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On a new fractional-order Logistic model

with feedback control

Manh Tuan Hoang1 A. M. Nagy2,3,∗

Abstract. In this paper, we formulate and analyze a new fractional-order Logistic model with

feedback control, which is different from a recognized mathematical model proposed in our very

recent work. Asymptotic stability of the proposed model and its numerical solutions are stud-

ied rigorously. By using the Lyapunov direct method for fractional dynamical systems and a

suitable Lyapunov function, we show that a unique positive equilibrium point of the new model

is asymptotically stable. As an important consequence of this, we obtain a new mathematical

model in which the feedback control variables only change the position of the unique positive

equilibrium point of the original model but retain its asymptotic stability. Furthermore, we

construct unconditionally positive nonstandard finite difference (NSFD) schemes for the pro-

posed model using the Mickens’ methodology. It is worth noting that the constructed NSFD

schemes not only preserve the positivity but also provide reliable numerical solutions that cor-

rectly reflect the dynamics of the new fractional-order model. Finally, we report some numerical

examples to support and illustrate the theoretical results. The results indicate that there is a

good agreement between the theoretical results and numerical ones.

§1 Introduction

Very recently, we have proposed and analyzed a fractional-order Logistic model with feed-

back control of the form [23]
C
0 D

q
tx = aqx(1− bqx)− cqxu,

C
0 D

q
tu = −dqu+ eqx,

(1)

where q ∈ (0, 1) and c
0D

q
t y stands for the Caputo fractional derivative of the function y = y(t),

and the parameters in the model are all positive. The model (1) is an extended version of a
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system of ordinary differential equations of the form

x′ = x

(
1− x

K
− u

)
,

u′ = −ηu+ ax.

(2)

The model (2) was first introduced and analyzed by Fan and Wang in [21]. In [21], a new

method has been proposed to establish the global asymptotic stability of the unique positive

equilibrium of the model (2). Note that the model (2) without feedback control variables is the

classical Logistics differential equation.

Mathematical analyses in [23] show that the model (1) always possesses a unique positive

equilibrium point E∗ = (x∗, u∗) defined by

x∗ :=
aqdq

aqbqdq + cqeq
, u∗ :=

eq

dq
x∗. (3)

By using the Lyapunov stability theorem with the support of an appropriate Lyapunov function,

it was proved that the unique positive equilibrium point of the model (1) is uniformly asymptot-

ically stable [23]. Furthermore, nonstandard finite difference (NSFD) schemes were constructed

to solve the model (1), and advantages and efficiency of NSFD schemes over standard finite

difference schemes were also shown.

It is important to mention that the model (1) without the feedback control variables becomes

the fractional-order Logistic differential equation:

C
0 D

q
tx = aqx(1− bqx). (4)

The equation (4) has many useful applications in real-world situations, especially in biology,

ecology, and physics. In the previous work [19], the existence, uniqueness, qualitative properties

of solutions and numerical solutions for the equation (4) were investigated. Recently, an exact

solution to the fractional-order Logistic equation (4) has been provided in [38].

It is easy to check that the equation (4) always has a unique positive equilibrium point given

by xe := 1/bq. By a Lyapunov function defined by

V (x) = x− xe − xe ln
x

xe
,

we can conclude that the equilibrium point xe of the equation (4) is uniformly asymptotically

stable.

The asymptotic stability of the models (1) and (4) imply that the feedback control variables

do not affect the stability of the equation (4) but they change the position of the unique pos-

itive equilibrium point. This fact completely agrees with some well-known results on ordinary

differential equation models with feedback controls [6–8, 21, 34]. Hence, the feedback controls

variables have an important role in controlling the stability of the original model (4), especially

they can allow us to change the value of the positive equilibrium point of (4) as we expect.

Actually, the feedback control variables are really effective in the case xe is not the desirable

one (or affordable) and a smaller value of xe is required. In this case, the feedback control

variables can alter the model (4) structurally so as to make the population stabilize at a value

lower than xe. A similar comment can be found in [22]. Therefore, it is safe to say that the

design of feedback control models for differential equation models is very important but not a
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simple work. Some similar ideas also have been explored in epidemic and opinion spreading

(see [35,36]).

In some contexts of real-world applications, a simple but important question is whether

we can design other feedback control models that differ from the model (1) but possess the

same features. If this question is resolved, we will have more options for models with feedback

controls. This result is significant in both theory and applications. Motivates by the above

question, in this paper we propose a new fractional-order Logistic model with feedback control

which is different from the model (1). More precisely, the following fractional differential model

is proposed
C
0 D

q
tx = aqx(1− bqx)− cqxu := f̂(x, u),

C
0 D

q
tu = u(−dqu+ eqx) := ĝ(x, u),

(5)

where all the parameters in this model are positive. Although the second equations of the models

(1) and (5) are not the same, their positive equilibrium points are identical. By the Lyapunov

stability theorem for fractional dynamical systems and an appropriate Lyapunov function, we

prove that the positive equilibrium point of the model (5) is also asymptotically stable. As a

consequence of this result, we obtain a new feedback control model which is different from the

model (1) but possesses the same properties and features.

Because it is very difficult to find the exact solution, our next objective is to consider reliable

numerical methods for solving the model (5). For this purpose, we formulate nonstandard

finite difference (NSFD) schemes preserving the positivity of the model (5). It should be

emphasized that NSFD schemes were first introduced by Mickens to overcome serious limitations

of standard finite difference schemes [28,29]. Nowadays, NSFD schemes have been widely used

as one of the effective techniques for solving ordinary differential equations (see, for example,

[1, 9–16, 24, 25, 28–30, 39]), partial differential equations (see, for instance, [20, 28–30, 40]) and

fractional differential equations (see, for example, [4, 23, 31]). Motivated by this, we construct

unconditionally positive NSFD schemes for the model (5) using the Mickens’ methodology.

The result is that we obtain NSFD schemes preserving the positivity of the fractional-order

model (5) for any finite step size. Importantly, the constructed NSFD schemes provide reliable

numerical solutions that correctly reflect the dynamics of the model (5).

This paper is organized as follows. In Section 2 we recall some basic definitions of fractional

derivatives and the Grunwald-Letnikov approximation. The asymptotic stability of the model

(5) is established in Section 3. In Section 4, we propose NSFD schemes for the model (5) and

report some numerical examples. Finally, some conclusions and remarks are given.

§2 Preliminaries

2.1 Caputo fractional derivative

We first recall the definition of the Caputo fractional derivative and some of its properties.

Definition 2.1. ( [5]) Suppose that q > 0, t > 0, q, a, t ∈ R. The Caputo fractional derivative
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is given by

C
a D

q
t f(t) =

1

Γ(n− q)

∫ t

a

f (n)(ξ)

(t− ξ)q+1−n
dξ, n− 1 < q < n, n ∈ N.

Remark 2.1. The Caputo fractional derivative of order 0 < q < 1 for a smooth function

f = f(t) is given by

C
a D

q
t f(t) =

1

Γ(1− q)

∫ t

a

1

(t− ξ)q
df(ξ)

dξ
dξ.

Property 2.1. (Linearity property [18]). Let f(t), g(t) : [a, b] → R be such that C
a D

q
t f(t) and

C
a D

q
t g(t) exist almost everywhere and let c1, c2 ∈ R. Then, C

a D
q
t (c1f(t) + c2g(t)) exists almost

everywhere, and
C
a D

q
t (c1f(t) + c2g(t)) = c1

C
a D

q
t f(t) + c2

C
a D

q
t g(t).

Property 2.2. (Caputo derivative of a constant [32]). The fractional derivative for a constant

function f(t) = c is zero.

Lemma 2.1. ( [37, Lemma 3.1]). Let x(t) ∈ R+ be a continuous and derivable function. Then,

for any time instant t ≥ t0

C
t0D

q
t

[
x(t)− x∗ − x∗ ln

x(t)

x∗

]
≤
(
1− x∗

x(t)

)
C
t0D

q
tx(t).

2.2 Fractional dynamical systems

Consider the general type of fractional-order equations involving the Caputo derivative:

C
t0D

q
tx(t) = f(t, x), q ∈ (0, 1), (6)

subject to the initial condition x0 = x(t0).

Definition 2.2. (See [26]). The constant x∗ is an equilibrium point of Caputo fractional dy-

namical system (6) if and only if f(t, x∗) = 0.

The following theorem is an extension of the classical Lyapunov direct method for dynamical

systems governed by ordinary differential equations.

Theorem 2.1. ( [17, Theorem 3.1]) Let x = 0 be an equilibrium point for CDqx(t) = f(t, x)

and D ⊂ Rn be a domain containing x = 0. Let V (t, x) : [0,∞] × D → R be a continuously

differentiable function such that

W1(x) ≤ V (t, x) ≤ W2(x),

CDqV (t, x) ≤ −W3(x),

∀t ≥ 0, ∀x ∈ D, 0 < q < 1 where W1(x),W2(x) and W3(x) are continuous positive definite

functions on Ω. Then x = 0 is uniformly asymptotically stable.

2.3 The Grunwald-Letnikov approximation

In what follows, the Grunwald-Letnikov approximation for the Caputo derivative [4, 33] is

provided. First, we present a direct definition of the fractional derivative C
0 D

q
tx(t) based on
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finite differences of an equidistant grid in [0, t] (see [4,33]). Suppose the functionDq
tx(τ) satisfies

some smoothness conditions in every finite interval (0, t). We use a grid given by

0 = τ0 < τ1 < . . . < τn+1 = t = (n+ 1)h, τn+1 − τn = h,

and the classical notation of finite differences

1

hq
∆q

hx(t) =
1

hq

(
x(τn+1)−

n+1∑
ν

cqνx(τn+1−ν)

)
,

where,

cqν = (−1)ν−1

(
q

ν

)
,

and (
q

ν

)
:=

q(q − 1)(q − 2) . . . (q − ν + 1)

ν!
,

is the usual notation for the binomial coefficients [32, p. 43]. It is important to note that the

binomial coefficients cqν satisfy (see [33])

0 < cqν+1 < cqν < . . . < cq1 = q < 1,

and in practice, the binomial coefficients cqν can be recursively defined by

c1ν = q,

cqν =

(
1− q + 1

ν

)
cqν−1, ν > 1.

Then, the Grunwald-Letnikov definition reads [32]

Dq
tx(t) = lim

t→0

1

hq
∆q

hx(t).

Applying the Grunwald-Letnikov definition to the equation

C
0 D

q
tx(t) = f(t, x(t)), x(t0) = x0,

we obtain the explicit and implicit Grunwald-Letnikov method for an equidistant grid as follows

(see [4, 33])

xn+1 −
n+1∑
ν=1

cqνxn+1−ν − rqn+1x0 = hqf(tn, xn)

and

xn+1 −
n+1∑
ν=1

cqνxn+1−ν − rqn+1x0 = hqf(tn+1, xn+1),

where

rqn+1 = hqrq0(τn+1) = γq
0,−1(n+ 1)−q

and

γq
µ,k =

Γ(µq + 1)

Γ(kq + 1)
, µ, k ∈ N0 ∪ {−1}.

Note that the coefficients rqn+1 satisfy (see [33])

rqn+1 < rqn < . . . < rq1 =
1

Γ(1− q)

We refer the readers to [33] for other properties of the coefficients cqν and rqν and the

Grunwald-Letnikov method for fractional differential equations.
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§3 Stability analysis of the model (5)

In this section, we establish the uniform asymptotic stability of the model (5) by using

the uniform asymptotic stability theorem (Theorem 2.1). First, by using [27, Theorem 3.1]

and [27, Remark 3.2], we obtain the existence and uniqueness of solutions of the model (5).

Next, by making a similar argument as in [3, Theorem 1], we conclude that the set R2
+ ={

(x1, x2) ∈ R2|x1, x2 ≥ 0
}
is a positively invariant set of the model (5), i.e, if x(0) ≥ 0 and

u(0) ≥ 0, then x(t) ≥ 0 and u(t) ≥ 0 for all t > 0.

It is easy to verify that the model (5) always has a unique positive equilibrium point Ê∗ =

(x̂∗, û∗) defined by x̂∗ = x∗ and û∗ = u∗, where x∗ and u∗ are given by (3). The following

theorem can be considered as a main result of the paper.

Theorem 3.1. The positive equilibrium point Ê∗ of the model (5) is uniformly asymptotically

stable with respect to the interior of R2
+.

Proof. Since Ê∗ is the positive equilibrium point of the model (5), we have

aq
(
1− bqx̂∗)− cqû∗ = 0,

− dqû∗ + eqx̂∗ = 0.
(7)

Thanks to (7), we can rewrite the model (5) in the form

C
0 D

q
tx(t) = x

[
− aqbq(x− x̂∗)− cq(u− û∗)

]
, C

0 D
q
tu(t) = u

[
− dq(u− û∗) + eq(x− x̂∗)

]
. (8)

We now consider a Lyapunov function V (x, u) defined by

V (x, u) = V1(x) + V2(u), (9)

where

V1(x) =
eq

cq

(
x− x̂∗ − x̂∗ ln

x

x̂∗

)
, V2(u) = u− û∗ − û∗ ln

u

û∗ .

Using Properties 2.1, 2.2 and Lemma 2.1, we have

C
0 D

q
tV (x, u) ≤ eq

cq
x− x̂∗

x

(
C
0 D

q
tx
)
+

u− û∗

u

(
C
0 D

q
tu
)
. (10)

Combining (8) and (10), we get

C
0 D

q
tV (x, u) ≤ eq

cq
x− x̂∗

x
x
[
− aqbq(x− x̂∗)− cq(u− û∗)

]
+

u− û∗

u
u
[
− dq(u− û∗) + eq(x− x̂∗)

]
= −eq

cq
aqbq(x− x̂∗)2 − dq(u− û∗)2.

Consequently, by Theorem 2.1, the unique positive equilibrium point (x̂∗, û∗) is uniformly

asymptotically stable in the interior of R2
+. The proof is complete.

Remark 3.1. The Lyapunov function V (x, u) defined by (9) is different from the Lyapunov

function that was used in [23]. Also, we can conclude the global asymptotic stability of the model

(5) thanks to the Lyapunov function (9).

§4 Numerical simulations

In this section, we report some numerical simulations to support and illustrate the theoretical

results. For this purpose, positive NSFD schemes for the model (5) are constructed.
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4.1 Positive NSFD schemes

LetN0 be a positive integer and [0, tend] be a finite interval. We denote by h = ∆t = tend/N0

the step size of the discretization:

0 = t0 < t1 < . . . < tN0 = tend = N0h,

and let tn = nh, with n ∈ {0, 1, 2, . . . , N0}. Let xn and un be approximations for x(tn) and

u(tn), respectively. Based on the previous works [4, 23] and Mickens’ view of utilizing NSFD

schemes [28–30], we obtain the following family of NSFD schemes for the model (5)

xn+1 −
n+1∑
ν=1

cqνxn+1−ν − rqn+1x0 =
(
φ(h)

)q
aq(xn − bqxnxn+1)−

(
φ(h)

)q
cqxn+1un,

un+1 −
n+1∑
ν=1

cqνun+1−ν − rqn+1u0 =
(
φ(h)

)q
un

(
− dqun+1 + eqxn+1

)
,

(11)

where φ(h) = h+O(h2) as h → 0.

Theorem 4.1. Let (x0, u0) be any initial data for the initial value problem (5) with x0, u0 ≥ 0

and
{
(xn, un)

}
n>0

be the approximations generated by the NSFD scheme (11). Then xn ≥ 0

and un ≥ 0 for all n > 0. In other words, the NSFD scheme (11) preserves the positivity of the

solutions of the model (5) for all finite step sizes.

Proof. The theorem is proved by mathematical induction. It is easy to transform (11) to the

explicit form:

xn+1 =

∑n+1
ν=1 c

q
νxn+1−ν + rqn+1x0 + φqaqxn

1 + φqaqbqxn + φqcqun
,

un+1 =

∑n+1
ν=1 c

q
νun+1−ν + rqn+1u0 + φqeqxn+1un

1 + φqdqun
.

Clearly, if x0 ≥ 0 and u0 ≥ 0, then xn ≥ 0 and un ≥ 0 for all n > 0. Thus, the proof is

completed.

As a simple consequence of Theorem 4.1, we have the following positive NSFD schemes for

the model without feedback control variables (4):

xn+1 =

∑n+1
ν=1 c

q
νxn+1−ν + rqn+1x0 + φqaqxn

1 + φqaqbqxn
. (12)

This scheme will be used in the next section.

4.2 Numerical examples

First, we verify the asymptotic stability of the model (5). For this purpose, we consider the

model (5) with the parameter

a = 8, b =
1

32
, c = 8, d = 4, e =

1

8
, q ∈

{
0.8, 0.98

}
.

In this example, the model (5) has the positive equilibrium points Ê∗
0.8 = (8.0, 0.5) and Ê∗

0.98 =

(14.92, 0.50) for q = 0.8 and q = 0.98, respectively. Numerical solutions obtained by the NSFD
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scheme (11) with φ(h) = h and h = 0.001 are depicted in Figures 1 and 2. It is clear that the

stability of the model is shown in the given figures.

Figure 1. The numerical solutions obtained by the NSFD scheme (11) for t ∈ [0, 50] and q = 0.8.
The red circle indicates the equilibrium point E∗

0.8 and the blue curves indicate the phase planes
of the model (5).

Figure 2. The numerical solutions obtained by NSFD scheme (11) for q = 0.98 and t ∈ [0, 50].
The red circle indicates the equilibrium point E∗

0.98 and the blue curves indicate the orbits of
the model (5).
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We now consider the model without feedback control (4). The model has the unique equi-

librium point xe = 1/bq and it is asymptotically stable. Numerical solutions of the model (4) by

the NSFD scheme (12) with h = 0.001 and t ∈ [0, 15] are depicted in Figures 3 and 4. Clearly,

the equilibrium xe is asymptotically stable.

Figure 3. The numerical solutions generated by the NSFD scheme (12) when q = 0.8.

Figure 4. The numerical solutions obtained by the NSFD scheme (12) when q = 0.98.

From the above results, we observe that the feedback control variables do not change the

stability but change the position of the positive equilibrium point. More clearly, x̂∗ < xe.

Consequently, the model (5) provides a new feedback control model which is different from the

model (1).
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§5 Conclusions and remarks

In this paper, a new fractional-order Logistic model with feedback control has been proposed

and studied. The asymptotic stability of the new model has been investigated by a suitable

Lyapunov function. The main result is that we obtain a new feedback control model that

is different from the model (1) but possesses the same properties and features. In parallel,

unconditionally positive NSFD schemes for the proposed model have been constructed and

used for numerical simulations. The theoretical results are supported and illustrated by a set

of numerical examples.

The design of feedback control models that are different from the model (5) but possess

similar properties and features should continue to be explored and studied. On the other hand,

the models (1) and (5) should be studied in the context of other fractional derivatives, for

instance, the Caputo-Fabrizio fractional derivative, the two-parameter fractional derivative in

Caputo sense and the two-parameter fractional derivative in Riemann-Liouville sense, etc. This

can help us figure out other properties and applications of fractional-order Logistic models with

feedback controls. Especially, it is very interesting if applications of the model (5) in economics,

biology, ecology, etc. are studied and analyzed.

In the near future, we will study the open problems mentioned above. Also, the construction

of other numerical methods with high performance for solving the models (1) and (5) will be

considered.
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