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Degree sum conditions for hamiltonian index

LIU Ze-meng1 XIONG Li-ming2

Abstract. In this note, we show a sharp lower bound of min{
∑k

i=1 dG(ui) : u1u2 . . . uk is a path

of (2-)connected G} on its order such that (k-1)-iterated line graphs Lk−1(G) are hamiltonian.

§1 Introduction

We use Bondy and Murty [2] for terminology and notation not defined here and consider

finite simple graphs only. Let G = (V (G), E(G)) be a connected graph and u be a vertex of G.

We use NG(u) to denote the set of vertices which are adjacent with u (also called the neighbors

of u) in the graph G. dG(u) = |NG(u)| is the degree of u in G. Let S be a subset of V (G)(or

E(G)). The induced subgraph of G is denoted by G[S]. We use Kn to denote the complete

graph of order n. The clique C is a subset of V (G) such that G[C] is a complete graph.

The line graph L(G) of G = (V (G), E(G)) has E(G) as its vertex set, and two vertices

are adjacent in L(G) if and only if the corresponding edges share a common end vertex in

G. The m-iterated line graph Lm(G) is defined recursively by L0(G) = G,L1(G) = L(G) and

Lm(G) = L(Lm−1(G)). The hamiltonian index of a graph G, denoted by h(G), is the smallest

integer m such that Lm(G) is hamiltonian, i.e., it has a spanning cycle.

Chartrand [5] showed that the hamiltonian index for any graph other than a path always

exists and that L(G) of a hamiltonian graph G is hamiltonian. For a connected graph that is

not a path, Ryjáček, Woeginger and Xiong [8] showed that the problem to decide whether the

hamiltonian index of a given graph is less than or equal to a given constant is NP-complete.

Saražin [9] showed that h(G) ≤ n −∆(G) if G is connected graph of order n, later, Xiong

[11] improved this result and showed that h(G) ≤ diam(G)− 1 if G is a connected graph other

than a path since diam(G) − 1 ≤ n −∆(G), where diam(G) denotes the diameter of a graph

G. For its other sharp upper bounds and stability, see [4] and [12], and [14], respectively, while

its sharp lower bound is also gave in [12]; in [15], you may see its survey paper.

Let P ⊆ G be a path of order k ≥ 1. By dG(P ), we denote the degree of a path P .

That is, dG(P ) = dG(v1) + dG(v1) + · · · + dG(vk), where V (P ) = {v1, v2, · · · , vk}. By σ̄k(G),
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we denote min{dG(P ) : P is a path of G with |V (P )| = k}. Obviously δ(G) = σ̄1(G) and

δ(L(G)) = σ̄2(G)− 2 for every nonempty graph G.

Dirac [7] showed a very famous result that every graph G = L0(G) of order n with δ(G) =

σ̄1(G) ≥ n
2 is hamiltonian, while Brualdi and Shanny [3] gave a similar result on L(G) = L1(G)

involving σ̄2(G), which was later improved slightly by Clark [6] for graphs with large order.

Theorem 1 (Brualdi and Shanny, [3]). If G is a graph of order n ≥ 4 and at least one

edge such that σ̄2(G) > n, then L(G) is hamiltonian.

Theorem 2 (Clark, [6]). If G is a connected graph of order n ≥ 6 and if

σ̄2(G) ≥

n− 1, if n is even

n− 2, if n is odd
,

then L(G) is hamiltonian.

For almost bridgeless graphs (i.e., graphs in which every cut edge is incident with vertex

of degree one), Veldman improved the above result to the following theorem which settled a

conjecture in [1].

Theorem 3 (Veldman, [10]). Let G be a connected almost bridgeless graph of sufficiently

large order n such that σ̄2(G) > 2(⌊n
5 ⌋ − 1), then L(G) is hamiltonian.

In this paper, we consider similar sufficient conditions for m-iterated line graphs Lm(G) to

be hamiltonian for m ≥ 2 and get the following main results.

Theorem 4. Let k ≥ 3 be an integer and let G be a connected graph of order n > k + 2

such that σ̄k(G) > n+ k − 3, then Lk−1(G) is hamiltonian, i.e., h(G) ≤ k − 1.

Theorem 5. Let k ≥ 3 be an integer and let G be a 2-connected graph of order n > 6k+3

such that σ̄k(G) > 2n
5 − 2k

5 − 1
5 , then Lk−1(G) is hamiltonian, i.e., h(G) ≤ k − 1.

§2 Preliminaries

Let G be a graph, define Vi(G) = {v ∈ V (G) : dG(v) = i} and V≥i(G) = {v ∈ V (G) :

dG(v) ≥ i}. Let P (u, v) denote a path between u and v. A branch in G is a nontrivial path with

ends not in V2(G) and with internal vertices, if any, that have degree 2 in G. By B(G), we denote

the set of branches of G. Define B1(G) = {B ∈ B(G) : V (B) ∩ V1(G) ̸= ∅}. Let H1 and H2 be

two subgraphs of graph G. Define H1∪H2 = G[E(H1)∪E(H2)], H1∩H2 = G[E(H1)∩E(H2)],

H1 − H2 = G[E(H1)\E(H2)], H1△H2 = G[E(H1)△E(H2)] = G[(E(H1) ∪ E(H2))\(E(H1) ∩
E(H2))], respectively. For any S ⊆ V (G), define H1 ∪ S is a graph with V (H1)∪ S and E(H1)

as its vertex set and edge set, respectively. The distance dG(H1, H2) between H1 and H2 is

defined to be min{dG(v1, v2) : v1 ∈ V (H1), v2 ∈ V (H2)}, where dG(v1, v2) denotes the number

of edges of a shortest path between v1 and v2 in G.

Xiong and Liu [13] characterized the graphs for which the s-iterated line graph is hamiltonian

for any integer s ≥ 2.

Theorem 6 (Xiong and Liu, [13]). Let G be a connected graph that is not a 2-cycle and

let s ≥ 2 be an integer. Then h(G) ≤ s if and only if EUs(G) ̸= ∅, where EUs(G) denotes the

set of those subgraphs H of a graph G that satisfy the following conditions:
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(I) dH(x) ≡ 0 ( mod 2) for every x ∈ V (H);

(II) V0(H) ⊆ V≥3(G) ⊆ V (H);

(III) dG(H1,H −H1) ≤ s− 1 for every subgraph H1 of H;

(IV) |E(B)| ≤ s+ 1 for every branch B ∈ B(G) with E(B) ∩ E(H) = ∅;

(V) |E(B)| ≤ s for every branch B ∈ B1(G).

§3 Proofs of main results

Proof of Theorem 4. Choose a subgraph H of G satisfying that:

(1) dH(x) ≡ 0( mod 2) for every x ∈ V (H);

(2) V0(H) ⊆ V≥3(G) ⊆ V (H);

(3) subject to (1), (2), |V (H)| is maximized.

(3.1)

By Theorem 6, for s = k − 1, it suffices to prove that H ∈ EUk−1(G). By the choice of H,

H satisfies Conditions (I), (II) of Theorem 6.

We claim that H satisfies Condition (IV) of Theorem 6. That is, |E(B)| ≤ k for every

B ∈ B(G) with E(B) ∩ E(H) = ∅. Suppose otherwise. Then G has a branch B ∈ B(G) such

that |E(B)| ≥ k + 1 and E(B) ∩ E(H) = ∅. Hence, B contains a path P of order k with

V (P ) ⊆ V2(G). For n > k + 2, σ̄k(G) ≤ dG(P ) = 2k < n + k − 2 ≤ σ̄k(G), a contradiction.

We then claim that H satisfies Condition (V) of Theorem 6. That is, |E(B)| ≤ k − 1 for every

B ∈ B1(G). Suppose otherwise. Then G has a branch B ∈ B1(G) with |E(B)| ≥ k. Hence, B

contains a path P of order k with σ̄k(G) ≤ dG(P ) = 2k−1 < n+k−2 ≤ σ̄k(G), a contradiction.

Then we only need to prove thatH satisfies Condition (III) of Theorem 6, that is, dG(H1,H−
H1) ≤ k − 2 for every subgraph H1 of H. Suppose otherwise. Then H has a subgraph H1

such that dG(H1,H − H1) ≥ k − 1. Since G is connected and k ≥ 3, there is at least one

path B0 = x0x1 · · ·xl between H1 and H − H1 such that l ≥ k − 1 and x0 ∈ V (H1) and

xl ∈ V (H − H1). By the choice of H, B0 is a branch of G. Without loss of generality, we

assume that |V (H1)| ≤ |V (H −H1)|. Then |V (H1)| ≤ ⌊ |V (H)|
2 ⌋.

Claim 1. For any vertex y0 ∈ V (G) − (V (H)
∪
V (B0)), if NG(y0) ⊆ V (H), then NG(y0)

is an independent set.

Proof. Suppose otherwise. Since y0 /∈ V (H), dG(y0) ≤ 2. Since Claim 1 naturally holds

when dG(y0) = 1, we only need to consider the case when dG(y0) = 2. Then v1v2 is an edge of G

for NG(y0) = {v1, v2} ⊆ V (H). Then H1 = H△v1v2y0v1 is a subgraph of G satisfying (1), (2)

of (3.1) and |V (H1)| > |V (H)|, contradicting the choice of H in terms of (3) of (3.1).

Claim 2. |NG(x0)
∩
NG(xl)| ≤ 1.

Proof. Suppose otherwise. Then |NG(x0)
∩
NG(xl)| ≥ 2. Then there exists a vertex

x ∈ NG(x0)
∩
NG(xl) and x /∈ B0. Then x0xxl is a branch of G, denoted by B1. Then

C2 = B0

∪
B1 is a cycle. We have a subgraph H2 = H△C2 of G satisfying (1), (2) of (3.1) and

|V (H2)| > |V (H)|, contradicting the choice of H in terms of (3) of (3.1).
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Claim 3. V (G) = V (H)
∪
V (B0).

Proof. Suppose otherwise. Since dG(x0) ≥ 3, NG(x0) ̸= ∅. We consider two cases.

Case 1. NG(x0)
∩
V (H1) = ∅.

Since dG(H1,H −H1) ≥ k − 1 ≥ 2, NG(x0) ⊆ V (G−H). Since dG(xl) ≥ 3, |NG(xl)| ≥ 3.

By Claim 2, dG(x0) ≤ n − (k − 3 + 3 + 1) = n − k − 1. Note that P = yx0 · · ·xk−2 is a

path of order k, where y ∈ NG(x0). Then dG(y) ≤ 2. However, σ̄k(G) ≤ dG(P0) ≤ dG(P ) ≤
2 + n− k − 1 + 2(k − 2) = n+ k − 3 < σ̄k(G), a contradiction.

Case 2. NG(x0)
∩
V (H1) ̸= ∅.

For y ∈ NG(x0)
∩

V (H1), P = yx0 · · ·xk−2 is a path of order k. By Claim 1, NG(x0)
∩
NG(y)

⊆ H1. Then dG(x0) + dG(y) ≤ 2(⌊ |V (H)|
2 ⌋ − 1) + n − (|V (H)| + k − 3) ≤ n − k + 1. However,

σ̄k(G) ≤ dG(P0) ≤ dG(P ) ≤ n− k + 1 + 2(k − 2) ≤ n+ k − 3 < σ̄k(G), a contradiction.

By Claim 3, |V (H1)| ≤ ⌊n−k+2
2 ⌋. We have a path P0 = yx0 · · ·xk−2, where y ∈ V (H1). Note

that dG(y) ≤ |V (H1)| − 1 ≤ ⌊n−k+2
2 ⌋ − 1 and dG(x0) ≤ |V (H1)| − 1 + 1 ≤ ⌊n−k+2

2 ⌋. However,

σ̄k(G) ≤ dG(P0) ≤ ⌊n−k+2
2 ⌋+ ⌊n−k+2

2 ⌋− 1+2(k− 2) ≤ n+k− 3 < σ̄k(G), a contradiction.

Proof of Theorem 5. Let k ≥ 3 be an integer. For the convenience of proof, we define

k-tribe. If H0 is a maximal subgraph of G without any branch of length more than k − 2

such that dG(H1,H0 − H1) ≤ k − 2 for every subgraph H1 of H0, then we call H0 a k-tribe.

Furthermore, we use fk(H̃) to denote the number of k-tribes of a subgraph H̃ of G.

Choose a subgraph H of G satisfying that:

(1) dH(x) ≡ 0( mod 2) for every x ∈ V (H);

(2) V0(H) ⊆ V≥3(G) ⊆ V (H);

(3) subject to (1), (2), |(G;H)| is minimized, where (G;H) = {H1 ⊆ H :

dG(H1,H −H1) ≥ k − 1};

(4) subject to (1), (2), (3), |V (H)| is maximized.

(3.2)

By Theorem 6, for s = k − 1, it suffices to prove that H ∈ EUk−1(G). By the choice of

H, H satisfies Conditions (I), (II) in Theorem 6. Since G is 2-connected, H satisfies Condition

(V). Besides, H satisfies Condition (IV). Suppose otherwise. Then G has a branch B ∈ B(G)

such that |E(B)| ≥ k + 1 and E(B) ∩ E(H) = ∅. Then there is a path P ⊆ B of order k with

V (P ) ⊆ V2(G). However, since n > 6k + 3, σ̄k(G) ≤ dG(P ) = 2k < 2n
5 − 2k

5 − 1
5 < σ̄k(G), a

contradiction. Next, we prove that H satisfies Condition (III), that is, (G;H) = ∅.
We then assume that (G;H) ̸= ∅, i.e., there is a subgraph H1 of H such that dG(H1,H −

H1) ≥ k − 1. Since G is 2-connected, there are at least two paths B1(x1, y1), B2(x2, y2)

between H1 and H − H1 such that x1, x2 ∈ V (H1), y1, y2 ∈ V (H − H1) and x1 ̸= x2, y1 ̸=
y2. Since dG(H1,H − H1) ≥ k − 1, E(Bi)

∩
E(H) = ∅ and |E(Bi)| ≥ k − 1, i = 1, 2. By

the choice of H, both H1 and H − H1 are the union of connected even subgraphs of G and

B1(x1, y1), B2(x2, y2) ∈ B(G).

Since G is 2-connected and B1, B2 ∈ B(G), there is a cycle C with minimum order containing

B1 and B2. Furthermore, we claim that E(C)
∩
E(H1) ̸= ∅ or E(C)

∩
E(H − H1) ̸= ∅.

Otherwise, we have a subgraph H1 = H△C of G satisfying (1), (2) of (3.2) and |(G : H1)| <
|(G : H)|, contradicting the choice of H in terms of (3) of (3.2).
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Let H̃ = H−{B ∈ B(G) : |E(B)| ≥ k−1}. H̃ is the union of some k-tribes. In the following

text, we investigate fk(H̃). Since (G;H) ̸= ∅, fk(H̃) ≥ 2.

Claim 4. Either {x1, x2} or {y1, y2} is in distinct k-tribes.

Proof. Suppose otherwise. Then H1 = (H△C) ∪ V≥3(G) is a subgraph satisfying (1), (2)

of (3.2) and |(G;H1)| < |(G;H)|, contradicting the choice of H in terms of (3) of (3.2).

By Claim 4, we know fk(H̃) > 2. By symmetry, we always assume that H −H1 contains

more k-tribes than H1 and {y1, y2} is in distinct k-tribes in the following text.

Claim 5. fk(H̃) ≥ 5

Proof. Suppose otherwise. Then we consider the following three cases.

Case 1. fk(H̃) = 3.

We assume that H1 contains one k-tribe H̃1 and H −H1 contains two k-tribes H̃2 and H̃3.

Then x1, x2 ∈ H̃1. By Claim 4, we assume that y1 ∈ H̃2 and y2 ∈ H̃3 in Case 1.

Subcase 1.1. H −H1 does not contain any branch connecting H̃2 and H̃3. By Symmetry,

|(G;H)| = 2
(
3
1

)
= 6. Then H1 = (H△C)∪V≥3(G) is a subgraph satisfying (1), (2) of (3.2) and

|(G;H1)| < |(G;H)|, a contradiction.

Subcase 1.2. H −H1 contains a branch B3 connecting H̃2 and H̃3.

Since H −H1 is an even subgraph, H −H1 contains another branch B4 connecting H̃2 and

H̃3. Then (G;H) = {H1,H − H1}. Then H1 = (H△C) ∪ V≥3(G) is a subgraph satisfying

(1), (2) of (3.2). Since H1 contains B3 or B4, |(G;H1)| < |(G;H)|, a contradiction.

Case 2. H1 contains one k-tribe H̃1 and H −H1 contains three k-tribes H̃2, H̃3 and H̃4.

We assume that y1 ∈ H̃2 and y2 ∈ H̃4. Then we claim that G has no branch between H̃2 and

H̃4. Otherwise, G contains a branch B3 connecting H̃2 and H̃4. Since G is 2-connected, there

is a path P (y1, y2) with minimum order such that B3 ⊆ P and E(P )
∩
E(B1

∪
B2

∪
H1) = ∅.

Note that cycle C contain a path C(y1, y2) such that E(C(y1, y2))
∩

E(B1

∪
B2

∪
H1) = ∅.

By replacing C(y1, y2) with P (y1, y2), we have a cycle C1 containing B1, B2 and B3. Then

H2 = (H△C1) ∪ V≥3(G) is a subgraph satisfying (1), (2) of (3.2) and |(G;H2)| < |(G;H)|,
a contradiction. Therefore, any (y1, y2)-path containing common vertex with H − H1 has to

contain common vertex with H̃3. Then we distinguish the following two subcases.

Subcase 2.1. H − H1 does not contain any branch between H̃2 and H̃3 or any branch

between H̃3 and H̃4.

Then H1 = (H△C) ∪ V≥3(G) is a subgraph satisfying (1), (2) of (3.2) and |(G;H1)| <

|(G;H)|, a contradiction.

Subcase 2.2. H −H1 contains both some branch between H̃2 and H̃3 and some branch

between H̃3 and H̃4.

Since H − H1 is an even subgraph, H − H1 contains at least two branches between H̃2

and H̃3 and two branches between H̃3 and H̃4. Then (G;H) = {H1,H − H1}. Then H1 =

(H△C) ∪ V≥3(G) is a subgraph satisfying (1), (2) of (3.2). Since H1 contains at least one

branch connecting H̃2 and H̃3 and one branch connecting H̃3 and H̃4, |(G;H1)| < |(G;H)|, a
contradiction.

Case 3. Both H1 and H −H1 contain exactly two k-tribes, say H̃1 and H̃2, H̃3 and H̃4,

respectively.
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We claim that x1 and x2 lie in distinct k-tribes. Otherwise, H1 = (H△C) ∪ V≥3(G) is a

subgraph satisfying (1), (2) of (3.2) and |(G;H1)| < |(G;H)|, a contradiction. Then we assume

that x1 ∈ H̃1, x2 ∈ H̃2, y1 ∈ H̃3 and y2 ∈ H̃4, respectively.

Subcase 3.1. H contains a branch connecting H̃1 and H̃2 or connecting H̃3 and H̃4.

Since H is an even subgraph, H − H1 contains at least two such branches. But cycle C

contains at most one of these branches. Then H1 = (H△C) ∪ V≥3(G) is a subgraph satisfying

(1), (2) of (3.2) and |(G;H1)| < |(G;H)|, a contradiction.

Subcase 3.2. H does not contain any branch between H̃1 and H̃2 or between H̃3 and H̃4.

By symmetry, |(G;H)| = 2(
(
4
1

)
+

(
4
2

)
) = 20. Then H1 = (H△C) ∪ V≥3(G) is a subgraph

satisfying (1), (2) of (3.2) and |(G;H1)| < |(G;H)|, a contradiction.

Claim 6. Either each (x1, x2)-path in H1 or each (y1, y2)-path in H − H1 contains two

branches with length at least k − 1 such that these two branches have end vertices in a same

k-tribe which has not any end vertex of other branches connecting other k-tribes in H.

Proof. Firstly, we prove that either each (x1, x2)-path in H1 or each (y1, y2)-path in H−H1

contains at least two branches with length at least k−1. Suppose otherwise. Let P (x1, x2) ⊆ H1,

Q(y1, y2) ⊆ H −H1 be two paths and both P and Q contain exactly one branch with length

at least k − 1, say B3 and B4, respectively. Since G is 2-connected, there exists a cycle C1

containing B3 and B4 with minimum order. Note that if B3 ⊆ H or B4 ⊆ H, since H is

an even subgraph, H must contain another branch connecting the same two k-tribes. Then

H2 = (H△C1) ∪ V≥3(G) is a subgraph satisfying (1), (2) of (3.2) and |(G;H2)| < |(G;H)|, a
contradiction. Hence, either each (x1, x2)-path in H1 or each (y1, y2)-path in H −H1 contains

at least two branches with length at least k − 1. Without loss of generality, we assume that

each (y1, y2)-path in H − H1 contains at least two branches with length at least k − 1. Let

P (y1, y2) be a path in H − H1 containing two distinct branches with length at least k − 1

B3(y3, y4) and B4(y5, y6). Let y4 and y5 lie in the same k-tribe H̃0. We prove that there is

not any branch connecting H̃0 and other k-tribes in H except B3 and B4. Suppose otherwise.

Then H1 = (H△C) ∪ V≥3(G) is a subgraph satisfying (1), (2) of (3.2). Since cycle C contains

at most two of these branches connecting H̃0 and other k-tribes in H, H1 contains at least one.

Then |(G;H1)| < |(G;H)|, a contradiction.

In the following text, we always assume that each (y1, y2)-path in H − H1 contains two

branches with length at least k − 1 such that these two branches have end vertices in a same

k-tribe which has not any end vertex of other branches connecting other k-tribes in H −H1.

Claim 7. For any vertex y0 ∈ V (G) − (V (H)
∪
V (B0)), if NG(y0) ⊆ V (H), then NG(y0)

is an independent set.

Proof. Suppose otherwise. Let NG(y0) = {v1, v2} and C1 = v1v2y0v1. We have a subgraph

H1 = H△C1 of G satisfying (1), (2), (3) of (3.2) and |H1| > |H|, contradicting the choice of H

in terms of (4) of (3.2).

In the following text, we will consider two cases, fk(H̃) = 5 and fk(H̃) > 5, respectively.

Firstly, we consider the case when fk(H̃) = 5. We first consider the case when H1 contains

two k-tribes H̃1 and H̃2, and that H −H1 contains three k-tribes H̃3, H̃4 and H̃5. By Claims 4

and 5, we assume that x1 ∈ H̃1, x2 ∈ H̃2, y1 ∈ H̃3 and y2 ∈ H̃4. Then H1 = (H△C) ∪ V≥3(G)
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is a subgraph satisfying (1), (2) of (3.2) and |(G;H1)| < |(G;H)|, a contradiction.

Therefore, it remains to consider the case when H1 contains one k-tribe H̃1 and H − H1

contains four k-tribes H̃2, H̃3, H̃4 and H̃5. We assume that y1 ∈ H̃2 and y2 ∈ H̃4. By Claim 6,

H contains four branches, say B3, B4, B5, B6, connecting H̃2 and H̃3, H̃2 and H̃5, H̃4 and H̃3,

H̃2 and H̃5, respectively. We claim that G does not contain any other branch connecting two

different k-tribes. Suppose otherwise. Firstly, we consider the case when G contains another

branch B0 between H1 and H −H1. Since G is 2-connected, there exist two cycles C1 and C2

such that B0, B1 ⊆ C1 and B0, B2 ⊆ C2. Without loss of generality, we assume that |C1| ≥ |C2|.
Then H2 = (H△C1)∪V≥3(G) is a subgraph satisfying (1), (2) of (3.2) and |(G;H2)| < |(G;H)|,
a contradiction. By symmetry, it remains to consider the case when G contains another branch

connecting two different k-tribes of H − H1. Then H1 = (H△C) ∪ V≥3(G) is a subgraph

satisfying (1), (2) of (3.2) and |(G;H1)| < |(G;H)|, a contradiction.

Without loss of generality, we assume that H̃2 has the minimum order among the five k-

tribes. Let B3 = y0y1 · · · yl, where end vertex y0 ∈ H2 and l ≥ k − 1. Since G is 2-connected,

y0 belongs to at most two branches with length at least 2. Then dG(y0) ≤ |V (H̃2)| − 1 + 2 ≤
n−6(k−2)

5 − 1 + 2. We claim that NG(y0)
∩
V2(G) = {y1}. Suppose otherwise. Then there

exists a vertex y ∈ NG(y0) − {y1} with dG(y) = 2, and that P = yy0 · · · yk−2 a path of order

k. Since n > 6k + 3, σ̄k(G) ≤ dG(P ) ≤ n−6(k−2)
5 + 1 + 2(k − 1) < 2n

5 − 2k
5 + 4

5 ≤ σ̄k(G),

a contradiction. Then dG(y0) ≤ n−6(k−2)
5 . We consider the path Q = xy0 · · · yk−2, where

x ∈ V (H̃2). By Claim 7, dG(x) ≤ |V (H̃2)| − 1 ≤ n−6(k−2)
5 − 1. Then σ̄k(G) ≤ dG(P ) ≤

n−6(k−2)
5 + n−6(k−2)

5 − 1 + 2(k − 2) = 2n
5 − 2k

5 − 1
5 < σ̄k(G), a contradiction.

Therefore, fk(H̃) ̸= 5. Next, we consider the case when fk(H̃) > 5.

By Claim 4, we assume that y1 ⊆ H̃2 and y2 ⊆ H̃4. Let H2 ⊇ H̃2 be a maximal subgraph

of H satisfying the condition that if H2 contains a k-tribe H̃0 ̸= H̃2, then H2 contains another

k-tribe H̃1 such that there are at least two branches between H̃0 and H̃1 in G. And let H4 ⊇ H̃4

be a maximal subgraph of H satisfying the condition that if H4 contains a k-tribe H̃0 ̸= H̃2,

then H4 contains another k-tribe H̃1 such that there are at least two branches between H̃0

and H̃1 in G. We claim that V (H2)
∩
V (H4) = ∅. Suppose otherwise. Then H2 = H4. Then

H1 = (H△C) ∪ V≥3(G) is a subgraph satisfying (1), (2) of (3.2) and |(G;H1)| < |(G;H)|, a
contradiction. Since G is 2-connected, there are at least two paths connecting H2 and H4.

Claim 8. Each path connecting H2 and H4 contains two branches with length at least

k − 1 such that these two branches have end vertices in a same subgraph which has not any

end vertex of other branches connecting other k-tribes in G.

Proof. We first prove that each path connecting H2 and H4 contains at least two branches

with length at least k − 1. Suppose otherwise. Then H1 = (H△C) ∪ V≥3(G) is a subgraph

satisfying (1), (2) of (3.2) and |(G;H1)| < |(G;H)|, a contradiction.

Hence, let P be a path in H−H1 containing two distinct branches B3(y3, y4), B4(y5, y6) and

{y4, y5} lies in the same subgraph H3. We prove that there is not any branch connecting H2

and H3 or H3 and H4 in G except B3 or B4. Suppose otherwise. Then H1 = (H△C)∪V≥3(G)

is a subgraph satisfying (1), (2) of (3.2) and |(G;H1)| < |(G;H)|, a contradiction.

By Claim 8, we assume that H3 is a subgraph of H − H1, and that B3 and B4 are two
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branches connecting H2 and H3, H3 and H4, respectively. We claim that B3, B4 ⊆ H − H1.

Suppose otherwise. Then H1 = (H△C) ∪ V≥3(G) is a subgraph satisfying (1), (2) of (3.2) and

|(G;H1)| < |(G;H)|, a contradiction. Since H − H1 is an even subgraph, H − H1 contains

a subgraph H5 and two branches B5 and B6 such that B5 connects H2 and H5, and B6

connects H4 and H5, respectively. We claim V (H3)
∩

V (H5) = ∅. Otherwise, H3 = H5 is the

same subgraph and then H1 = (H△C)∪V≥3(G) is a subgraph satisfying (1), (2) of (3.2), hence

|(G;H1)| < |(G;H)|, a contradiction. Furthermore, we claim that G does not contain any other

branch between subgraphs H1, H2, H3, H4 and H5. Suppose otherwise. Firstly, we consider

the case when G contains another branch B0 between H1 and H −H1. Since G is 2-connected,

there exist two cycles C1 and C2 such that B0, B1 ⊆ C1 and B0, B2 ⊆ C2. By symmetry, we

assume that |C1| ≥ |C2|. Then H2 = (H△C1)∪V≥3(G) is a subgraph satisfying (1), (2) of (3.2)

and |(G;H2)| < |(G;H)|, a contradiction. It remains to consider the case when G contains

another branch connecting two different subgraphs of H −H1. Then H1 = (H△C) ∪ V≥3(G)

is a subgraph satisfying (1), (2) of (3.2) and |(G;H1)| < |(G;H)|, a contradiction.

Without loss of generality, we assume that H2 has the minimum order among the five

subgraphs. Let B3 = y0y1 · · · yl, where end vertex y0 ∈ H2 and l ≥ k−1. Since G is 2-connected,

y0 belongs to at most two branches with length at least 2. Then dG(y0) ≤ |V (H2)| − 1 + 2 ≤
n−6(k−2)

5 −1+2. Furthermore, we claim that NG(y0)
∩
V2(G) = {y1}. suppose otherwise. Then

there exists a vertex y ∈ NG(y0)− {y1} with dG(y) = 2, and that P = yy0 · · · yk−2 is a path of

order k. Since n > 6k + 3, σ̄k(G) ≤ dG(P ) ≤ n−6(k−2)
5 + 1 + 2(k − 1) < 2n

5 − 2k
5 + 4

5 ≤ σ̄k(G),

a contradiction. Then dG(y0) ≤ n−6(k−2)
5 . We consider the path Q = xy0 · · · yk−2, where

x ∈ V (H2). By Claim 7, dG(x) ≤ |V (H2)| − 1 ≤ n−6(k−2)
5 − 1. Then σ̄k(G) ≤ dG(P ) ≤

n−6(k−2)
5 + n−6(k−2)

5 − 1 + 2(k − 2) = 2n
5 − 2k

5 − 1
5 < σ̄k(G), a contradiction.
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Figure 1. G1 and G2.

§4 Conclusion: Sharpness

Both Theorems 4 and 5 are best possible, this may be seen by G1 and G2 in Figure 1,

respectively.

Comparing Theorem 2 with Theorem 4, one might think that they would have a unified

bound. Unfortunately, this is not true: Theorem 4 is not direct promotion of Theorem 2.
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However, taking the Dirac result and Theorems 2, 3, 4 and 5 into consideration, we conclude

that we completely know the sharp lower bounds of σ̄k(G) involving its order for the graph

Lk−1(G) of a (2-)connected graph G to be hamiltonian for all k ≥ 1.
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