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Numerical solution of stochastic Itô-Volterra integral

equations based on Bernstein multi-scaling polynomials

A. R. Yaghoobnia M. Khodabin∗ R. Ezzati

Abstract. In this paper, first, Bernstein multi-scaling polynomials (BMSPs) and their prop-

erties are introduced. These polynomials are obtained by compressing Bernstein polynomials

(BPs) under sub-intervals. Then, by using these polynomials, stochastic operational matrices

of integration are generated. Moreover, by transforming the stochastic integral equation to a

system of algebraic equations and solving this system using Newton’s method, the approximate

solution of the stochastic Itô-Volterra integral equation is obtained. To illustrate the efficiency

and accuracy of the proposed method, some examples are presented and the results are compared

with other methods.

§1 Introduction

Mathematical expression and modeling of many scientific and natural phenomena are carried

out using differential equations. On the other hand, in many of these models, stochastic factors

are involved that include stochastic processes that generate stochastic differential equations.

These stochastic equations are seen in various branches of sciences, specially in engineering,

economics, physics, biology and financial mathematic. Some of these stochastic equations have

analytical solutions, but many of them cannot be solved analytically and it is necessary to

obtain their approximate solutions using numerical methods. In this paper, numerical solution

of a set of stochastic differential equations are discussed which are as follows:

dy(x) = λ1 f(x, y(x))dx+ λ2 g(x, y(x))dB(x), y(x0) = y0, (1.1)

where λ1 and λ2 are parameters and y(x), f(x, y(x)) and g(x, y(x)) for x ∈ [0, 1) are stochastic

processes defined on the some probability space (Ω,F , P ). Moreover, y(x) is the unknown

function and B(x) is the Brownian motion. In [4][10][23][29] stochastic differential equations

and their applications have introduced. Also, we can study about the stochastic equations in

[12][27][30][32] and we can see the various methods for numerical solution of these equations
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in [2][7][9][24]. For functions that are based on Brownian motion, laws of Leibnitz-Newton’s

calculation do not hold, any more such functions are not differentiable at any point in the path.

So, through the integration of the two sides of the (1.1), the following stochastic Itô integral

equation is obtained:

y(x) = y0 + λ1

∫ x

0

f(s, y(s))ds+ λ2

∫ x

0

g(s, y(s))dB(s). (1.2)

The main objective of the current paper is to obtain the numerical solution of the Itô type

of stochastic Volterra integral equation (1.2). Researchers have presented various methods for

numerical solution of stochastic integral equations so far, such as the Taylor series method

[5], the block pulse functions [17][18], triangular function method [6], Fibonacci operational

matrix [20] and methods based on wavelets [16][21]. In addition, Bernstein polynomials have

already been used in the numerical solution of Volterra integral equations [14][15][19], mixed

Volterra-Fredholm integral equations [28], differential equations [3], and the numerical solution

of stochastic Itô-Volterra integral equations [1]. In this paper, to approximate the solution of

the stochastic integral equation (1.2), the operational matrix is generated based on Bernstein

multi-scaling polynomials.

The organization of this paper is as follows. In Section 2, stochastic calculations and some

of their properties are expressed. In Section 3, both BPs and BMSPs are introduced and some

of their properties are described. Also, the operational matrix of integration is defined in this

Section. In Section 4, the stochastic operational matrix of integration is generated. In Section

5, the method of solving stochastic Itô-Volterra integral equations through using the generated

operational matrices is proposed. Section 6 deals with the convergence analysis of the proposed

method. In Section 7, some different examples are given and the efficiency and accuracy of the

presented method are evaluated and finally, the last section provides conclusions.

§2 Stochastic calculus and some of its properties

Brownian motion is a random process that occurs irregularly such as repeated momentary

vibrations. Suppose X be a random variable with distribution fX , so for p ≥ 2 we have:

E[Xp] =

∫ ∞

−∞
xpfX(x)dx <∞.

Assume that Lp(Ω,H) be the collection of all strongly measurable, p-th integrable andH-valued

random variables. Therefore, Lp(Ω,H) is a Banach space with norm

∥V ∥Lp(Ω,H) = (E[|V |p])1/p

for each V ∈ Lp(Ω,H).

Definition 2.1. [8]. Brownian motion B(x) is a stochastic process, with the following proper-

ties:

(i) (Brownian motion’s initial position) P (B(0) = 0) = 1.

(ii) (Independence of increments) For each 0 ≤ x1 < x2 < ... < xn, the increments

B(x1), B(x2)−B(x1), ..., B(xn)−B(xn−1) are independent of the past.
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(iii) (Normal increments) B(x) − B(s) has normal distribution with mean 0 and variance

x− s. This implies that B(x) has N(0, x) distribution.

(iv) (Continuity of paths) B(x), for 0 ≤ x are continuous functions of x.

The initial position of Brownian motion is specified in the definition. When B(0) = 0, then

the process of Brownian motion is started at 0.

Definition 2.2. [8]. The sequence {Xn} converges to X in L2, if for each n, E[|Xn|2] < ∞
and E[∥Xn −X∥2] → 0 as n→ ∞.

Suppose 0 ≤ s ≤ T and let ν = ν(s, T ) be the class of functions f(x, ω) : [0, 1] × ω → Rn,

satisfy:

(i) the function (x, ω) → f(x, ω) is β × F measurable, where β is the Borel algebra.

(ii) f is adapted to Ft.

(iii) E[
∫ T

s
f2(x, ω)dx] <∞.

Definition 2.3. (The Itô integral [3]). Let f ∈ ν(s, T ), then the Itô integral of f is defined by:∫ T

s

f(x, ω)dB(x)(ω) = lim
n→∞

∫ T

s

ϕn(x, ω)dB(x)(ω),

where {ϕn}n is the sequence of elementary functions such that:

E[

∫ T

s

(f − ϕn)
2dx] → 0, as n→ +∞.

Theorem 2.1. (The Itô isometry [3]). Let f ∈ ν(s, T ), then:

E[(

∫ T

s

f(x, ω)dB(x)(ω))2] = E[

∫ T

s

f2(x, ω)dx].

§3 Bernstein multi-scaling polynomials (BMSPs)

Definition 3.1. The BPs of degree of integer n, on [0, 1] are defined as:

βi,n(x) =

(
n

i

)
xi(1− x)n−i, i = 0, 1, 2, ..., n

and for other valuses of i, βi,n(x) = 0.

Some of the reasons that explain the advantages of using BPs for approximation are given

in the following theorem.

Theorem 3.1. [11]. Suppose that H = L2[0, 1] is a Hilbert space with the inner product and

Y = Span {β0,n(x), β1,n(x), ..., βn,n(x)} is a finite dimensional and closed subspace, therefore,

Y is a complete subspace of H. So if h is an arbitrary element in H, it has a unique best

approximation out of Y such as y0, that is

∃y0 ∈ Y s.t. ∀y ∈ Y, ∥h− y0∥ ≤ ∥h− y∥
where ∥h∥ =

√
(h, h) and (h1, h2) =

∫ 1

0
h1(x)h2(x)dx. So there exist unique coefficients

c0, c1, ..., cn such that h(x) ≈ y0 =
n∑

i=0

ciβi,n(x) = CTΦ(x), where CT = [c0, c1, ..., cn] and
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Φ(x) = [β0,n(x), β1,n(x), ..., βn,n(x)]
T .

To obtain more information about BPs and their properties, see [13][26]. By compressing

BPs on the sub-intervals of [0, 1], we reach BMSPs [22].

Definition 3.2. Suppose that the interval [0, 1) is divided into k sub-intervals [j/k, (j + 1)/k)

for j = 0, 1, ..., k − 1. BMSPs of degree of integer n on this sub-intervals are defined as:

ψi,j,n(x) =

βi,n(kx− j), j/k ≤ x < (j + 1)/k,

0, otherwise,
(3.1)

for i = 0, 1, ..., n.

For convenience, wherever it is need, we put ψi,j,n(x) = ψi,j(x).

The BMSPs on [j/k, (j + 1)/k) for j = 0, 1, ..., k − 1, have the following properties:

(i) ψi,j(x) ≥ 0, i = 0, 1, ..., n,

(ii)
n∑

i=0

ψi,j(x) = 1,

(iii) ψi,j,n(x) = (kx− j)ψi−1,j,n−1(x) + (j + 1− kx)ψi,j,n−1(x), i = 0, 1, ..., n,

(iv) ψi,j,n(x) has maximum at i+jn
kn , i = 0, 1, ..., n,

(v) ψ0,j(x), ψ1,j(x), ..., ψn,j(x) are linear independent polynomials.

In addition, on every sub-intervals [ jk ,
j+1
k ], following relation is hold which shows BMSPs are

symmetric,

ψi,j,n(
j

k
+ x) = ψn−i,j,n(

j + 1

k
− x), i = 0, 1, ..., n.

The advantages stated in Theorem 3.1 for approximation by BPs, also apply to approximation

by BMSPs in each sub-interval.

In [31], for the interval [0, 1), the operational matrix P has been obtained such that∫ x

0

Φ(s)ds ≈ PΦ(x). (3.2)

We define Ψ(x) = [Ψ0(x),Ψ1(x), ...,Ψk−1(x)]
T , where Ψj(x) is the vector of BMSPs, and

according to (3.1), the following equation is obtained:

Ψj(x) = [ψ0,j(x), ψ1,j(x), ..., ψn,j(x)]
T .

Through considering ∫ (j+1)/k

j/k

ψi,j(x)dx =
1

k(n+ 1)
,

for i = 0, 1, ..., n, and by repeating operational matrix of integration (3.2) for any sub-interval

[ jk ,
j+1
k ), the following equation is obtained:∫ x

0

Ψ(s)ds ≈ MΨ(x),
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where M is a k(n+1)× k(n+1) operational matrix of integration based on BMSPs as follow:

M =


1
kP

1
k(n+1)1 · · · 1

k(n+1)1

0 1
kP · · · 1

k(n+1)1
...

...
...

0 0 · · · 1
kP

 , (3.3)

such that 0 and 1 are (n+1)× (n+1) matrices whose all entries are zero and one, respectively.

§4 Stochastic operational matrix of integration based on BMSPs

In this section, the stochastic operational matrix of integration, based on BMSPs is gener-

ated. First, corresponding to the coefficients of BMSPs, there is a matrix Aj on [ jk ,
j+1
k ) for

j = 0, 1, ..., k−1. The (i+1)− th row of matrix Aj is the coefficients of ψi,j(x). In other words,

(i+ 1)− th row of matrix Aj is as follows, with values calculated at x = 0,

(Aj)i+1 = [ψi,j(x),
1

1!
ψ′
i,j(x),

1

2!
ψ′′
i,j(x), ...,

1

n!
ψ
(n)
i,j (x)].

Because the entries of Aj are the coefficients of linear independent polynomials in Ψj(x), Aj

for j = 0, 1, ..., k − 1 are invertible. Now, assuming Tn(x) = [1, x, x2, ..., xn]T , we have:

Ψj(x) = AjTn(x), (4.1)

By integrating of Ψ(x) when x ∈ [0, 1k ), we have:∫ x

0

Ψ0(s)dB(s) = A0

∫ x

0

[1, s, s2, ..., sn]T dB(s). (4.2)

Using integration by parts formula on the integrals of (4.2), we get∫ x

0

svdB(s) = xvB(x)− v

∫ x

0

sv−1B(s)ds, v = 0, 1, ..., n,

and using composite trapezium rule, we will have the following equation:∫ x

0

svdB(s) ≈ xvB(x)− v
x

4
[2(
x

2
)v−1B(

x

2
) + xv−1B(x)]

= [(1− v

4
)B(x)− v

2v
B(

x

2
)]xv.

Now, by approximating B(x) and B(x2 ) by B( 1
2k ) and B( 1

4k ), respectively, we have:∫ x

0

Tn(s)dB(s) ≈ Ds0Tn(x), (4.3)

where Ds0 is the following matrix:

Ds0 =


B( 1

2k ) 0 · · · 0

0 3
4B( 1

2k )−
1
2B( 1

4k ) · · · 0
...

...
...

0 0 · · · (1− n
4 )B( 1

2k )−
n
2nB( 1

4k )


So, from (4.1-4.3) we have:

A0Ds0Tn(x) = A0Ds0A0
−1Ψ0(x) =Ms0Ψ0(x),
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where Ms0 = A0Ds0A0
−1 is the stochastic operational matrix on [0, 1k ).

Now, assume that 1
k ≤ x, we have:∫ x

0

Ψ0(s)dB(s) = A0

∫ 1
k

0

Tn(s)dB(s),

in which by three interpolation points
{
0, 1

2k ,
1
k

}
, for v = 0, 1, ..., n, we get∫ 1

k

0

svdB(s) ≈ ms0,v =
1

kv
[(1− v

4
)B(

1

k
)− v

2v
B(

1

2k
)],

Now, by integrating of Ψ(x) when x ∈ [ jk ,
j+1
k ), we have:∫ x

0

Ψj(s)dB(s) = Aj

∫ x

j
k

[1, s, s2, ..., sn]T dB(s).

Similarly, using integration by parts formula on the recently integrals, we have:∫ x

j
k

svdB(s) = xvB(x)− (
j

k
)vB(

j

k
)− v

∫ x

j
k

sv−1B(s)ds.

By using the composite trapezium rule, with
x− j

k

2 as the step length and approximate B(x)

and B(
x+ j

k

2 ) by B( 2j+1
2k ) and B( 4j+1

4k ), respectively, for v = 0, 1, ..., n and j = 1, 2, ..., k − 1 we

get ∫ x

j
k

svdB(s) ≈ xvB(
2j + 1

2k
)− (

j

k
)vB(

j

k
)

− v
x− j

k

4
[(
j

k
)v−1B(

j

k
) + 2(

4j + 1

4k
)v−1B(

4j + 1

4k
) + xv−1B(

2j + 1

2k
)].

(4.4)

Relation (4.4) can be summarized by:∫ x

j
k

Tn(s)dB(s) ≈ PsjTn(x),

where Psj for j = 1, 2, ..., k − 1, is given by

Psj =



α0,j 0 0 0 0 · · · 0 0

α1,j β1,j 0 0 0 · · · 0 0

α2,j β2,j γ2,j 0 0 · · · 0 0

α3,j β3,j η3,j γ3,j 0 · · · 0 0

α4,j β4,j 0 η4,j γ4,j · · · 0 0
...

...
...

...
...

. . .
...

...

αn−1,j βn−1,j 0 0 0 · · · γn−1,j 0

αn,j βn,j 0 0 0 · · · ηn,j γn,j


.

The entries of this matrix are obtained from (4.4) by the following relations:
αv,j = ( jk )

v(v4 − 1)B( jk ) +
vj
2k (

4j+1
4k )v−1B( 4j+1

4k ), v = 0, 1, ..., n,

βv,j = −v
4 ((

j
k )

v−1B( jk ) + 2( 4j+1
4k )v−1B( 4j+1

4k )), v = 1, 2, ..., n,

γv,j = (1− v
4 )B( 2j+1

2k ), v = 2, 3, ..., n,

ηv,j =
vj
4kB( 2j+1

2k ), v = 3, 4, ..., n.
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Therefore, we can write: ∫ x

0

Ψj(s)dB(s) ≈ AjPsjTn(x) =MsjΨj(x),

where Msj = AjPsjAj
−1 is the stochastic operational matrix on [ jk ,

j+1
k ).

Now, assume that j+1
k ≤ x, for j = 1, 2, ..., k − 2, we have:∫ x

0

Ψj(s)dB(s) = Aj

∫ j+1
k

j
k

Tn(s)dB(s).

For three interpolation points
{

j
k ,

2j+1
2k , j+1

k

}
, for v = 0, 1, ..., n and j = 1, 2, ..., k − 2 we get∫ j+1

k

j
k

svdB(s) ≈ msj,v = (
j + 1

k
)vB(

j + 1

k
)− (

j

k
)vB(

j

k
)

− v

4k
[(
j

k
)v−1B(

j

k
) + 2(

2j + 1

2k
)v−1B(

2j + 1

2k
)

+ (
j + 1

k
)v−1B(

j + 1

k
)].

(4.5)

Then we have: ∫ x

0

Ψ0(s)dB(s) =

Ms0Ψ0(x), 0 ≤ x < 1
k ,

us0 ,
1
k ≤ x,

(4.6)

where in usj = Aj [msj,0 ,msj,1 , ...,msj,n ]
T , and for j = 1, 2, ..., k − 2 we have:

∫ x

0

Ψj(s)dB(s) =


0, 0 ≤ x < j

k ,

MsjΨj(x),
j
k ≤ x < j+1

k ,

usj ,
j+1
k ≤ x,

(4.7)

where 0 = [

(n+1) times︷ ︸︸ ︷
0, 0, ..., 0 ]T . Finally, for the last sub-interval we have:∫ x

0

Ψk−1(s)dB(s) =

0, 0 ≤ x < k−1
k ,

Msk−1
Ψk−1(x),

k−1
k ≤ x < 1.

(4.8)

Using (4.6-4.8) the stochastic operational matrix of integration based on BMSPs is given by

Ms =



Ms0 Us0 Us0 · · · Us0

0 Ms1 Us1 · · · Us1

0 0 Ms2 · · · Us2

...
...

... · · ·
...

0 0 0 · · · Msk−1


k(n+1)×k(n+1)

(4.9)

so that Usj = [usj , usj , ..., usj ] for j = 0, 1, ..., k − 2 are (n+ 1)× (n+ 1) matrices. So we have:∫ x

0

Ψ(s)dB(s) ≈ MsΨ(x).



324 Appl. Math. J. Chinese Univ. Vol. 36, No. 3

§5 Method of solution

Consider the stochastic integral equation (1.2) and let

z1(x) = f(x, y(x)), z2(x) = g(x, y(x)). (5.1)

By substituting (5.1) into (1.2) the following equations are obtained:{
z1(x) = f(x, y0 + λ1

∫ x

0
z1(s)ds+ λ2

∫ x

0
z2(s)dB(s)),

z2(x) = g(x, y0 + λ1
∫ x

0
z1(s)ds+ λ2

∫ x

0
z2(s)dB(s)).

(5.2)

Applying BMSPs, the approximation of z1(x) and z2(x), can be written as:{
z1(x) ≈ z̃1(x) = Bn,k(z1(x)) = C1

TΨ(x),

z2(x) ≈ z̃2(x) = Bn,k(z2(x)) = C2
TΨ(x).

(5.3)

Note that Bn,k(zi(x)), i = 1, 2, are linear combination of BMSPs and approximate form of

zi(x). Also C1 and C2 are vectors of unknown coefficients. By integrating the sides of (5.3),

and using the operational matrices (3.3,4.9), we get the following relations:∫ x

0

z1(s)ds ≈ C1
T

∫ x

0

Ψ(s)ds = C1
TMΨ(x), (5.4)

and ∫ x

0

z2(s)dB(s) ≈ C2
T

∫ x

0

Ψ(s)dB(s) = C2
TMsΨ(x). (5.5)

By substituting (5.3-5.5) into (5.2), the following equations are obtained:{
C1

TΨ(x) = f(x, y0 + λ1C1
TMΨ(x) + λ2C2

TMsΨ(x)),

C2
TΨ(x) = g(x, y0 + λ1C1

TMΨ(x) + λ2C2
TMsΨ(x)).

(5.6)

Now, using Newton-Cotes points xi =
2i−1

2k(n+1) , for i = 1, 2, ..., k(n+ 1), (5.6) can be rewritten

as {
C1

TΨ(xi) = f(xi, y0 + λ1C1
TMΨ(xi) + λ2C2

TMsΨ(xi)),

C2
TΨ(xi) = g(xi, y0 + λ1C1

TMΨ(xi) + λ2C2
TMsΨ(xi)).

(5.7)

Solving the non-linear system (5.7) with Newton’s method, C1 and C2 are obtained. Finally,

the approximate solution of (1.2) is obtained as follows:

yn,k(x) = y0 + λ1C1
TMΨ(x) + λ2C2

TMsΨ(x).

§6 Convergence Analysis

In this section, the convergence analysis of the proposed method is discussed.

Theorem 6.1. [25]. The sequence {Bn(h);n = 1, 2, · · ·} for all function h in C[0, 1], converges

uniformly to h.

Note that Bn(h), is a linear combination of BPs that is an approximate form of the function h.

Theorem 6.2. Let h = [h1, h2, · · ·, hk], such that function hj is defined on C[0, jk ], for j =

1, 2, · · ·, k, the sequence {Bn,k(h);n = 1, 2, · · ·} converges uniformly to h.

Proof. Here, Bn,k(h) as defined in (5.3). According to Theorem 6.1, for any function hj on [0, jk ],

and for any ϵj , there exists nj such that inequality ∥Bn,k(hj)− hj∥ < ϵj holds. Therefore, we
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have:

∥Bn,k(h)− h∥ ≤ ∥Bn,k(h1)− h1∥+ ∥Bn,k(h2)− h2∥+ · · ·+ ∥Bn,k(hk)− hk∥
< ϵ1 + ϵ2 + · · ·+ ϵk,

so, from Theorem 6.1, there exists n > 0 such that for any ϵ =
k∑

j=1

ϵj , the following inequality

on [0, 1] is established,

∥Bn,k(h)− h∥ < ϵ.

Theorem 6.3. [1]. Let y(x) be analytical solution and yn(x) be the approximation solution of

(1.2), based on BPs. Also assume that

(i) For every T and N , there is a constant D depending only on T and N such that for all

|y| , |z| ≤ N and all 0 ≤ x ≤ T ,

|f(x, y)− f(x, z)|+ |g(x, y)− g(x, z)| ≤ D|y − z|.

(ii) Coefficients satisfy the linear growth condition

|f(x, y)|+ |g(x, y)| ≤ D(1 + |y|).

(iii) E(|y|2) <∞.

Then yn(x) converges to y(x) in L2.

By using Theorem 6.3 on [0, jk ) for j = 1, 2, ···, k, the convergence yn,k(x) to y(x) is obtained.

§7 Numerical examples

What follows are examples of linear and non-linear stochastic integral equations to illustrate

the accuracy of the proposed method. In these examples, n is the degree of BPs and k is the

number of sub-intervals in [0,1). To obtain a %95 confidence interval for errors, we solve the

problem m times and calculate the absolute error, which is the difference between the analytical

and approximate solutions. To do this, a new set of random numbers with a normal distribution

is generated in each iteration. In the end we obtain the mean of the errors (ȳE), mean of the

standard deviations of the errors (sE), and construct the confidence intervals for errors by

relation (L,U) = ȳE ± 1.96 sE√
m
. For comparison, these results are presented in the table, along

with the error results of other numerical methods.

Example 1: Consider the linear stochastic Itô-Volterra integral equation as follows:

y(x) =
1

12
+

∫ x

0

cos(s)y(s)ds+

∫ x

0

sin(s)y(s)dB(s).

The analytical solution of this equation is:

y(x) =
1

12
e−

x
4+sin(x)+ 1

8 sin(2x)+
∫ x
0

sin(s)dB(s).

The numerical results of Example 1 are presented in Table 1 and Figure 1.

Example 2: In this example we consider the following non-linear stochastic Itô-Volterra inte-
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Table 1. Mean, standard deviation and Confidence Interval (C.I)

for error mean of Example 1 with n=5, k=3 and m=100.

x
ȳE with ȳE in sE %95 C.I

method [1] our method Lower Upper

0.0 0.0000057016 0.0000000002 8.96e-10 2.43e-11 3.75e-10
0.1 0.0019436568 0.0012789771 9.52e-04 1.09e-03 1.47e-03
0.2 0.0059398372 0.0038522283 2.94e-03 3.28e-03 4.43e-03
0.3 0.0115472991 0.0083686210 6.45e-03 7.10e-03 9.63e-03
0.4 0.0198483288 0.0149808749 1.19e-02 1.26e-02 1.73e-02
0.5 0.0287292718 0.0208816636 1.67e-02 1.76e-02 2.42e-02
0.6 0.0398943512 0.0269929750 2.34e-02 2.24e-02 3.16e-02
0.7 0.0626147700 0.0360247360 3.11e-02 2.99e-02 4.21e-02
0.8 0.0846395033 0.0471369323 4.14e-02 3.90e-02 5.53e-02
0.9 0.1071397756 0.0559632362 5.34e-02 4.55e-02 6.64e-02

Table 2. Mean, standard deviation and Confidence Interval (C.I)

for error mean of Example 2 with n=4, k=2 and m=100.

x
ȳE with ȳE in sE %95 C.I

method [20] our method Lower Upper

0.0 0.0093556656 0.0085324816 9.70e-03 6.63e-03 1.04e-02
0.1 0.0312170021 0.0272566994 2.13e-02 2.31e-02 3.15e-02
0.2 0.0408973955 0.0361847405 2.86e-02 3.06e-02 4.18e-02
0.3 0.0487956063 0.0455502644 3.57e-02 3.86e-02 5.25e-02
0.4 0.0551883932 0.0535570030 3.95e-02 4.59e-02 6.13e-02
0.5 0.0610913014 0.0587266172 4.52e-02 4.99e-02 6.76e-02
0.6 0.0665501662 0.0646431428 4.66e-02 5.55e-02 7.38e-02
0.7 0.0747982971 0.0744666971 5.80e-02 6.31e-02 8.58e-02
0.8 0.0840172390 0.0789687798 6.26e-02 6.67e-02 9.12e-02
0.9 0.0972814702 0.0897067219 7.10e-02 7.58e-02 1.04e-01

gral equation:

y(x) =
1

8
− 1

64

∫ x

0

y(s)(1− y2(s))ds+
1

8

∫ x

0

(1− y2(s))dB(s),

with the analytical solution, y(x) = 9e0.25B(x)−7
9e0.125B(x)+7

. The numerical results of Example 2 are

presented in Table 2 and Figure 1.

Figure 1 for any examples presents a comparison between the mean of analytical solutions and

the mean of approximate solutions obtained by m times repeating the method. The values of

these solutions were calculated and plotted at points with a step length of 0.05.

§8 Conclusions

Since often the analytical solution of many stochastic integral equations cannot be achieved,

it is important to obtain an approximate solution of them. In this paper, a numerical method is
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Figure 1. Mean of the analytical and approximate solutions, (left: Example 1, right: Example 2).

proposed to solve the stochastic Itô-Volterra integral equations. For this purpose, using BMSPs,

a stochastic operational matrix of integration has been introduced. Then through applying it,

the stochastic Itô-Volterra integral equation became an algebraic equation system and solved

using the Newton’s iteration method. Moreover, it has been shown that in the proposed method,

using BMSPs allows us to obtain a more appropriate approximation for stochastic integral

equations by smaller values of n as the degree of BPs and this is an advantage of using BMSPs.

Comparing the results of this method with some other methods, it has been concluded that the

method presented in the current paper has higher accuracy and efficiency.
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