Poisson kernel. A basic result is that Lp(Rn) and Hp(Rn) are equivalent when

p > 1. We further introduce the atomic decomposition: if g ∈ Hp(Rn), then

g =
∑
j

cjaj , ∥g∥pHp(Rn) ∼
∑
j

|cj |p < ∞,

where each aj is a (p, 2)-atom. Here a is a (p, 2)-atom if there exists a cube Q such that

(1) a is supported in Q,

(2) ∥a∥L2 ≤ |Q|1/2−1/p,

(3)
∫
xγa(x)dx = 0 for all γ with |γ| ≤ [n/p− n],

where [x] means the largest integer that is not more than x. In the following argument, we

mainly discuss the Sobolev type spaces I−λ(H
p)(Rn). I−λ(H

p)(Rn) is defined as the space of

all f satisfying I−λf ∈ Hp(Rn). For such function f , we define

∥f∥I−λ(Hp)(Rn) = ∥I−λ(f)∥Hp(Rn).

This space is the classical homogeneous Sobolev spaces for p ≥ 1 and the Hardy-Sobolev spaces

for 0 < p ≤ 1 (see [7,14]).

We have already known the fractional power dissipative operator and related maximal op-

erator are bounded on Hp(Rn), which implies for each f ∈ Hp(Rn), limt→0 e
−t(−∆)αf = f a.e.

Then we ask: if f has more regularity, can we obtain better estimates? Our result is the

following.

Theorem 1.1. Let α > 0, p > 0 and 0 ≤ λ < 2α. If f ∈ I−λ(H
p)(Rn), then

e−t(−∆)αf(x)− f(x) = o(t
λ
2α ) a.e. as t → 0.

Firstly we consider the case for λ = 0, by the method from [13], Theorem 1.1 can be reduced

to ∥∥∥∥sup
t>0

∣∣∣e−t(−∆)αf − f
∣∣∣∥∥∥∥

Lp(Rn)

. ∥f∥Hp(Rn).

This result is correct since the fractional power dissipative operator is bounded on Hp(Rn) and

∥f∥Lp(Rn) = ∥ lim
t→0

(e−t|x|2 ∗ f)∥Lp(Rn) ≤ ∥f∥Hp(Rn)

holds for all 0 < p < ∞.

From now on, let 0 < λ < 2α. We repeat the method of [13], then Theorem 1.1 can be

reduced to the following result.
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Theorem 1.2. Let α > 0, p > 0 and 0 < λ < 2α. If f ∈ I−λ(H
p)(Rn), then∥∥∥∥sup

t>0
t−

λ
2α

∣∣∣e−t(−∆)αf − f
∣∣∣∥∥∥∥

Lp(Rn)

. ∥f∥I−λ(Hp)(Rn).

We will prove this theorem in section 2. We decompose the integral in Theorem 1.2 into two

parts. As the argument in Chen [2], the estimate of kernel on each part is core of our proof,

which is left at Lemma 2.2.

Throughout this paper, A . B means that there exists a constant C > 0 independent of all

essential variables such that A ≤ CB, and A ∼ B means A . B and B . A. The space of all

infinitely differentiable functions on Rn is denoted by C∞(Rn). The space of C∞ functions with

compact support is denoted by C∞
0 (Rn). The space of C∞ functions with all derivatives rapidly

decreasing is denoted by S(Rn). Let β = (β1, ..., βn) where βj ∈ Z and βj ≥ 0 for 0 ≤ j ≤ n,

∂βf means the derivative ∂β1 ...∂βnf .

§2 Proof of Theorem 1.2

There is a standard result of Stein [12] on Hp(Rn). We state it here.

Lemma 2.1. [12] Let 0 < p ≤ 1. Suppose that a function ζ vanishes at ∞ and satisfies∣∣∂βζ(x)
∣∣ . (1 + |x|)−A

,

for |β| = [n(1/p− 1)] + 1 and A > n/p. Then there is a constant C > 0, for any f ∈ Hp(Rn),∥∥∥∥sup
R>0

|f ∗ ζR|
∥∥∥∥
Lp(Rn)

≤ C∥f∥Hp(Rn),

where ζR(x) = R−nζ(x/R) for R > 0.

Write

t−
λ
2α

∣∣∣e−t(−∆)αf − f
∣∣∣

= t−
λ
2α

∣∣∣∣∫
Rn

(e−t|ξ|2α − 1)f̂(ξ)e2πiξ·xdξ

∣∣∣∣
= t−

λ
2α

∣∣∣∣∫
Rn

(e−|t
1
2α ξ|2α − 1)

1

|ξ|λ
f̂(ξ)|ξ|λe2πiξ·xdξ

∣∣∣∣
=

∣∣∣∣∫
Rn

(e−|t
1
2α ξ|2α − 1)

1

|t 1
2α ξ|λ

f̂(ξ)|ξ|λe2πiξ·xdξ
∣∣∣∣

=
∣∣I−λ(f) ∗ (gα,λ)t

∣∣ ,
where

gα,λ(x) =

∫
Rn

(e−|ξ|2α − 1)
1

|ξ|λ
e2πiξ·xdξ.

To prove Theorem 1.2, it suffices to show∥∥∥∥sup
t>0

∣∣I−λ(f) ∗ (gα,λ)t
∣∣∥∥∥∥

Lp

. ∥I−λ(f)∥Hp .

Set h = I−λ(f), the above inequality is reduced to∥∥∥∥sup
t>0

|h ∗ (gα,λ)t|
∥∥∥∥
Lp

. ∥h∥Hp .
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Let ϕ0, ϕ∞ ∈ C∞(Rn) be radial functions satisfying the following conditions:

ϕ0(ξ) =

{
1 |ξ| ≤ 1/2,

0 |ξ| ≥ 1;
ϕ∞(ξ) =

{
0 |ξ| ≤ 1/2,

1 |ξ| > 1;

and ϕ0 + ϕ∞ = 1. Then we divide the integral gα,λ to gα,λ0 and gα,λ∞ :

gα,λ0 (x) =

∫
Rn

ϕ0(ξ)(e
−|ξ|2α − 1)

1

|ξ|λ
e2πiξ·xdξ,

and

gα,λ∞ (x) =

∫
Rn

ϕ∞(ξ)(e−|ξ|2α − 1)
1

|ξ|λ
e2πiξ·xdξ.

Firstly we consider gα,λ0 . Via the similar method of Lemma 2.1 in [4] (we also can see [5]),

one concludes: for 0 < λ < 2α, all β = (β1, ..., βn) with βj ≥ 0 for 0 ≤ j ≤ n,

|∂βgα,λ0 (x)| . 1

(1 + |x|)n+|β|+2α−λ
. (1)

When p > 1, by (1),

|gα,λ0 (x)| . 1

(1 + |x|)n+2α−λ
,

which is controlled by one integrable radially decreasing function due to 0 < λ < 2α. Therefore∥∥∥∥sup
t>0

|h ∗ (gα,λ0 )t|
∥∥∥∥
Lp

. ∥M(h)∥Lp . ∥h∥Lp ∼ ∥h∥Hp .

Here we use that Lp is equivalent to Hp when p > 1. When 0 < p ≤ 1, by (1),

|∂βgα,λ0 (x)| . 1

(1 + |x|)n+|β|+2α−λ
.

Considering n+ |β|+ 2α− λ > n
p when |β| = [n( 1p − 1)] + 1, by Lemma 2.1,∥∥∥∥sup
t>0

|h ∗ (gα,λ0 )t|
∥∥∥∥
Lp

. ∥h∥Hp .

Next we consider gα,λ∞ . We have the following estimate (proof can be seen in the following

Lemma 2.2):

|∂βgα,λ∞ (x)| . 1

|x|n+|β|−λ+L
(2)

holds for all L ≥ 0 so that n + |β| − λ + L ≥ 0. When p > 1, by (2), gα,λ∞ is controlled by one

integrable radially decreasing function, then∥∥∥∥sup
t>0

|h ∗ (gα,λ∞ )t|
∥∥∥∥
Lp

. ∥M(h)∥Lp . ∥h∥Lp ∼ ∥h∥Hp .

When 0 < p ≤ 1, by the atomic decomposition of h, h =
∑

j λjaj , where each aj is a (p, 2)-atom

and ∥h∥pHp ∼
∑

j |λj |p. The properties of atom can be seen in section 1. Then∥∥∥∥sup
t>0

|h ∗ (gα,λ∞ )t|
∥∥∥∥p
Lp

≤

∥∥∥∥∥∥
∑
j

|λj | sup
t>0

|aj ∗ (gα,λ∞ )t|

∥∥∥∥∥∥
p

Lp

≤
∑
j

|λj |p
∥∥∥∥sup
t>0

|aj ∗ (gα,λ∞ )t|
∥∥∥∥p
Lp

.
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So if for each atom a, we have ∥∥∥∥sup
t>0

|a ∗ (gα,λ∞ )t|
∥∥∥∥
Lp

. 1, (3)

then ∥∥∥∥sup
t>0

|h ∗ (gα,λ∞ )t|
∥∥∥∥
Lp

.

∑
j

|λj |p
1/p

∼ ∥h∥Hp .

We prove (3) in the last lemma. The proof of Theorem 1.2 is completed as all cases have been

proved.

Finally, we give the proofs of (2) and (3).

Lemma 2.2. For λ > 0, β = (β1, ..., βn) with βj ≥ 0 for 0 ≤ j ≤ n, we have

|∂βgα,λ∞ (x)| . 1

|x|n+|β|−λ+L

holds for all L ≥ 0 so that n+ |β| − λ+ L ≥ 0.

Proof. Write

gα,λ∞ (x) =

∫
Rn

e−|ξ|2α

|ξ|λ
ϕ∞(ξ)e2πiξ·xdξ −

∫
Rn

1

|ξ|λ
ϕ∞(ξ)e2πiξ·xdξ.

We only estimate the second term that is denoted by Kλ(x), then the first term can be treated

by the same way.

As to Kλ(x), we decompose it by the partition of unity,

1 = η(ξ) +
∞∑
j=0

δ(2−jξ),

where η and δ are all in S(Rn), supp η ⊂ {x | |x| ≤ 1}, supp δ ⊂ {x | 1/2 ≤ |x| ≤ 2}, so supp

δ(2−j ·) ⊂ {x | 2j−1 ≤ |x| ≤ 2j+1} for j ≥ 1. Noting the support of ϕ∞, we have

Kλ(x) =

∞∑
j=1

Kλ
j (x),

where

Kλ
j (x) =

∫
Rn

1

|ξ|λ
δ(2−jξ)e2πiξ·xdξ.

We claim:

|∂βKλ
j (x)| . |x|−M2j(n+|β|−λ−M) (4)

holds for all M ≥ 0.

In fact, write

(−2πix)γ∂βKλ
j (x) =

∫
Rn

∂γ
ξ

[
(2πiξ)β

δ(2−jξ)

|ξ|λ

]
e2πiξ·xdξ.

Using the support of δ(2−j ·), we obtain

|xγ∂βKλ
j (x)| .

∫
Rn

δ(2−jξ)|ξ||β|−λ−|γ|dξ . 2j(n+|β|−λ−|γ|). (5)

There is a basic fact: for γ = (γ1, ..., γn),

|x||γ| ≤ Cn,γ

∑
|β|=|γ|

|xβ |
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holds for all x ̸= 0. Since γ is arbitrary, we take the supremum over all γ with |γ| = M , then

(5) implies (4).

Since Kλ(x) =
∑∞

j=1 K
λ
j (x), it suffices to estimate

∑∞
j=1 |∂βKλ

j (x)|. When 0 < |x| ≤ 1, we

divide it to two parts: the first part 2j ≤ |x|−1, the second part 2j > |x|−1. For the first term,

we use (4) when M = 0 to get∑
2j≤|x|−1

|∂βKλ
j (x)| ≤

∑
2j≤|x|−1

2j(n+|β|−λ),

which is O(|x|−n−|β|+λ) when n+ |β| − λ > 0, and O(log(|x|−1) + 1) when n+ |β| − λ ≤ 0. In

either case we get the bound

O(|x|−n−|β|+λ−L),

with the restrictions that |x| ≤ 1, L ≥ 0, and n + |β| − λ + L ≥ 0. For the second term, we

choose M > n+ |β| − λ in (4), then we get

O(|x|−M )
∑

2j>|x|−1

2j(n+|β|−λ−M) = O(|x|−n−|β|+λ),

so the bound is O(|x|−n−|β|+λ−L) if L ≥ 0. When |x| ≥ 1, we choose M > n+ |β|−λ+L, then

from (4) we get the bound |x|−M , which is O(|x|−n−|β|+λ−L) for every L.

Lemma 2.3. Suppose that a is a (p, 2)-atom, then∥∥∥∥sup
t>0

|a ∗ (gα,λ∞ )t|
∥∥∥∥
Lp

. 1.

Proof: We assume that supp a ⊂ Q, where Q is a cube with the center of zero. Other cases are

similar since this operator is a convolution operator (it commutes with translations). Then∥∥∥∥sup
t>0

|a ∗ (gα,λ∞ )t|
∥∥∥∥p
Lp

=

∫
Rn

sup
t>0

|a ∗ (gα,λ∞ )t|p

=

∫
2Q

sup
t>0

|a ∗ (gα,λ∞ )t|p +
∫
(2Q)c

sup
t>0

|a ∗ (gα,λ∞ )t|p

= I + II.

For I, since gα,λ∞ is controlled by one integrable radially decreasing function, T (f) = supt>0 |f ∗
(gα,λ∞ )t| is bounded on L2. Then

I =

∫
2Q

|T (a)|p ≤
(∫

2Q

1

)1− p
2
(∫

2Q

T (a)2
) p

2

. |Q|1−
p
2 ∥a∥pL2 ≤ |Q|1−

p
2 |Q|

p
2−1 = 1.

Next we start to estimate II. Set N = [n( 1p − 1)]. Considering the vanishing property of a, for

some θ ∈ (0, 1) such that

|a ∗ (gα,λ∞ )t|

=
1

tn

∣∣∣∣∫
Q

a(y)gα,λ∞ (
x− y

t
)dy

∣∣∣∣
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=
1

tn

∣∣∣∣∣∣
∫
Q

a(y)

gα,λ∞ (
x− y

t
)−

∑
|β|≤N

∂βgα,λ∞ (
x

t
)
(−y/t)β

β!

 dy

∣∣∣∣∣∣
=

1

tn

∣∣∣∣∣∣
∫
Q

a(y)

 ∑
|β|=N+1

∂βgα,λ∞ (
x− θy

t
)
(−y/t)β

β!

 dy

∣∣∣∣∣∣
. 1

tn

∫
Q

|a(y)||y
t
|N+1 1

|xt |n+N−λ+L+1
dy,

where |x− θy| ≥ |x| − |y| ≥ 1
2 |x| since y ∈ Q and x ∈ (2Q)c, and the last line is due to Lemma

2.2. We choose L = λ > 0, then

|a ∗ (gα,λ∞ )t| .
1

|x|n+N+1

∫
Q

|a(y)||y|N+1dy . |Q|1−
1
p+

N+1
n

|x|n+N+1
,

hence

II =

∫
(2Q)c

sup
t>0

|a ∗ (gα,λ∞ )t|p

.
∫
(2Q)c

|Q|p−1+
p(N+1)

n

|x|p(n+N+1)
dx

. |Q|p−1+
p(N+1)

n

∫
(2Q)c

1

|x|p(n+N+1)
dx.

Since p(n+N + 1) > n when N = [n( 1p − 1)],

II . |Q|p−1+
p(N+1)

n |Q|−p+1− p(N+1)
n = 1.

We finish the proof of this lemma.
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