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Fractal interpolation: a sequential approach

N. Vijender1 M. A. Navascués2

Abstract. Fractal interpolation is a modern technique to fit and analyze scientific data. We

develop a new class of fractal interpolation functions which converge to a data generating (origi-

nal) function for any choice of the scaling factors. Consequently, our method offers an alternative

to the existing fractal interpolation functions (FIFs). We construct a sequence of α-FIFs using

a suitable sequence of iterated function systems (IFSs). Without imposing any condition on the

scaling vector, we establish constrained interpolation by using fractal functions. In particular,

the constrained interpolation discussed herein includes a method to obtain fractal functions that

preserve positivity inherent in the given data. The existence of Cr-α-FIFs is investigated. We

identify suitable conditions on the associated scaling factors so that α-FIFs preserve r-convexity

in addition to the Cr-smoothness of original function.

§1 Introduction

Interpolation, which deals with the construction of a function in continuum from its avail-

ability in a finite set of points, has been cultivated for many decades. In view of its increasing

relevance in this age of ever-increasing digitization, it is quite natural that the subject of in-

terpolation is receiving more and more attention. Consequently, various types of interpolation

schemes are being developed. The classical interpolation techniques fit an elementary function

to the given data in order to render a connected visualization of a sample. Such elementary

functions often imbue the visualization with a degree of smoothness that may not be consistent

with the nature of a prescribed data set. Fractals and fractal interpolation functions have been

applied to prevent such inappropriate smoothing [1, 2]. Utilizing the iterated function system

(IFS) theory [3], Barnsley [4] proposed the concept of a fractal interpolation function such that

it is the attractor of a specific IFS. In general, FIFs are fixed points of the Read-Bajraktarević

operator, which are defined on suitable function spaces. Using fractal interpolation method-

ology, it is possible to construct interpolants with integer or non-integer dimensions. Many

researchers have contributed to the theory of fractal functions by constructing different kinds of

FIFs, including spline FIFs [5–7] and hidden variable FIFs [8,9]. The concept of FIF can be used
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to associate a family of functions to a given function f defined on a real compact interval I (for

instance, see [4,10–19]). An element of this family is denoted by fα and Navascués [15] named

it as α-fractal function associated with f. This function fα contains a set of real parameters,

namely, scaling factors. The rigidity properties for fractal functions were studied in [20,21].

For every n ∈ N, let bn : C(I) → C(I) be bounded and nonidentity linear operator such that

the following properties are satisfied for every f ∈ C(I).
bn ̸= f, bn(f)(x1) = f(x1), bn(f)(xN ) = f(xN ), and ||bn(f)− f ||∞ → 0 as n→ ∞. (1)

There exist many operators which satisfy the above properties, for instance, Bernstein operator

[22]. Using an interpolant f ∈ C(I) of a data set {(xi, zi) : i = 1, 2, . . . , N} and the functions

bn(f), n ∈ N, we construct a sequence of α-FIFs fαn , n ∈ N. Convergence of the α-FIFs fαn ,

n ∈ N towards f follows from the convergence of the sequence {bn(f)}∞n=1 towards f. Owing

to this reason, the α-FIFs fαn , n ∈ N converge to the data generating function whenever the

interpolant f converges uniformly to a given data generating function. Thus, the α-FIFs fαn ,

n ∈ N converge to the data generating function for all the scaling factors whereas the existing

fractal interpolants converge to data generating function when the magnitude of the scaling

factors goes to zero.

Finding an interpolating curve that lies completely above or below a prefixed curve is called

constrained interpolation. There are practical situations wherein interpolating curves that

lie completely above or below a prefixed curve at certain intervals, for instance, a polygonal

(piecewise linear function) or a quadratic spline are sought-after. Many researchers have studied

constrained fractal interpolants [7,23–30]. The existing constrained fractal interpolants converge

to the data generating function if the magnitude of the scaling factors goes to zero. In this

paper, we investigate the constrained interpolation problem by the proposed fractal functions

without any condition on the scaling factors. Imposing the suitable conditions on the operators

bn, n ∈ N, we study Cr-α-FIFs. Further, we investigate the conditions on the scaling factors

which ensure the r-convexity of Cr-α-FIFs whenever a given data generating function possesses

Cr-continuity and r-convexity.

1.1 IFS and attractor

The following notation and terminologies will be used throughout the article. The set

of real numbers will be denoted by R, whilst the set of natural numbers by N. For a fixed

N ∈ N, we shall write NN for the set of first N natural numbers. Given real numbers x1
and xN with x1 < xN , let I = [x1, xN ]. We define Cr(I) to be the space of all real-valued

functions on I that are r-times differentiable with continuous r-th derivative. Let (X , d) be

a complete metric space, and H(X ) be the set of all nonempty compact subsets of X . Then

H(X ) is a complete metric space with respect to the Hausdorff metric hd, where hd is defined

as hd(A,B) = max{d(A,B), d(B,A)}, and
d(A,B) = max

x∈A
min
y∈B

d(x, y).
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Let ϑi : X → X be continuous functions for i ∈ NN−1. The set I = {X ;ϑi, i ∈ NN−1} is called

an IFS. An IFS I is called hyperbolic if

d(ϑi(x), ϑi(y))

d(x, y)
≤ |ci| < 1, ∀ x ̸= y ∈ X .

For any A ∈ H(X ), we define the set valued Hutchinson map V on H(X ) as

V (A) =
∪

i∈NN−1

ϑi(A).

If IFS I is hyperbolic, then it is easy to verify that V is a contraction map on H(X ) with the

contractive factor c = max{|ci| : i ∈ NN−1}. Then by the Banach Fixed Point Theorem, V has a

unique fixed point (say G) and for any starting set A in H(X ) with V (A) = V ◦1(A), V ◦m(A) =

V ◦ V ◦m−1(A) for m ≥ 2,

lim
m→∞

V ◦m(A) = G.

The set G ∈ H(X ) is called the attractor or the deterministic fractal of the IFS I.

§2 Construction of α-FIFs

Let the interpolation data {(xi, zi) : i ∈ NN}, x1 < x2 < · · · < xN−1 < xN , be obtained

from the original function Φ ∈ C(I). Let f ∈ C(I) be a classical interpolant that interpolates

the data {(xi, zi) : i ∈ NN}. Let K be a suitable compact subset of R such that zi ∈ K, i ∈ NN .

Let Li : I → Ii, i ∈ NN−1 be contractive homeomorphisms defined by Li(x) = aix + bi such

that

Li(x1) = xi, Li(xN ) = xi+1. (2)

Let Fn,i : D ×K → K, i ∈ NN−1 be continuous functions defined by

Fn,i(x, z) = αiz + f(Li(x))− αibn(f)(x), (3)

where αi is a real parameter satisfying |αi| < 1 and such that bn(f) ̸= f, bn(f)(x1) = f(x1),

and bn(f)(xN ) = f(xN ), and bn(f) → f as n→ ∞ uniformly. One can verify from (3) that

Fn,i(x1, z1) = zi, Fn,i(xN , zN ) = zi+1, i ∈ NN−1, n ∈ N. (4)

Let G =
{
g ∈ C(I) |g(x1) = z1 and g(xN ) = zN

}
. Then G is a complete metric space with

respect to the uniform metric ρ defined by

ρ(g, h) = max{|g(x)− h(x)| : x ∈ I} ∀ g, h ∈ G.
Define the Read-Bajraktarević operator Tn on (G, ρ) as

Tng(x, y) = Fn,i

(
L−1
i (x), g(L−1

i (x))
)
, x ∈ Ii, i ∈ NN−1. (5)

We prove first in the sequel that Tn maps G into itself. For g ∈ G,
Tng(x1) = Fn,1

(
L−1
1 (x1), g(L

−1
1 (x1))

)
= Fn,1(x1, g(x1)) = z1,

Tng(xN ) = Fn,N−1

(
L−1
N−1(xN ), g(L−1

N−1(xN ))
)
= Fn,N−1(xN , g(xN )) = zN .

Using the properties of Li, Fn,i, and (2)-(4), it is easy to verify that Tng is continuous on the

intervals Ii, i ∈ NN−1, and at each of the points x2, . . . , xN−1. Also,

ρ(Tng, Tnh) ≤ |α|∞ρ(g, h),
where |α|∞ = max{|αi| : i ∈ NN−1} < 1. Hence, Tn is a contraction map on the complete

metric space (G, ρ). Therefore, by the Banach fixed point theorem, Tn possesses a unique fixed
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point (say) fαn on G, i.e., (Tnfαn )(x) = fαn (x) for all x ∈ I. According to (5), the function fαn
satisfies the following functional equation:

fαn (x) = αif
α
n (L

−1
i (x)) + f(x)− αibn(f)(L

−1
i (x)), x ∈ Ii, i ∈ NN−1. (6)

Also, it is easy to verify that

fαn (xi) = zi ∀ i ∈ NN , n ∈ N. (7)

Now, define the functions ωn,i : I ×K → Ii ×K, i ∈ NN−1 as

ωn,i(x, z) =
(
Li(x), Fn,i(x, z)

)
.

Let X := I × K and consider the IFS In = {X ;ωn,i : i ∈ NN−1}. Using [4], it follows that

the above IFS In has unique attractor Gn ∈ H(I × K), and Gn is graph of fαn . Hence, the

above function fαn is called α-fractal interpolant function. Also, we conclude that there exists

a sequence {fαn (x)}∞n=1 of α-FIFs in which every function interpolates the data set {(xi, zi) :

i ∈ NN}.
From (6), we have

||fαn − f ||∞ ≤ |α|∞||fαn − bn(f)||∞ ≤ |α|∞[||fαn − f ||∞ + ||f − bn(f)||∞],

=⇒ ||fαn − f ||∞ ≤ |α|∞
1− |α|∞

||f − bn(f)||∞.
(8)

Further, it is easy to see that

||Φ− fαn ||∞ ≤ ||Φ− f ||∞ + ||f − fαn ||∞ ≤ ||Φ− f ||∞ +
|α|∞

1− |α|∞
||f − bn(f)||∞. (9)

The proof of the following theorem follows from (1) and (9).

Theorem 2.1. Let Φ ∈ C(I) be the original function providing the data {(xi, zi) : i ∈ NN}.
Assume that bn(f) → f as n → ∞ uniformly for every f ∈ C(I). If f ∈ C(I) interpolates Φ

with respect to the data {(xi, zi) : i ∈ NN} such that

||Φ− f || = O(hr), r > 0, h = max
i∈NN−1

(xi+1 − xi),

then the sequence {fαn (x)}∞n=1 of α-FIFs converges to Φ as h→ 0 and n→ ∞.

2.1 α-Affine FIFs

Let the data set {(xi, zi) : i ∈ NN} be obtained from an unknown function Φ ∈ C(I). It is

easy to verify that the function

f(x) =
zi+1 − zi
xi+1 − xi

x+
zixi+1 − zi+1xi

xi+1 − xi
, x ∈ Ii, i ∈ NN−1

interpolates the data {(xi, zi) : i ∈ NN}. Then, the corresponding fractal functions fαn , n ∈ N
are called the α-affine FIFs. From [31], it follows that ||Φ− f ||∞ = O(h). Therefore, according

to Theorem 2.1, α-affine FIFs fαn , n ∈ N, converge to the original function Φ ∈ C(I) if h → 0

and n→ ∞ whereas the existing affine FIFs [31] converge to the original function if h→ 0 and

|α|∞ → 0. To construct examples of α-affine FIFs, let us take Bernstein polynomial Bn(f)(x)

of f for bn(f)(x). That is, for all x ∈ I = [0, 1] and n ∈ N,

bn(f)(x) = Bn(f)(x) =
1

(xN − x1)n

n∑
k=0

(
n

k

)
(x− x1)

k(xN − x)n−kf
(
x1 +

k(xN − x1)

n

)
.
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Let J1 = {(0, 1), (0.2, 0.9615), (0.4, 0.8621), (0.6, 0.7353), (0.8, 0.6098), (1, 0.5)} and J2 = {(0, 1),
(0.1, 0.9901), (0.2, 0.9615), (0.3, 0.9174), (0.4, 0.8621), (0.5, 0.8), (0.6, 0.7353), (0.7, 0.6711), (0.8,

0.6098), (0.9, 0.5525), (1, 0.5)} be obtained from a unknown function Φ. The α-affine FIF fα3 is

generated in Figure 1(a) with respect to J1 and αi = 0.9, i ∈ N5. Similarly, the α-affine FIF fα7
is generated in Figure 1(b) with respect to J2 and αi = 0.9, i ∈ N10. According to the Theorem

2.1, the α-affine FIF fα7 provides a better approximation for the original function Φ than that

obtained by fα3 .

Figure 1. α-affine FIFs.

2.2 Constrained fractal functions

Theorem 2.2. Let f ∈ C(I) be an interpolant of the data {(xi, zi) : i ∈ NN} such that

f(x) ≥ ϕ(x) for all x ∈ I, where ϕ is a prefixed curve satisfying ϕ(xi) ≤ zi, i ∈ NN . Then, for

every scaling vector α = (α1, α2, . . . , αN−1) and ϵ > 0, there exists an approximating sequence

{gn,α}∞n=1 of fractal functions such that gn,α(x) ≥ ϕ(x) for all x ∈ I and n ≥ N0(ϵ) ∈ N.

Proof. Under the stated conditions, Theorem 2.1 ensures the existence of a sequence {fαn }∞n=1

of α-FIFs such that

||fαn − f ||∞ <
ϵ

2
∀ n ≥ N0(ϵ) ∈ N.

Define fractal functions

gn,α(x) = fαn (x) +
ϵ

2
∀ x ∈ I, n ∈ N.

Next,

gn,α(x) = fαn (x)+
ϵ

2
= f(x)+fαn (x)+

ϵ

2
−f(x) ≥ f(x)+

ϵ

2
−||fαn −f ||∞ ≥ f(x) ≥ ϕ(x) ∀x ∈ I.

Thus, we complete the proof.

The next theorem is an immediate consequence of the previous theorem.

Theorem 2.3. (Positivity preserving fractal interpolation) Let f ∈ C(I) be an interpolan-

t of the data {(xi, zi) : i ∈ NN}, where zi ≥ 0, i ∈ NN . Then, for every scaling vector

α = (α1, α2, . . . , αN−1) and ϵ > 0, there exists an approximating sequence {gn,α}∞n=1 of fractal

functions such that gn,α(x) ≥ 0 for all x ∈ I and n ≥ N0(ϵ) ∈ N.
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Theorem 2.4. Let f ∈ C(I) be an interpolant of the data {(xi, zi) : i ∈ NN} such that

f(x) ≤ ϕ(x) for all x ∈ I, where ϕ is a prefixed curve satisfying ϕ(xi) ≥ zi, i ∈ NN . Then, for

every scaling vector α = (α1, α2, . . . , αN−1) and ϵ > 0, there exists an approximating sequence

{hn,α}∞n=1 of fractal functions such that hn,α(x) ≤ ϕ(x) for all x ∈ I and n ≥ N0(ϵ) ∈ N.

Proof. Let ϵ > 0. Under the stated conditions, Theorem 2.1 ensures the existence of a sequence

{fαn }∞n=1 of α-FIFs such that

||fαn − f ||∞ <
ϵ

2
∀ n ≥ N0(ϵ) ∈ N.

Define fractal functions

hn,α(x) = fαn (x)−
ϵ

2
∀x ∈ I, n ∈ N.

Next,

hn,α(x) = fαn (x)−
ϵ

2
= f(x)+fαn (x)−

ϵ

2
−f(x) ≤ f(x)− ϵ

2
+ ||fαn −f ||∞ ≤ f(x) ≤ ϕ(x) ∀x ∈ I.

Hence, the result follows.

Figure 2. Constrained fractal functions.

Example: Let us illustrate the results in Theorem 2.4 using numerical examples. For this

purpose, let ϕ(x) = x(1−x), x ∈ [0, 1] be the prefixed curve. Consider the data set {(0,−0.01),

(0.5, 0.21), (1,−0.03)}. Note that the prescribed data set lies below the prefixed curve. Let f

be the Lagrange interpolant of the prescribed data and f is evaluated as

f(x) = −0.02(x− 1)
(
x− 1

2

)
− 0.84x(x− 1)− 0.06x

(
x− 1

2

)
, x ∈ [0, 1].

The functions ϕ and f are plotted in Figures 2(a)-(b). To construct the α-fractal function

fαn of f , let us take bn(f)(x) = Bn(f)(x) for all x ∈ [0, 1], where Bn(f)(x) is the Bernstein

polynomial of f. Let us fix ϵ = 0.19 and α1 = α2 = 0.9. The α-fractal function fα12 of f is

generated in Figure 2(a). Also, it is calculated that ∥fα12 − f∥∞ = 0.0872 < ϵ
2 . From Figure

2(a), we can easily notice that fα12 does not satisfy the condition fα12(x) ≤ ϕ(x) for all x ∈ [0, 1].

Next, we have generated the fractal function h12,α(x) = fα12(x)− ϵ
2 in Figure 2(b). From Figure

2(b), it can be observed that h12,α(x) < ϕ(x) for all x ∈ [0, 1]. Further, it calculated that

∥h12,α − f∥∞ = 0.095 < ϵ. Hence, Theorem 2.4 is numerically verified.
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§3 Cr-α-FIFs

Theorem 3.1. Let f ∈ Cr(I), r ∈ N be an interpolant of the data {(xi, zi) : i ∈ NN}, x1 <
x2 < · · · < xN . For every n ∈ N, let bn : Cr(I) → Cr(I) be a bounded and linear operator such

that the following properties are satisfied for every ψ ∈ Cr(I). For all k ∈ Nr ∪ {0},
b(k)n (ψ)(x1) = ψ(k)(x1), b

(k)
n (ψ)(xN ) = ψ(k)(xN ), and ||bn(ψ)− ψ||Cr → 0 as n→ ∞. (10)

Suppose that Li : I → Ii, i ∈ NN−1 are affine maps Li(x) = aix+ bi satisfying Li(x1) = xi and

Li(xN ) = xi+1, and Fn,i(x, y) = αiy + f(Li(x)) − αibn(f)(x), i ∈ NN−1, where αi is scaling

factor satisfying |αi| < ari . Then, for every n ∈ N and scaling vector α = (α1, α2, . . . , αN−1), the

IFS Ir
n = {I×K; (Li(x), Fn,i(x, y)), i ∈ NN−1} determines a r-times continuously differentiable

α-FIF fαn . Further, for every scaling vector α, the sequence {Ir
n}∞n=1 of IFSs determines a

sequence {fαn }∞n=1 of r-times continuously differentiable α-FIFs that converges in the Cr-norm

to f ∈ Cr(I).

Proof. Let Cr
f (I) =

{
g ∈ Cr(I) : g(k)(x1) = f (k)(x1), g

(k)(xN ) = f (k)(xN ), k ∈ Nr ∪ {0}
}
.

Then Cr
f (I) is a complete metric space with respect to the metric induced by the Cr-norm. Let

Tα
n : Cr

f (I) → Cr
f (I) be the Read-Bajraktarević (RB) operator defined by

(Tα
n g)x = αig(L

−1
i (x)) + f(x)− αibn(f)(L

−1
i (x)), x ∈ Ii, i ∈ NN−1, (11)

Using (10), and the continuity of b
(k)
n (f)(x), k ∈ Nr ∪ {0}, it follows at once that RB operator

Tα
n g is continuous on each subinterval Ii. Using differentiation, we obtain

(Tα
n g)

(k)(x) = f (k)(x) +
αi

aki

[
g(k)(L−1

i (x))− b(k)n (f)(L−1
i (x))

]
, x ∈ Ii, i ∈ NN−1.

Next, using (2), one can verify for k ∈ Nr ∪ {0} that

lim
x→x+

i

(Tα
n g)

(k)(x) = f (k)(xi) = lim
x→x−

i

(Tαg)(k)(x), (Tα
n g)

(k)(x1) = f (k)(x1), (T
α
n g)

(k)(xN ) = f (k)(xN ).

Therefore, Tα
n g ∈ Cr

f (I). For g, h ∈ Cr
f (I), we obtain

||(Tα
n g)

(k) − (Tα
n h)

(k)||∞ ≤ 1

aki
|αi|||(g − h)(k)||∞, i ∈ NN−1.

The previous inequality implies

||(Tα
n g)− (Tα

n h)||Cr ≤ max
{ 1

ari
|αi| : i ∈ NN−1

}
||g − h||Cr .

The assumption on the scaling functions now ensure that Tα
n is a contraction map, and, hence

by the Banach fixed point theorem, Tα
n has a unique fixed point fαn . Further, it follows that

(fαn )
(k) obeys the functional equation:

(fαn )
(k)(x) = f (k)(x) +

αi

aki

[
(fαn )

(k)(L−1
i (x))− b(k)n (f)(L−1

i (x))

]
, x ∈ Ii, i ∈ NN−1, (12)

and (fαn )
(k)(xi) = f (k)(xi) for all k ∈ Nr ∪ {0}, i ∈ NN . Also, we verify that

||(fαn )(k) − f (k)||∞ ≤ |α|∞
Θk

||f (k) − b(k)n (f)||∞,Θk = min
i∈NN−1

aki , k = 0, 1, . . . , r,

≤ |α|∞
Θ

||f (k) − b(k)n (f)||∞,Θ = min
k

Θk.

(13)
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Hence, the previous inequality leads to

||fαn − f ||Cr ≤ |α|∞
Θ

||f − bn(f)||Cr . (14)

From (12)-(14), one can observe the following:

• Each function of the sequence {(fαn )(k)}∞n=1 interpolates f (k) at xi, i ∈ NN and

lim
n→∞

(fαn )
(k) = f (k) for k ∈ Nr ∪ {0}.

• Each function of the sequence {fαn }∞n=1 preserves the r-smoothness of f and lim
n→∞

fαn = f.

• If |α|∞ = 0, then (fαn )
(k)(x) = f (k)(x) for all x ∈ I and k ∈ Nr ∪ {0}.

• Graph of (fαn )
(k) is the attractor of the IFS {I ×K; (Li(x), F

k
n,i(x, y)), i ∈ NN−1}, where

F k
n,i(x, y) =

αi

ak
i

y + f (k)(Li(x))− αi

ak
i

b
(k)
n (f)(x).

Theorem 3.2. Let Φ ∈ Cr(I) be the original continuous function providing the data {(xi, zi) :
i ∈ NN}. Suppose that f ∈ Cr(I) interpolates Φ with respect to the data {(xi, zi) : i ∈ NN}. If
scaling factors αi, ∈ NN−1 satisfy |αi| < ari , then

||Φ(k) − (fαn )
(k)||∞ ≤ ||Φ(k) − f (k)||∞ +

|α|∞
Θ

||f (k) − b(k)n (f)||∞, k ∈ Nr ∪ {0}, (15)

||Φ− fαn ||Cr ≤ ||Φ− f ||Cr +
|α|∞
Θ

||f − bn(f)||Cr . (16)

Proof. Using (13) in the triangular inequality

||Φ(k) − (fαn )
(k)||∞ ≤ ||Φ(k) − f (k)||∞ + ||f (k) − (fαn )

(k)||∞.
we get (15). Since (15) is true for every k ∈ Nr ∪ {0}, we obtain (16).

Remark 3.1. For n ∈ N, let ∆n = x1 < xn,2 < xn,3 < · · · < xn,N−1 < xN be a partition of

I = [x1, xN ] and ||∆n|| be the norm of the partition ∆n. Let In,i = [xn,i, xn,i+1] and

Hr+1
∆n

= {ϕ ∈ Cr(I) : ϕ|In,i ∈ P2r+1},
where P2r+1 is the space consisting of all polynomials of degree at most 2r + 1. For ψ ∈ Cr(I),

if bn(ψ) ∈ Hr+1
∆n

is Cr-Hermite polynomial of ψ with respect to the partition ∆n of I so that

||∆n|| → 0 as n→ ∞, then (10) holds good, (for details, refer [32]).

Theorem 3.3. Let Φ ∈ Cq(I), q ≥ 2r + 2, r ∈ N be the original continuous function providing

the data {(xi, zi) : i ∈ NN}. Suppose that f ∈ Cq(I) interpolates Φ with respect to the data

{(xi, zi) : i ∈ NN}. Let bn(f) ∈ Hr+1
∆n

be the Hermite spline of f with respect to the partition

∆n of I so that ||∆n|| → 0 as n→ ∞. If scaling factors αi, ∈ NN−1 satisfy |αi| < ari , then, for

k ∈ Nr ∪ {0},

||Φ(k) − (fαn )
(k)||∞ ≤ ||Φ(k) − f (k)||∞ +

|α|∞
Θ

||∆n||2r+2−k

22r+2−2kk!(2r + 2− 2k)!
||f (2r+2)||∞. (17)

Proof. Under the sated conditions, from [14,33], we get

||f (k) − b(k)n (f)||Cr ≤ ||∆n||2r+2−k

22r+2−2kk!(2r + 2− 2k)!
||f (2r+2)||∞, k ∈ Nr ∪ {0}. (18)

Now, using the above inequality in (15), we get the desired result.
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Remark 3.2. The partitions ∆n, n ∈ N, used in the above are independent of the partition ∆

used to define the α-FIFs.

Theorem 3.4. Let Φ ∈ Cr(I) be the original function providing the data {(xi, zi) : i ∈ NN}
and 0 ≤ Φ(r)(x) ≤ Γ for all x ∈ I. Suppose that f ∈ Cr(I) interpolates Φ with respect to the

data {(xi, zi) : i ∈ NN} and 0 ≤ f (r)(x) ≤ Γ for all x ∈ I. Then the corresponding FIFs

fαn , n ∈ N satisfy 0 ≤ (fαn )
(r)(x) ≤ Γ for all x ∈ I if the scaling factors α1, α2, . . . , αN−1 of fαn

obey |αi| < ari and

max
{−ai(Kn −Mi)

M∗
n

,
−aimi

Kn −m∗
n

}
≤ αi ≤ min

{aimi

M∗
n

,
ai(Kn −Mi)

Kn −m∗
n

}
, where (19)

mi = min
x∈I

f (r)(Li(x)),Mi = max
x∈I

f (r)(Li(x)),m
∗
n = min

x∈I
b(r)n (f)(x),M∗

n = max
x∈I

b(r)n (f)(x),

Kn is strictly greater than m∗
n and ||f (r)||∞ and the terms with zero denominator are avoided.

Proof. In the light of Theorem 3.1, it follows that the stated conditions on the scale factors

ensure the Cr-continuity of α-FIFs fαn , n ∈ N. Further, from (12), it follows that (fαn )
(r), n ∈ N,

satisfy the functional equation

(fαn )
(r)
(
Li(x)

)
= f (r)(Li(x)) +

αi

ari

[
(fαn )

(r)(x)− b(r)n (f)(x)

]
, x ∈ I, i ∈ NN−1. (20)

Thus, for each n ∈ N, the functional equation (20) is a rule that computes the values of (fαn )
(r)

at (N − 1)p+2 + 1 distinct points in I at (p + 1)-th iteration using the values of (fαn )
(r) at

(N − 1)p+1 + 1 distinct points in I at p-th iteration. It is easy to verify from (20) that

(fαn )
(r)(xi) = f (r)(xi) ∀ i ∈ NN , n ∈ N.

Therefore, to prove 0 ≤ (fαn )
(r)(τ) ≤ Γ for all τ ∈ I, it is enough to show that 0 ≤ (fαn )

(r)(x) ≤
Γ, x ∈ I implies that 0 ≤ (fαn )

(r)(Li(x)) ≤ Γ, x ∈ I and for all i ∈ NN−1.

Assume that 0 ≤ (fαn )
(r)(x) ≤ Γ, x ∈ I. Firstly, let us consider, 0 ≤ αi ≤ aki . Then, we

obtain that

f (r)
(
Li(x)

)
− αi

ari
b(r)n (f)(x) ≤ (fαn )

(r)(Li(x)) ≤ f (r)
(
Li(x)

)
+
αi

ari

(
Γ− b(r)n (f)(x)

)
. (21)

Therefore, to prove that 0 ≤ (fαn )
(r)(x) ≤ Γ, it is enough to obtain the conditions on the scaling

factors so that the following inequalities are satisfied.

0 ≤ f (r)
(
Li(x)

)
− αi

ari
b(r)n (f)(x) ≤ Γ

(
1− αi

ari

)
. (22)

Now, using the definition of mi and M
∗
n, it is easy to verify that first of the two inequalities in

(22) is satisfied if

αi ≤
arimi

M∗
n

. (23)

Similarly, observing m∗
n ≤ b

(r)
n (f)(x1) = f (r)(x1) ≤ Γ and using the definition of Mi and m

∗
n,

we ensure that second inequality in (22) is fulfilled if

αi ≤
ari

(
Γ−Mi

)
Γ−m∗

n

. (24)

Next, let −ari ≤ αi ≤ 0. Then it follows that

0 ≤ (fαn )
(r)
(
Li(x)

)
≤ Γ
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is satisfied if
−αi

ari
Γ ≤ f (r)

(
Li(x)

)
− αi

ari
b(r)n (f)(x) ≤ Γ. (25)

Now, using the analysis which is similar to that used for obtaining (23)-(24), we obtain the

conditions on the scaling factors which ensure (25).

Figure 3. C1-Constrained fractal function.

Example: Let us construct some numerical experiments to illustrate Theorem 3.4. For

this purpose, let us consider the data {(2, 0.6931), (2.5, 0.9163), (3, 1.0986)} obtained from the

function Φ(x) = ln(x), x ∈ [2, 3]. It is clear that Φ ∈ C1[2, 3] and 0 < Φ′(x) ≤ 0.5 for all

x ∈ [2, 3]. The Lagrange interpolant f of Φ(x) = ln(x), x ∈ [2, 3] with respect to the above data

set is given by f(x) = −0.816x2+0.8137x−0.6076. The graph of f (1)(x), x ∈ [2, 3] is generated

in Figure 3(a), and from this one can easily notice that 0 < f (1)(x) ≤ 0.5 for all x ∈ [2, 3].

Next, by taking b5(f) as the fifth degree C1-Hermite interpolant (polynomial) of f and scaling

factors α1 = α2 = 0.001 (these scaling factors are calculated according to Theorem 3.4), we

have generated fractal function (fα5 )
(1) in Figure 3(b). It is clear that 0 < (fα5 )

(1)(x) ≤ 0.5 for

all x ∈ [2, 3].
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2008.

[23] A K B Chand, N Vijender, R P Agarwal. Rational iterated function system for positive/monotonic

shape preservation, Advances in Difference Equations, 2014, 2014: 30.

[24] P Viswanathan, A K B Chand. α-fractal rational splines for constrained interpolation, Electron

Trans Numer Anal, 2014, 41 : 420-442.



V. Nallapu, M. A. Navascués. Fractal interpolation: a sequential approach 341

[25] A K B Chand, M A Navascués, P Viswanathan, S K Katiyar. Fractal trigonometric polynimials

for restricted range approximation, Fractals, 2016, 24 (2): 1650022.

[26] A K B Chand, P Viswanathan, K M Reddy. Towards a more general type of univariate constraiend

interpolation with fractal splines, Fractals, 2015, 23(4): 1550040.

[27] A K B Chand, P Viswanathan, N Vijender. Bicubic partially blended rational fractal surface for

a constrained interpolation problem, Comp Appl Math, 2018, 37(1): 785-804.

[28] A K B Chand, N Vijender. Positive blending Hermite rational cubic spline fractal interpolation

surfaces, Calcolo, 2015, 52: 1-24.

[29] N Balasubramani, M G P Prasad, S Natesan. Constrained and convex interpolation through ra-

tional cubic fractal interpolation surface, Computational and Applied Mathematics, 2018, 37(5):

6308-6331.

[30] Q Sun, T Liu, Y Zhang, F Bao. Constrained and monotone curves derived from rational fractal

interpolation, Journal of Computer-Aided Design and Computer Graphics, 2017, 29(11): 2037-

2046.

[31] M A Navascués, M V Sebastián. Error bounds in affine fractal interpolation, Math Inequal Appl,

2006, 9: 273-288.

[32] J Stoer, R Bulirsh. Introduction to Numerical Analysis, Springer Verlag, New York, 1976.

[33] P G Ciarlet, M H Schultz, R S Varga. Numerical methods of high-order accuracy for nonlinear

boundary value problems, Numer Math, 1969, 13: 51-77.

1Department of Mathematics, Visvesvaraya National Institute of Technology Nagpur, Nagpur

440010, India.

Email: vijendernallapu@gmail.com
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