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A multiplicative Gauss-Newton minimization algorithm:

Theory and application to exponential functions

Anmol Gupta Sanjay Kumar∗

Abstract. Multiplicative calculus (MUC) measures the rate of change of function in terms of

ratios, which makes the exponential functions significantly linear in the framework of MUC.

Therefore, a generally non-linear optimization problem containing exponential functions be-

comes a linear problem in MUC. Taking this as motivation, this paper lays mathematical foun-

dation of well-known classical Gauss-Newton minimization (CGNM) algorithm in the framework

of MUC. This paper formulates the mathematical derivation of proposed method named as mul-

tiplicative Gauss-Newton minimization (MGNM) method along with its convergence properties.

The proposed method is generalized for n number of variables, and all its theoretical concepts

are authenticated by simulation results. Two case studies have been conducted incorporating

multiplicatively-linear and non-linear exponential functions. From simulation results, it has

been observed that proposed MGNM method converges for 12972 points, out of 19600 points

considered while optimizing multiplicatively-linear exponential function, whereas CGNM and

multiplicative Newton minimization methods converge for only 2111 and 9922 points, respec-

tively. Furthermore, for a given set of initial value, the proposed MGNM converges only after 2

iterations as compared to 5 iterations taken by other methods. A similar pattern is observed for

multiplicatively-non-linear exponential function. Therefore, it can be said that proposed method

converges faster and for large range of initial values as compared to conventional methods.

§1 Introduction

Ever since the introduction of multiplicative calculus (a.k.a. non-Newtonian calculus) in the

last quarter of the nineteenth century [9], tremendous applications have been found in numerous

research fields. Two operations, differentiation, and integration, are basic operations in any

calculus and analysis. The preliminary study of Newtonian calculus employs the measurement

of the instantaneous rate of change of a certain quantity of interest over small intervals of time.

The instantaneous rate of change of a function, say f (t) , as defined by Newton and Leibnitz,
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is given as

f ′ (t) = limh→0
1

h
[f (t+ h)− f (t)] (1)

However, the notion of multiplicative calculus (MUC) states the change of paradigm i.e.

it was anticipated that the variation between any two function values may be more naturally

estimated if the deviations are measured by ratios; instead of differences as in Newtonian

calculus [3]. Hence, the rate of change of a function in the sense of MUC is defined as

f∗ (t) = limh→0

(
f (t+ h)

f (t)

) 1
h

(2)

Arithmetically, the difference f (t+ h) − f(t) in (1) is replaced by the ratio f(t + h)/f (t)

in (2) and the division by h is replaced by raising the reciprocal power 1/h. The limit in (1) is

called the additive or classical derivative (denoted by f ′(t)), whereas the limit in (2) is termed as

multiplicative derivative (denoted by f∗(t)), because of the algebraic subtraction and division

utilized in the definition of change rate, respectively.

Both of the expressions in (1) and (2) are meaningful to measure rate of change of quantities

with respect to certain parameters in physical processes. However, depending on the physical

process under consideration, one of these interpretations may be more appropriate than the

other. For example, if f (t) represents the mass of a radioactive substance and t stands for

the time variable, then f(t) will be an exponentially varying function of t. In that case, the

interpretation in the sense of multiplicative calculus as in (2) will be more appropriate [6].

There are many important works in the literature considering the advantages and applica-

tions of MUC in numerous fields. Initially, Bashirov et al. [3] introduced the basic concepts

of MUC along with its various applications, which put forward the theoretical investigation of

MUC among researchers from various fields. In early stages, most of the reported applications

of MUC were restricted to the fields of economics and finance, which involves study of growth

and decay phenomenon (e.g. in radioactive decay, economic growth and bacterial growth) [6].

Recently, MUC has also made inroad to innumerable applications such as, numerical analysis

[12], biomedical image analysis [7], complex analysis [16], image time-series analysis [2], expo-

nential signal processing [5, 11], multiplicative differential equations [1, 14, 19], high-frequency

wave scattering problems [15], contour detection in images [10, 20], to name a few. Thus, the

potential applications of MUC have been increased rapidly in various fields.

The importance of multiplicative calculus has recently gained more insight of the research

community as it was demonstrated that many useful theorems of additive calculus such as

Cauchy’s integral theorem, Cauchy’s residue theorem, and Taylor series expansion formula can

be reformulated in the framework of multiplicative calculus [16]. The applicability of these

theorems concluded that analysing some of the engineering problems in the framework of mul-

tiplicative calculus could be more appropriate than the additive calculus [15]. Furthermore, an

analogous to classical least square method (LSM); named as multiplicative least square method

(MLSM) has been introduced and is applied to integrals for the finite product representation

of the positive functions [11]. Some real applications have also been provided adequately to

demonstrate that the product representation of non-linear exponential signals provides better

accuracy and less computational complexity, as compared to the classical LSM.

On the other hand, multiplicative minimization methods, introduced in [12] have found

astounding advantages as compared to classical minimization methods (such as Newton and
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Gauss-Newton minimization methods) in solving non-linear least squares problems. Bilgehan

[5] used the concept of MLSM to obtain an optimum representation for both linear and non-

linear exponential signals. Furthermore, the challenging case of more complicated non-linear

exponential signals has been resolved exceptionally by utilizing an additional analytical and nu-

merical minimization technique, named as multiplicative Newton minimization (MNM) method

[5].

Since many non-linear exponential functions are considerably linear in the framework of

MUC, the nonlinear regression problems involving exponential functions can be solved more

effectively, if the algorithm in classical calculus is reformulated in the framework of multiplicative

calculus. The most efficient Newton minimization method which has been reformulated in MUC

framework [12], is proved to be beneficial in providing an accurate representation for non-linear

exponential signals [5]. However, the formulation of MNM method often requires the task

of estimating the second-order multiplicative derivatives of an objective function, which can

sometimes be challenging to compute [17]. The formulation of the minimization methods often

demands the Hessian matrix to be invertible, which is not always possible when second-order

derivatives are considered. Furthermore, the range of initial values for which the multiplicative

Newton minimization method converges is limited.

Therefore, in this paper, a well-known Gauss-Newton minimization method is derived in the

framework of MUC for n number of variables, as an alternative to classical Gauss-Newton min-

imization (CGNM) method. The proposed method is termed as multiplicative Gauss-Newton

minimization (MGNM) method, which has advantages especially for representing non-linear

exponential functions. To the best of author’s knowledge, the formulation of this method in

MUC framework has not been reported in the literature so far. Basically, the implication is

that the proposed method is likely to be beneficial for applications where non-linear exponential

functions are involved in parameter estimation; or where, convergence to the optimal solution

is not obtained by the classical Gauss-Newton minimization method.

The rest of the paper proceeds as follows: Section 2 formulates a parameter estimation

problem in the form of a regression equation. In Section 3, the analytical formulation of multi-

plicative Gauss-Newton minimization (MGNM) method is proposed for n number of variables

and the essential mathematical background of multiplicative calculus is discussed. Section 4

discusses the properties of the proposed minimization method along with its convergence anal-

ysis. Simulation results and the comparison among various minimization methods in terms of

rate of convergence and the maximum number of iterations are presented in Section 5. Finally,

conclusions and future scope of the proposed work is summarized in Section 6.

§2 Problem Formulation

Consider the following parameter estimation problem:

Let y denotes the vector whose elements are n output samples of any single input single

output system; i.e. y = [y1, . . . , yn] corresponding to n input samples denoted by the vector

t as t = [t1, . . . , tn]. Many parameter estimation problems often encountered in statistical

signal processing require the task of establishing the relationship between the output samples

yi (i = 1, 2, . . . , n) and the independent input samples ti of the system by means of a given
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collection of data. The analytical formulation of this relationship is usually expected to be

known and is represented in the form of a regression equation as

ŷ = f(β, t) (3)

where f is an analytically known variable function of unknown adjustable parameter val-

ues denoted in vector form as β = [β1, β2, . . . , βm]
T

where m < n. The major objective is

to estimate the optimal values of these parameters from the set of observed outputs and its

corresponding inputs. ŷ is the estimated output vector computed using (3) as compared to the

desired output vector denoted by y.

The widely accepted method of estimation which is usually employed for estimating the

unknown parameter values βj (j = 1, 2, . . . ,m) is the method of least squares. In the least

square method (LSM), the difference between the desired output samples yi and the estimated

output samples ŷi i.e. (yi − ŷi) is evaluated based upon some initial values. Finally, the sum of

squares of these differences is utilized as an objective function that is minimized as a function

of these trial parameters i.e. the optimal parameters are estimated by minimizing the objective

function expressed as

S(β) = (y−ŷ) (y−ŷ)
T
=

n∑
i=0

(yi − f(β, ti))
2

(4)

The classical error function between the actual value of the dependent variable and the value

estimated by the model can be defined as ei(β) = yi−f(β, ti). LSM is a method which is most

frequently utilized in the literature to estimate the unknown parameters of the system, and thus

establishes a relationship between the input and the output variables [8]. However, when the

regression function is non-linear in parameters, the logarithmic conversion is usually employed

to calculate the parameters in classical LSM [18]. Furthermore, this conversion process requires

more execution time and often turns out to be lossy. Therefore, this estimation procedure

becomes considerably difficult in the classical framework.

Since many least square problems involve exponential fitting and the non-linear exponential

functions are linear in MUC, multiplicative least square method (MLSM) is established [11]

as an alternative to classical LSM. In addition, it has been inferred that if a quantity in a

physical phenomenon exhibits an exponential variation, then its formulation in terms of the

multiplicative calculus is expected to be more convenient. As a consequence, this feature of

MUC is exploited here to derive the formulation of the proposed MGNM method for efficient

approximation of any non-linear exponential model.

2.1 Preliminaries of Multiplicative Calculus

Before delving into the mathematics of multiplicative Gauss-Newton minimization method,

the necessary mathematical tools such as exponential arithmetic and multiplicative matrix

algebra needs to be discussed briefly. The detailed description of exponential arithmetic and

multiplicative matrix algebra is present in [4]. Some of the major basic operations of exponential

arithmetic are defined as [11]:

1. a⊕exp b = eln a+ln b = ab

2. a⊖exp b = eln a−ln b = a/b

3. a⊗exp n = a⊕exp a⊕exp · · · ⊕exp a = a.a . . . a = an
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4. a⊘exp n = a1/n

where ⊕exp, ⊖exp, ⊗exp, and ⊘exp represent multiplicative addition, subtraction, multiplication

and division operators [11]. Thus, these points express the four basic operations of exponential

arithmetic. Using exponential arithmetic as discussed in [11], the multiplicative least square

method (MLSM) can explicitly be stated as

m

S(β) = exp

{
n∑

i=0

ln

(
yi

f(β, ti)

)2
}

=
n∏

i=1

exp

{
ln

(
yi

f(β, ti)

)2
}

=
n∏

i=0

( yi
f(β, ti)

)ln
(

yi
f(β,ti)

) (5)

where
m

S(β) represents the multiplicative objective function in MLSM sense and the superscript

m illustrates that the framework of MUC is considered. Therefore, (5) represents the formula-

tion of multiplicative least squares method as compared to the classical LSM, defined in (4).

Based on the exponential arithmetic defined above, let A = (aij) be a matrix with elements

aij , where i, j ∈ N and x = (xj) be the vector sequence, then the matrix product in terms of

multiplicative calculus is defined as:

A⊗ x =


a11 a12 · · · a1j
a21 a22 . . . a2j
...

...
. . .

...

ai1 ai2 · · · aij

⊗


x1

x2

...

xj

 =


alnx1
11 · alnx2

12 . . . a
lnxj

1j

alnx1
21 · alnx2

22 . . . a
lnxj

2j
...

alnx1
i1 · alnx2

i2 . . . a
lnxj

ij

 (6)

where ⊗ represents multiplicative multiplication operator as defined in [4]. Therefore, this

formulation of multiplicative matrix algebra and exponential arithmetic discussed above acts

as the necessary mathematical tools to formulate the analytical derivation of the proposed

MGNM method discussed in the next section.

§3 Multiplicative Gauss-Newton Minimization (MGNM) Method

The classical Gauss-Newton minimization method [17] is an iterative method which is usu-

ally employed for finding the minimum of an objective function defined in (4). The optimal

parameter vector β that minimizes the objective error function S(β) should satisfy the condition

that its gradient vector must be equal to zero, i.e.,

∂

∂βj
S(β) =

∂

∂βj

n∑
i=0

[yi − f(β, ti)]
2

(7)

Now, substituting ei(β) = yi − f(β, ti) in (7), implies

∂

∂βj
S(β) =

∂

∂βj

n∑
i=0

ei(β)
2 = 2

n∑
i=0

ei(β)
∂

∂βj
ei(β) (8)

where ∂
∂βj

ei(β) represents the elements of the classical Jacobian matrix J defined as:

Jij =


∂e1(β)
∂β1

· · · ∂en(β)
∂βm

...
. . .

...
∂en(β)
∂β1

· · · ∂en(β)
∂βm

 (9)
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Therefore, the gradient ∇ of the objective function presented in (8) can be written in compact

vector form as:

∇ =
d

dβ
S(β) = 2JTe(β) (10)

However, these equations may not have a closed-form solutions for β. Therefore, to find the

optimal paramater values βj , the following iteration is used:

β(p+1) = β(p) + δ (11)

Starting with the initial guess β(0), the value of the unknown parameters βj (j = 1, 2, . . . ,m)

are updated at each iteration value p. Therefore, the main objective is to find the value of δ

such that the optimal parameters can be obtained using the recurrence relation presented in

(11).

The recurrence relation for classical Newton minimization method, that is widely employed to

find the optimal parameters of the objective function is given as [17]:

β(p+1) = β(p) −H−1∇ (12)

where ∇ denotes the gradient vector defined in (10) and H represents the Hessian matrix of

S(β). The elements of the Hessian matrix are calculated by differentiating the elements of the

gradient vector ∇ defined in (8), with respect to parameters βj , i.e.,

Hij = 2
n∑

i=0

[
∂ei(β)

∂βj

∂ei(β)

∂βk
+ ei(β)

∂2ei(β)

∂βj∂βk

]
(13)

Since the Gauss-Newton minimization method is obtained by eliminating the second-order

derivative terms presented in the Hessian matrix of Newton’s minimization method, the above

equation (13) can be written as:

Hij
∼= 2

n∑
i=0

∂ei(β)

∂βj

∂ei(β)

∂βk
= 2

n∑
i=0

JijJik (14)

Hence, the approximated Hessian matrix can further be represented in compact vector form as:

H ∼= 2JTJ =


∂2e1(β)

∂β2
1

· · · ∂2en(β)
∂β1∂βm

...
. . .

...
∂2en(β)
∂βm∂β1

· · · ∂2en(β)
∂β2

m

 (15)

Substituting (10) and (15) into (11), gives the recurrence relation for classical Gauss-Newton

minimization method as denoted by:

β(p+1) = β(p) −
{[

JTJ
]−1

[
JTe

(
β(p)

)]}
(16)

where e and β represents the column vectors of error function and parameters to be estimat-

ed, respectively and the symbol T denotes the matrix transpose. Thus, (16) represents the

recurrence relation for CGNM method. The similar approach is utilized further to derive the

recurrence relation for multiplicative Gauss-Newton minimization method.

Since many non-linear exponential functions are linear in the MUC framework, a more robust

version of Gauss-Newton minimization method can be formulated by employing the concepts of

MUC. Thus, the iterative formulation of the proposed MGNM method is achieved by minimizing

m

S(β) =

n∏
i=1

( yi
f(β, ti)

)ln
(

yi
f(β,ti)

) (17)
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where
m

S(β) represents the multiplicative objective function in the multiplicative least square

sense, as defined in (5) (here superscript indicates that the framework of MUC is considered).

To derive the formulation for the proposed MGNMmethod, the error function
m
e i(β) = yi/f(β, ti)

is considered; which is an alternative to the error function ei(β) = yi − f(β, ti) defined in the

classical sense. Therefore, the multiplicative objective function,
m

S(β) as defined in (17) is

minimized using proposed MGNM method and can be described in compact form as:

m

S(β) =
n∏

i=1

[ (
m
e i(β)

)ln
(
m
e i(β)

)]
(18)

To begin with, the multiplicative gradient vector (denoted by
m

∇) corresponding to the multi-

plicative objective function
m

S(β) with respect to parameter values βj can be defined as:

m

∇ =

∂∗
m

S(β)

∂β1
,
∂∗

m

S(β)

∂β2
, . . . ,

∂∗
m

S(β)

∂βm

 (19)

The elements of multiplicative gradient vector (
m

∇) are calculated by using the definition of

multiplicative derivatives [3] as∂∗
m

S(β)

∂βj

 = exp

{
∂

∂βj

[
ln

(
n∏

i=1

(
m
e i(β)

)ln(m
e i(β)

)) ]}
= exp

{
∂

∂βj

[
n∑

i=1

(ln
(
m
e i(β)

)
)
2
]}

= exp

{
2

n∑
i=1

[
∂

∂βj

(
ln(

m
e i(β)

)]
ln
(
m
e i(β)

) } (20)

Therefore, by using (20), the multiplicative gradient vector
m

∇ can be written in compact form:
m

∇ = exp

[
2

m

J
T

(ln
m
e )

]
(21)

where
m
e represents the column vector of the multiplicative error function and

m

J represents the

multiplicative Jacobian matrix with entries
m

Jij =
∂

∂βj

[
ln
(
m
e i(β)

) ]
(22)

and hence the multiplicative Jacobian matrix can be represented as:

m

J =


∂

∂β1

[
ln
(
m
e 1(β)

) ]
· · · ∂

∂βm

[
ln
(
m
e 1(β)

) ]
...

. . .
...

∂
∂β1

[
ln
(
m
en(β)

) ]
· · · ∂

∂βm

[
ln

(
m
en(β)

) ]
 (23)

Now, the elements of multiplicative gradient vector
m

∇ are again multiplicatively differentiated

with respect to the parameter value βj and a matrix named as multiplicative Hessian matrix
m

H is computed which can be described as:

m

H =


∂∗∗m

S(β)
∂β2

1
· · · ∂∗∗m

S(β)
∂β1∂βm

...
. . .

...

∂∗∗m
S(β)

∂βm∂β1
· · · ∂∗∗m

S(β)
∂β2

m

 (24)
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The elements of multiplicative Hessian matrix
m

H can be computed as:∂∗∗
m

S(β)

∂βi∂βj

 =
∂∗

∂βi

{
exp

[
2

n∑
i=1

ln
(
m
e i(β)

) (
∂

∂βj
ln
(
m
e i(β)

) ) ] }

= exp

{
∂

∂βi

[
2

n∑
i=1

ln
(
m
e i(β)

) (
∂

∂βj
ln

(
m
e i(β)

) ) ]} (25)

= exp

{
2

[
n∑

i=1

ln
(
m
e i(β)

) ( ∂2

∂βi∂βj
ln
(
m
e i(β)

) )
+

(
∂

∂βi
ln
(
m
e i(β)

) ∂

∂βj
ln
(
m
e i(β)

) )] }
(26)

The benefit of Gauss-Newton minimization method lies in the fact that it avoids the evaluation of

second-order derivatives of the objective function, which could be both analytically and computation-

ally expensive to compute [17]. Therefore, the proposed MGNM method is obtained by ignoring the

multiplicative second-order derivative term i.e., the elements of multiplicative Hessian matrix
m

H are

approximated as ∂∗∗
m

S(β)

∂βi∂βj

 ≈ exp

{
2

n∑
i=1

[
∂

∂βi
ln
(
m
e i(β)

) ∂

∂βj
ln
(
m
e i(β)

) ]}
(27)

Therefore, the multiplicative Hessian matrix
m

H can be written in compact form as:

m

H = exp

[
2
m

J
Tm

J

]
(28)

where
m

J and
m

J
T

represent the multiplicative Jacobian matrix and its transpose as illustrated in (23).

The final iterative criterion for the proposed MGNM method is then derived by utilizing the for-

mulation of multiplicative Newton minimization method [12], expressed as

β(p+1) = β(p) − lnf∗(β(p))

lnf∗∗(β(p))
(29)

where f∗(β) and f∗∗(β) denotes the multiplicative first-order and second-order derivatives, respec-

tively of any function f with respect to any parameter β. Replacing the multiplicative first-order (i.e.

f∗(β)) and second-order (i.e. f∗∗ (β)) derivative terms presented in (29) by the elements of multi-

plicative gradient vector (i.e.
m

∇) and multiplicative Hessian (i.e.
m

H) matrix presented in (21) and (24)

respectively, yields:

β(p+1) = β(p) −

{[
2
m

J
Tm

J

]−1 [
2

m

J
T

(ln
m
e )

]}
(30)

Thus, (30) represents an iterative criterion for the proposed MGNM method which is utilized further

to find the optimal parameter values of any non-linear exponential model.

The proposed MGNM method differs from the CGNM method in the sense that how the objec-

tive functions are defined and how the multiplicative derivatives are employed instead of the classical

derivatives. The main implication is that whenever non-linear exponential functions are encountered,

the variation between the desired output and the estimated output is calculated more effectively in

terms of ratios; instead of differences as in Newtonian calculus. The theoretical and analytical founda-

tion of proposed MGNM method is represented in an algorithm form in Algorithm 1.

Stopping Criteria (STOP-CRIT): The stopping criterion for the proposed MGNM method can be
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formalized analogously to that of CGNM method. The algorithm stops as soon as one of the following

conditions is met i.e. when

1. The maximum number of iterations ‘p’ (as specified by the user) is reached: p > pmax.

2. The current objective function value reaches the user-specified threshold value σuser (
m
σuser in MUC

framework) i.e.

In the classical framework, when the difference between the desired output samples and the estimated

output samples is approximately equal to zero or any other user-specified value (say 10−3).

S (β) ≤ σuser;σuser ≈ 0 (31)

Similarly, in MUC framework, when the ratio between the desired output samples and the estimated

output samples is approximately equal to one.

m

S (β) ≤ m
σuser;

m
σuser ≈ 1

Algorithm 1: Proposed Multiplicative Gauss-Newton minimization (MGNM) method

Input:
m

S : An objective function to be minimized such that
m

S(β) =
∏n

i=1

[ (
m
e i(β)

)ln(m
e i(β)

)]
β(0): Initial value of the parameters to be estimated.
m
σuser : a user-specified threshold value for convergence i.e.

m
σuser = 1

Output: βmin, local minima of the cost function
m

S; i.e. the optimal parameters.
1. begin
2. p← 0 ;
3. while STOP− CRIT do

4. β(p+1) = β(p) + δ(p) ;

5. with δ(p) = −

{(
2
m

J
Tm

J

)−1 [
2

m

J
T

(ln
m
e )

]}
;

6. p← p+ 1 ;

7. return β(p)

8. end

§4 Convergence Properties of Multiplicative Minimization

The selection of initial values plays an important role in determining the convergence of minimiza-

tion methods. Before considering the convergence properties of multiplicative minimization methods,

multiplicative tests for monotonicity, local extremum, multiplicative mean value theorems, discussed

in [3] should be considered.

Properties of the Proposed MGNM Method : The convergence of the proposed multiplicative

minimization method in terms of first-order and second-order necessary conditions can be illustrated

as:

1. Let f ∈ {2[a, b] and f is a positive function ∀ t ∈ (a, b) . There exists a strict local minimum

β ∈ (a, b) of the function f if f∗ (β) = 1 and f∗∗ (β) > 1.

2. In the proposed multiplicative Gauss-Newton minimization method, the approximation error is small

if either the residual term ln
(
m
e i(β)

)
or the second-order derivative term

(
∂2

∂2β
ln
(
m
e i(β)

) )
is small.

3. Moreover, the convergence of the proposed MGNM method requires that the approximated multi-

plicative Hessian matrix must be positive definite i.e. the matrix
m

J must have a full column rank.

Range of Convergence: The convergence range analysis of multiplicative minimization methods,
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provided in [12] and [13] is considered and hence, the range of convergence of the proposed MGNM

method is stated analogously as follows:

Theorem 1. Let the multiplicative objective function
m

S (as given in (8)), is a positive function

∀ t ∈ [a, b] and
m

S ∈ {2[a, b]. Assume that there exists a number β ∈ (a, b) such that
m

S (β) = 1. If
m

S
∗
(β) ̸= 1 and g (x) = x−

{[
2
m

J
Tm

J

]−1 [
2

m

J
T

(ln
m
e )

]}
then there exist a number δ > 0 such that the

sequence {βp}∞p=1 defined by the iteration

βp= g
(
βp−1) = βp−1 −

{[
2
m

J
Tm

J

]−1 [
2

m

J
T

(ln
m
e )

]}
; ∀ p = 1, 2, 3, . . .

will converge to β for any initial point β(0) ∈ [β − δ, β + δ] and δ can be selected such that
(
eg(β)

)∗
< e;

for all β ∈ [β − δ, β + δ]. The proof of this theorem can be conducted analogously as given in [13]. The

validation of convergence for a large range of initial values of the proposed MGNM method has been

provided in Section 5.

§5 Results and Discussion

To demonstrate the effectiveness of the proposed method, some simulation examples are presented,

which are identical to the ones utilized in [5]. The results of the proposed method are tested against

classical Newton, classical Gauss-Newton and multiplicative Newton minimization methods for the

function of two variables. In all the simulations performed, the estimation accuracy of the proposed

method is verified for different initial values.

Example 1: Example 2, presented in [5] is utilized here to illustrate the effectiveness of the

proposed method. In this example, the system is said to have an exponentially increasing response

denoted by f (β1, β2) = β1e
β2t. The major objective is to estimate unknown parameters β1, β2 for

test input signal.

The optimal parameters as indicated by the simulation results are β1 = 2.541 and β2 = 0.2595.

Table 1 and Table 2 demonstrate the iteration values of the proposed MGNM method for different

initial values. The initial values (2.3, 0.2) and (1.9, 1) are used for the function f (β1, β2) = β1e
β2t.

Furthermore, Table 1 and Table 2 presents the comparison among various minimization methods such

as classical Gauss-Newton minimization method (CGNM), multiplicative Newton minimization (MNM)

method, and the proposed multiplicative Gauss-Newton minimization (MGNM) method for different

initial values.

Case 1: For initial values β
(0)
1 = 2.3, β

(0)
2 = 0.2: From the results presented in Table 1, it

can be observed that the proposed MGNM method converges after 2 iterations for the given initial

values whereas CGNM and MNM method take at most 5 iterations to reach to the optimal solution.

However, the classical Newton minimization (CNM) method diverges for the selected initial values as

given in Table 2, presented in [5]. The results of CNM method are omitted here for brevity.

Furthermore, the performance of the proposed method is evaluated in terms of relative error for

each parameter separately. The formula utilized for computing the relative error is given as reβi = |1−
βiapprox/βiexact|, where βiapprox represents the estimated value of the parameter βi using minimization

methods and βiexact represents the optimal value of the parameter βi. The simulation results verify

that the relative errors for the proposed MGNM method are comparatively less than the CNM, CGNM,

and MNM methods.
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Table 1. Iteration results of CGNM, MNM, and the proposed MGNM method for function

f (β1, β2)=β1e
β2t, where β1, β2 denotes the results of the pth iteration for initial values β

(0)
1 =

2.3, β
(0)
2 = 0.2 with tabulated relative errors represented by reβ1 and reβ2.

CGNM [5] MNM [5] Proposed MGNM
p β1 reβ1 β2 reβ2 β1 reβ1 β2 reβ2 β1 reβ1 β2 reβ2

0 2.3 0.2 2.3 0.2 2.3 0.2
1 0.420 0.8347 0.290 0.1175 2.402 0.0547 0.269 0.0366 2.529 0.0047 0.2595 0
2 2.511 0.0118 0.263 0.0134 2.529 0.0047 0.260 0.0019 2.541 0 0.2595 0
3 2.540 0.0003 0.259 0.0019 2.540 0.0003 0.259 0.0019 2.541 0 0.2595 0
4 2.541 0 0.259 0.0019 2.541 0 0.259 0.0019 2.541 0 0.2595 0
5 2.541 0 0.259 0.0019 2.541 0 0.259 0.0019 2.541 0 0.2595 0

Fig. 1 represents the behavior of the objective function on the contour plot for CGNM, MNM, and

MGNM methods. (The contour plot representation of classical Newton minimization (CNM) method is

omitted here because the CNM method diverges for the selected initial values). The initial value of the

iteration and the optimal point of convergence are depicted in Fig. 1. From Fig. 1, it can be observed

that the solution of the proposed MGNM method immediately heads-off in the direction of the optimal

point, following the direct path as compared to CGNM and MNM methods. This clearly depicts that

the convergence rate of the proposed MGNM method is faster than the other methods.

In addition, Fig. 2 presents the comparison among various minimization methods in terms of the

Figure 1. Contour plot representation of the objective function given by (17) for CGNM, MNM,

and the proposed MGNM method, for initial values β
(0)
1 = 2.3, β

(0)
2 = 0.2.

iteration number versus the relative error plots for each parameter separately. From Fig. 2, it can be

interpreted that the convergence to the optimal solution in the case of proposed MGNM method is

reached in the minimum number of iterations with relative error far less than the CNM method and

comparatively less than the CGNM and MNM methods.

Case 2: For initial values β
(0)
1 = 1.9, β

(0)
2 = 1: The results presented in Table 2 demonstrates

the comparison among various minimization methods for initial values β
(0)
1 = 1.9, β

(0)
2 = 1. From the

results, it can be observed that the proposed MGNM method converges only after 3 iterations whereas

CGNM method diverges for the selected initial values and MNM method shows convergence after at

most 5 iterations.
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Figure 2. Iteration number versus relative error plots for parameters (i) β1 and (ii) β2 sepa-
rately for various minimization methods using the function f (β1, β2) = β1e

β2t for initial values

β
(0)
1 = 2.3, β

(0)
2 = 0.2.

Table 2. Iteration results of CGNM, MNM, and the proposed MGNM method for function

f (β1, β2)=β1e
β2t, where β1, β2 denotes the results of the pth iteration for initial values β

(0)
1 =

1.9, β
(0)
2 = 1 with tabulated relative errors represented by reβ1 and reβ2.

CGNM [5] MNM [5] Proposed MGNM
p β1 reβ1 β2 reβ2 β1 reβ1 β2 reβ2 β1 reβ1 β2 reβ2

0 1.9 1 1.9 1 1.9 1
1 0.181 0.9287 0.988 2.8073 1.837 2.7708 0.318 0.22543 2.452 0.0349 0.2595 0
2 0.191 0.2483 0.862 2.3217 2.286 0.1003 0.274 0.05587 2.539 0.0007 0.2595 0
3 0.347 0.8634 0.649 1.5009 2.492 0.0193 0.262 0.00963 2.541 0 0.2595 0
4 0.891 0.6493 0.369 0.4219 2.539 0.0007 0.259 0.0019 2.541 0 0.2595 0
5 2.244 0.1169 0.202 0.2215 2.541 0 0.259 0.0019 2.541 0 0.2595 0

Similarly, the comparison among various minimization methods can be observed from the contour

plot, presented in Fig. 3. From the figure, it can be clearly seen that for initial values β
(0)
1 = 1.9, β

(0)
2 =

1, the CGNM method fails to reach the optimal point even after 5 iterations. On the other hand, both

MNM and MGNM methods converge immediately to the optimal point but the convergence rate of the

proposed MGNM method is comparatively greater than the MNM method.

Figure 3. Contour plot representation of the objective function given by (17) for CGNM, MNM,

and the proposed MGNM method, for initial values β
(0)
1 = 1.9, β

(0)
2 = 1.
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Furthermore, the comparison among various minimization methods is presented in Fig. 4 in terms

of iteration number versus relative error plots for each parameter separately. From Fig. 4, it can be

observed that the relative error for the proposed MGNM method for each parameter β1 and β2 is

considerably less than the conventional methods discussed so far.

Figure 4. Iteration number versus relative error plots for parameters (i) β1 and (ii) β2 separately
for various minimization methods using the function f (β1, β2) = β1e

β2t for initial values

β
(0)
1 = 1.9, β

(0)
2 = 1.

Therefore, it has been shown that the proposed MGNM method produces optimal parameter es-

timation for non-linear exponential functions in a fewer number of iterations as compared to CGNM

method. In addition, the main advantage of the proposed MGNM method lies in the fact that the range

of the initial values for which it converges is considerably larger than that of the conventional methods.

To account for the convergence of the proposed method for larger range of initial values than the

existing methods, the comparison is made by considering a varied set of initial points in the vicinity of

the optimal point. As shown in Fig. 5, a rectangular grid of length 7 is considered around the optimal

point with a step size of 0.1 i.e., the algorithm is tested against all the points present in the grid with

the maximum number of iterations pmax = 20. The black, red and blue points in Fig. 5 represent

the optimal point, the initial values for which the algorithm converges and diverges, respectively. The

optimal point for the function f (β1, β2) = β1e
β2t is β1 = 2.541, β2 = 0.2595.

Figure 5. The region of convergence for various minimization methods the function f (β1, β2) =
β1e

β2t (a) classical Gauss-Newton minimization (CGNM) method (b) multiplicative Newton
minimization (MNM) method (c) proposed multiplicative Gauss-Newton minimization (MGN-
M) method.

Fig. 5 (a)-(c) demonstrates the range of initial values for which the CGNM, MNM and MGNM

methods converge, respectively. From the results, it can be observed that the region of convergence for

the proposed MGNM method is greater than the established MNM and CGNM methods. However,

the proposed MGNM method shows divergence in the case when the initial value is chosen such that β1
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is zero. This is because in this case, the function f (β1, β2) = β1e
β2t itself becomes equal to zero and

hence the error (defined as
m
e i(β) = yi/f(β, ti)) becomes infinite. Also, the convergence to the optimal

point is achieved in a smaller number of iterations by the proposed MGNM method as compared to

the established MNM and CGNM methods.

These results are further illustrated in Table 3, in which it is demonstrated that out of 19600 initial

points chosen around the optimal point, the CGNM method converges only for 2111 points, MNM

method converges for 9922 points and the proposed MGNM method shows convergence for 12972

points and thus, outperforms the classical and existing multiplicative minimization methods.

However, this argument of convergence is based upon the selection of initial points in the vicinity

of the optimal point. Therefore, the implication is that if the initial points are chosen randomly in

the vicinity of the optimal point, the proposed method outperforms the conventional minimization

methods. However, the convergence and the numerical results may vary based upon different selected

initial values.

Table 3. Number of initial points for which the algorithm converges for the function
f (β1, β2)=β1e

β2t.
CGNM [5] MNM [5] Proposed MGNM

Converging Initial Points (Max. 19600 ) 2111 9922 12972

Example 2: The effectiveness of the proposed method is further investigated for more com-

plicated signal representation, using a function that shows non-linear behavior in both ordinary

and multiplicative calculi. In Example 3 of [5], the system model is interpreted using the function

f (β1, β2) = e−β1t + teβ2t. This function is non-linear for both classical and multiplicative least

square methods. The proposed MGNM is applied to estimate the optimal parameters for the function

f (β1, β2) = e−β1t + teβ2t.

According to the obtained simulation results, the optimal parameters are β1 = 2 and β2 = 0.3.

Table 4 and Table 5 present the comparison among the iteration values of the proposed MGNM method

with other minimization methods, for different initial values.

Table 4. Iteration results of CGNM, MNM, and the proposed MGNM method for function
f (β1, β2)=e−β1t+teβ2t, where β1, β2 denotes the results of the pth iteration for initial values

β
(0)
1 = 2.5, β

(0)
2 = 0.1 with tabulated relative errors represented by reβ1 and reβ2.

CGNM [5] MNM [5] Proposed MGNM
p β1 reβ1 β2 reβ2 β1 reβ1 β2 reβ2 β1 reβ1 β2 reβ2

0 2.5 0.1 2.5 0.1 2.5 0.1
1 3.507 0.75358 0.195 0.35 2.415 0.2075 0.300 0 1.953 0.0234 0.300 0
2 3.323 0.66158 0.227 0.2433 2.440 0.22006 0.299 0.003 1.9990 0.0004 0.300 0
3 2.970 0.48507 0.247 0.1766 1.755 0.12245 0.300 0 1.9999 0 0.300 0
4 2.720 0.36006 0.260 0.1333 1.938 0.03095 0.300 0 1.9999 0 0.300 0
5 2.545 0.27256 0.269 0.1033 1.999 0.00045 0.300 0 1.9999 0 0.300 0

Case 1: For initial values β
(0)
1 = 2.5, β

(0)
2 = 0.1: From the results presented in Table 4, it can

be observed that the proposed MGNM method converges after only 2 iterations for the selected initial

values. However, the MNM method provides the appropriate solution after 5 iterations and CGNM

method fails to provide an optimal solution within 5 iteration steps.

Similarly, Fig. 6 and Fig. 7 shows the behavior of the objective function on the contour plot for

CGNM, MNM, MGNM methods and the comparison among them in terms of iteration number versus

relative error plots, respectively. From Fig. 6, it can be observed that the CGNM method fails to reach

the optimal point whereas MGNM method immediately sets out in the direction of optimal point and
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reaches it directly as compared to the MNM method. Furthermore, it can be interpreted from Fig. 7

that the relative error for the proposed MGNM method reaches its minimum value in the lesser number

of iterations as compared to the CGNM and MNM methods.

Figure 6. Contour plot representation of the objective function given by (17) for CGNM, MNM,

and the proposed MGNM method, for initial values β
(0)
1 = 2.5, β

(0)
2 = 0.1.

Figure 7. Iteration number versus relative error plots for parameters (i) β1 and (ii) β2 sepa-
rately for various minimization methods using the function f (β1, β2) = e−β1t + teβ2t for initial

values β
(0)
1 = 2.5, β

(0)
2 = 0.1.

Case 2: For initial values β
(0)
1 = 1.8, β

(0)
2 = 0.8: Table 5 presents the comparison among

various minimization methods for initial values β
(0)
1 = 1.8, β

(0)
2 = 0.8. From the results, it can be

depicted that the proposed MGNMmethod converges after only 2 iterations whereas the CGNMmethod

diverges for the selected set of initial values and MNM method reaches the optimal solution after 4

iterations. Therefore, it can be inferred that the proposed MGNM method offer superior representation

of non-linear exponential functions than the existing minimization methods in classical calculus as well

as in multiplicative calculus.

Furthermore, for initial values β
(0)
1 = 1.8, β

(0)
2 = 0.8, the convergence to the optimal point is not

achieved by CGNM method as can be observed from the contour plot presented in Fig. 8. However,

both MNM and MGNM methods reach the optimal point but the convergence rate of proposed MGNM

method is significantly greater than the MNM method as MGNM method follows the direct path and

reaches the optimal solution immediately.
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Table 5. Iteration results of CGNM, MNM, and the proposed MGNM method for function
f (β1, β2)=e−β1t+teβ2t, where β1, β2 denotes the results of the pth iteration for initial values

β
(0)
1 = 1.8, β

(0)
2 = 0.8 with tabulated relative errors represented by reβ1 and reβ2 .
CGNM [5] MNM [5] Proposed MGNM

p β1 reβ1 β2 reβ2 β1 reβ1 β2 reβ2 β1 reβ1 β2 reβ2

0 1.8 0.8 1.8 0.8 1.8 0.8
1 3.368 0.6848 0.787 1.62333 2.264 0.13205 0.300 0 1.953 0.0234 0.300 0
2 5.497 1.7486 0.775 1.58333 1.847 0.07645 0.300 0 1.9990 0.0005 0.300 0
3 16.60 7.3004 0.763 1.5433 1.973 0.01345 0.300 0 1.9999 0 0.300 0
4 - - 1.999 0.00045 0.300 0 1.9999 0 0.300 0
5 - - 1.999 0.00045 0.300 0 1.9999 0 0.300 0

Figure 8. Contour plot representation of the objective function given by (17) for CGNM, MNM,

and the proposed MGNM method, for initial values β
(0)
1 = 1.8, β

(0)
2 = 0.8.

Similarly, the comparison among various minimization methods can be done in terms of relative

error, as shown in Fig. 9. From Fig. 9, it can be seen that the relative error increases as the number

of iterations increases for CGNM method, whereas the relative error for the proposed MGNM method

is significantly less than the MNM method.

Figure 9. Iteration number versus relative error plots for parameters (i) β1 and (ii) β2

separately for various minimization methods using the function f (β1, β2) = e−β1t + teβ2t for

initial values β
(0)
1 = 1.8, β

(0)
2 = 0.8.
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Likewise, the region of convergence for the function f (β1, β2) = e−β1t + teβ2t is tested by consid-

ering a rectangular grid of length 5 with a step size of 0.1 around the optimal point β1 = 2, β2 = 0.3,

as shown in the Fig. 10 with the maximum number of iterations pmax = 20. Since the function is

more complicated in terms of non-linearity, the CGNM method converges only for few initial points as

compared to multiplicative minimization methods, as depicted in the Fig. 10(a). However, the region

of convergence for the proposed MGNM method is larger as compared to both MNM and CGNM

methods, as shown in Fig. 10(b) and 10(c).

Figure 10. The region of convergence for various minimization methods for the function
f (β1, β2) = e−β1t + teβ2t (a) classical Gauss-Newton minimization (CGNM) method (b) mul-
tiplicative Newton minimization (MNM) method (c) proposed multiplicative Gauss-Newton
minimization (MGNM) method.

This can be further illustrated in terms of the number of initial points for which the corresponding

algorithm converges as presented in Table 6. Table 6 states that out of 3600 initial points chosen around

the optimal point, the CGNM method converges only for 141 points, the MNM method converges for

1500 points and the proposed MGNM method converges for 2101 initial points, which clearly shows

the effectiveness of the proposed method.

Furthermore, the algorithm is tested on various examples that exhibit non-linear exponential be-

havior. The results obtained are satisfactory and illustrate the effectiveness of the proposed method.

From the obtained results, it can be said that the algorithm also works fine for a large number of data

samples.

Table 6. Number of initial points for which the algorithm converges for function f (β1, β2) =
e−β1t + teβ2t.

CGNM [5] MNM [5] Proposed MGNM
Converging Initial Points (Max. 3600 ) 141 1500 2101

From all the theoretical and simulation studies, it can be inferred that the choice of the optimal

method among CNM, CGNM, MNM, and the proposed MGNM method relies upon the nature of the

function to be minimized and the initial values of the iteration.

Analogy between classical calculus and multiplicative calculus: As an illustration, con-

sider an example of a non-linear exponential function f (β1, β2) = exp(β1t
β2), in multiplicative calculus

whose parameters are to be estimated using the proposed MGNM method. The data has been gener-

ated randomly with optimal parameters β1 = 1.5 and β2 = 2. Fig. 11(a) demonstrates the range of

initial values for which the MGNM method converges. The corresponding/analogous case in the clas-

sical calculus is the function f (β1, β2) = β1t
β2 whose parameters are estimated using CGNM method

in the same number of iterations as that of MGNM method for the function f (β1, β2) = exp(β1t
β2).

Also, the region of convergence is same for both cases. This is not really an astonishing result because

the non-linear exponential functions are linear in multiplicative calculus. The proof of this statement

is validated by testing both the methods against a large number of initial values around the optimal
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point, as demonstrated in Fig. 11(a) and 11(b). By comparing Fig. 11(a) and 11(b), it can be clearly

observed that the region of convergence is same in both the cases.

Figure 11. The analogy between the range of initial values for (a) classical and (b) multiplica-
tive Gauss-Newton minimization methods.

This is because the nature of the underlying calculus plays a crucial role in finding the minimum

of the function. Since non-linear exponential functions are linear in multiplicative calculus framework,

they can be approximated with the same ease and efficiency as linear functions are approximated in the

classical calculus framework. Also, in many cases, the classical minimization methods fail to converge

for non-linear exponential functions or converge slower than the multiplicative minimization methods.

Thus, the minimization method must be chosen based upon the nature of the function to be

minimized. An assessment of the performance of each method is generally measured in terms of the

maximum number of iterations taken by each method to converge to the optimal solution and the range

of initial values for which the method converges. As a comment, it cannot be said that multiplicative

approximations are always better than the additive approximations. It highly depends upon the nature

of the function to be approximated. For example, if a function involves a polynomial or a ratio of two

polynomials, it can be classified as an additive type function. In such a case, an approximation in the

framework of additive calculus will be more appropriate than a multiplicative approximation.

As a result, it has been verified that in certain situations where non-linear exponential functions

are involved, the multiplicative minimization methods perform better than the classical minimization

methods. Also, it can be said that the proposed MGNMmethod converges, where classical minimization

methods fail to converge; or it converges faster than the classical and multiplicative Newton minimiza-

tion methods. The proposed method can be extremely beneficial for scientists and engineers to fit

experimental data using exponentially varying functions. Therefore, the formulations in multiplicative

calculus are expected to be well-suited for functions which exhibit exponential behavior.

§6 Conclusion and Future Scope

In this article, a novel theory of numerical minimization method in the framework of multiplicative

calculus has been proposed. The detailed mathematical formulation of the proposed theory is presented

along with its convergence properties and analysis. The primary focus of the proposed work is to effi-

ciently approximate non-linear exponential functions. Furthermore, the proposed method is validated

by simulation results for representing different exponential functions with various initial values. Two

case studies have been conducted incorporating multiplicatively linear and non-linear exponential func-

tions and are compared to classical Gauss-Newton minimization (CGNM) and multiplicative Newton

minimization (MNM) methods for different set of initial values. For multiplicative linear function, the

CGNM, MNM and the proposed MGNM methods converge after 5, 5, and 2 iterations, respectively,
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for a particular set of initial value. However, for multiplicative non-linear function, the CGNM method

diverges and MNM and MGNM methods converges after 5 and 2 iterations, respectively.

Furthermore, for multiplicative linear function, out of 19600 initial points considered in the vicinity

of optimal point, the CGNM, MNM and the proposed MGNM converges for 2111, 9922, and 12972

points, respectively. On the other hand, for multiplicative non-linear function, out of 3600 initial points

considered, CGNM, MNM, and the proposed MGNM method converge for 141, 1500, and 2101 points,

respectively. Therefore, it can be said that the proposed MGNM method converges faster and for a

large range of initial values as compared to the existing methods in the literature such as Newton,

Gauss-Newton and multiplicative Newton minimization methods. However, the convergence may vary

significantly if different initial values are selected.

Gauss-Newton method is an efficient algorithm for solving non-linear regression problems. But the

implication is that if the same algorithm is employed in the multiplicative framework, the realization of

any physical phenomenon exhibiting non-linear exponential behavior is expected to be more efficient.

Hence, the proposed method has found effective and robust applications in solving non-linear least

square problems for efficient representation of non-linear exponential functions.

Based on the encouraging results obtained, it is possible to solve many other engineering problems

in the framework of multiplicative calculus using the proposed MGNM method with better accuracy.

This work can further be extended to derive other algorithms (such as gradient descent, Levenberg-

Marquardt algorithm, and various optimization algorithms, etc.) in the framework of multiplicative

calculus for various control, science, engineering and machine learning applications.
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