
Appl. Math. J. Chinese Univ.
2021, 36(2): 304-316

Automatic liver and tumor segmentation based on deep

learning and globally optimized refinement
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Abstract. Automatic segmentation of the liver and hepatic lesions from abdominal 3D comput-

ed tomography (CT) images is fundamental tasks in computer-assisted liver surgery planning.

However, due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and

highly varied shapes of the liver, accurate liver segmentation and tumor detection are stil-

l challenging problems. To address these difficulties, we propose an automatic segmentation

framework based on 3D U-net with dense connections and globally optimized refinement. First-

ly, a deep U-net architecture with dense connections is trained to learn the probability map of

the liver. Then the probability map goes into the following refinement step as the initial surface

and prior shape. The segmentation of liver tumor is based on the similar network architecture

with the help of segmentation results of liver. In order to reduce the influence of the surrounding

tissues with the similar intensity and texture behavior with the tumor region, during the training

procedure, I × liverlabel is the input of the network for the segmentation of liver tumor. By do-

ing this, the accuracy of segmentation can be improved.The proposed method is fully automatic

without any user interaction. Both qualitative and quantitative results reveal that the pro-

posed approach is efficient and accurate for liver volume estimation in clinical application. The

high correlation between the automatic and manual references shows that the proposed method

can be good enough to replace the time-consuming and non-reproducible manual segmentation

method.

§1 Introduction

The prevention and treatment of liver diseases is a major focus of current research for clini-

cal diagnosis [1,2]. Liver cancer has been reported as the second most frequent cause of cancer
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death in men and the sixth leading cause of cancer death in women. Indeed, about 750,000 peo-

ple were diagnosed with liver cancer and nearly 696,000 people died from this disease worldwide

in 2008 [3]. Accurate detection and delineation of liver and tumor is a crucial prerequisite for

many clinical treatments, such as liver resection, transplantation and radiotherapy treatment

planning. In the currently clinical applications, the delineation and detection of liver and tumor

are always done manual on each slice by experts.But manual segmentation is subjective, poorly

reproducible and time-consuming. Therefore, it is necessary to develop automatic method to

accelerate and facilitate diagnosis, therapy planning and monitoring. However, the segmenta-

tion of liver and tumor are still challenges due to the following reasons. Firstly, low-contrast

between liver and tumor, liver and surrounding regions makes both the liver and tumor bound-

aries weak/fuzzy and difficult to detect. Secondly, there are different types of contrast levels of

tumors (hyper-/hypo-intense tumors), which always lead to complicated intensity distributions

and heterogeneous texture appearance. Thirdly, abnormalities in tissues (metastasectomie),

size and varying amount of lesions also increase the difficulty of segmentation.

In the past few decades, several state-of-the-art algorithms, including region-based methods,

active-contour models, graph cut and machine learning, have been proposed to segment the liver

and tumor. Region-based method including region growing [4], region splitting and merging

[5], and watershed methods [6]. Liu et al. [7] used a gradient vector flow(GVF) [8] based

active contour model for the segmentation CT liver images. Massoptier et al. [9] proposed

a statistical model-based approach to distinguish hepatic tissue from other abdominal organs,

then the statistical based model was incorporated into the GVF model for the segmentation

of both liver and tumor. Shaikhli et al. [10] developed a level set method based on the

sparse representation of global and local image information for the segmentation of liver from

3D CT volume images. Wang et al. [11] defined a shapeCintensity prior level set model to

delineate liver boundaries that incorporates both the probabilistic atlas and probability map

constrains. Compared with the previously methods, graph cut-based methods, which is the

extension of the classic graph cut proposed by Boykov et al. [12,13] are more popular in liver

segmentation. Li et al. [14] proposed a likelihood and local constraint level set model for

liver tumor detection. Peng et al. [15] combined intensity, regional appearance, and surface

smoothness within a variational framework to deal with fuzzy boundaries and heterogeneous

backgrounds. Furthermore, seed constraints, both in the foreground and background, were used

in the constrained convex variational model in [16]. However, due to the speed and robustness

to the noise and heterogeneous in CT images, these methods are not widely applied in clinics.

Hence, more methods are still needed to overcome these weaknesses.

Recently, deep learning models, which can learn a hierarchy of features by building high-level

features from low level ones, have received researchers attention. Deep learning has been applied

to a wide variety of problems and has surpassed the previous state-of-the-art performance,

which motivates us to apply this approach to fully automatic liver tumor segmentation in

CT. A. Ben-Cohen et al. [17] explored an FCN for the task of liver segmentation and liver-

metastasis detection in CT examinations. Christ et al. [18] presented a method to automatically
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segment liver and lesions in CT abdominal images using cascaded fully convolutional neural

networks (CFCNs) and dense3D conditional random fields (CRFs). Lu et al. [19] proposed a

method (called 3D CNN-GC) that combined 3D fully CNNs and graph cuts to achieve automatic

segmentation in CT images. The trained CNN generated a probability map of the liver and

then the learned information was integrated into the image data penalty term of graph cuts.

In this paper, we proposed a method to automatically segment liver and tumors in CT

abdomen images using 3D U-net with dense connections and graph cut-based globally optimized

refinement. The proposed segmentation framework is based on 3D U-net architecture with

dense connections and globally optimized refinement. Firstly, a deep U-net architecture with

dense connections is trained to learn the probability maps of the liver. Then the probability

maps go into the following refinement step as the initial surfaces and prior shapes. The dense

connections between layers can encourage feature reuse and reduces the number of parameters

while maintaining good performance. By concatenating feature maps from coarse to fine layers,

the network allows capturing multi-scale contextual information. Segmentation of liver tumor

is based on the similar network architecture with the help of segmentation results of liver. In

order to reduce the influence of the surrounding tissues with the similar intensity and texture

behavior with the tumor region, during the training procedure, I × liverlabel is the input of the

network for the segmentation of liver tumor. By doing this, the accuracy of segmentation can

be improved. A data set of 1161 images with background labeled by experienced radiologists is

used for training and 100 images are used to evaluate the algorithm. The proposed algorithm

achieves a mean Dice similarity coefficient of 73.6% on test image data set. Experimental results

show that the proposed method can be served as an alternatives to replace the time-consuming

and non reproducible manual segmentation method.

The rest of the paper is organized as follows. In the next four sections, Section 2 reviews

graph cut method and U-net network. And we describe the proposed method in detail.Section

3 illustrates the results and provides a comparative discussion of the proposed algorithm. We

conclude the paper in Section 4.

§2 Materials and Methods

In this section, we present the imaging data used in this study and the proposed automatic

liver segmentation framework. In the training stage, deeply dense-connected U-net architecture

is trained using labeled CT images. In the testing stage, given a test image, a probability map

of the liver is learned by the trained network. Then, the probability map is thresholded to

provide both initialization and shape prior for the following refinement segmentation step. In

the refinement segmentation step, the liver was segmented based on set of prior information.

The energy functional of this step incorporates initial seeds location, the liver probability map,

intensity distribution and region appearances. Finally, the energy functional is minimized using

a global optimization-based approach to propagate the initial surface to the optimal position.
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2.1 Materials

In our experiments, totally 1161 volume images from 294 patients with liver tumor were used

for training and 100 images for testing. Common CT liver images have four phases, including

plain scan, arterial phase, venous phase and portal phase. For the screening reason, the plain

scan is the common used. In such way, most of the volume images are the plain scan images.

Among all the images, 279 patients have all the four phase images and 15 patients have three

phase images. 25 patients with 4 phased images, totally 100 volume images are used as testing

data set. All the images are from the First Affiliated Hospital of Zhejiang University. The

images have axial dimensions of 512×512 with slice numbers varying from 32 to 86, and the

slice thickness is 5mm. The corresponding segmentation labels (both liver and tumor) were

obtained by trained technicians with our home-developed semiautomatic liver segmentation

tool, and then the results were approved and revised by experienced radiologists. Examples of

the images used in the paper is shown in Fig.1.

Figure 1. Examples of the images with four phases used in the paper.

2.2 Preprocessing

Preprocessing was carried out in a slice-wise fashion. Firstly, the images were normalized

using the information in the corresponding header files by using the following equation:

x =


1, x > max

x−min
max−min , min ≤ x ≤ max

0, x < min

(1)

where min = wc− ww
2 ,max = wc+ ww

2 , wc denotes the window level and ww means the window

width. Then the total slice number is unified to 40. For the volume images with slicer number

smaller than 40, we put several 512×512 slices with intensity value of 0 at both the beginning

and the end of the image to make sure the slice number is 40 and the volume image is in the

middle of the new generate image. For the images with slicer number larger than 40 and smaller
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than 80, we deleted the slices in the beginning and the end of the image. For the slice number

larger than 80, we use the inter layer sampling along the Z axis, then unify the slice number to

40. In the proposed algorithm, the input image is 512×512×40.

2.3 Proposed U-net architecture with dense connections

The architecture of the proposed network is shown in Fig.2. For the liver segmentation,

the input images (512×512×40) are firstly entering a convolution layer with a kernel size of

(7×7×3) and stride of (2,2,2), then a convolution layer with kernel size of (5×5×3) and stride

of (2,2,1) is applied. Then a max-pooling layer with size of (3×3×3) and stride of (2,2,2) is

applied to down-sample the images into quarter sized (64×64×10). The quarter sized image is

the input of the dense block. The proposed network contains 4 dense blocks, each dense block

contains 4, 6, 16 and 8 dense layers respectively. The growth rate is set to 32. Each dense

block is connected by the transition layer. The transition layer contains convolution layer with

kernel sizes of (1×1×1) or (2×2×2) and stride of (2,2,2) or (2,2,1), and average pooling layers.

The transition layer act as down sampling and descending the number of channels. The size

of the output image of the fourth dense block is (8×8×5). In order to achieve the probability

maps with the same resolution with the original images, up-sampling is then applied on the

outputs of the 4th dense block, then the up sampled features are concatenate with the outputs

with the same size from previous layer. All the activation function is chose to ReLU. We use

sigmoid function to activate the last convolutional layer to gain the corresponding probability

map. The final output of the network is (512×512×40×2), 2 channels are background and liver

respectively. The details of the network architecture are shown in Table1.

Figure 2. U-net architecture with dense connections for the segmentation of liver and tumor.
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Table 1. Details of the proposed architecture for the segmentation of liver.

3D Dense U-NET Feature size

Input 512×512×40

Convolution1 7×7×3,stride:(2,2,2),96 256×256×20

Convolution2 5×5×3,stride:(2,2,1),128 128×128×20

Max pooling 3×3×3,stride:(2,2,2),96 64×64×10

Dense block1 (1×1×1 conv + 3×3×3 conv)×4 64×64×10

Transition1 1×1×1 conv + 2×2×2 AP ,stride2 (2,2,2) 32×32×5

Dense block2 (1×1×1 conv + 3×3×3 conv)×6 32×32×5

Transition2 1×1×1 conv + 2×2×2 AP ,stride2 (2,2,1) 16×16×5

Dense block3 (1×1×1 conv + 3×3×3 conv)×16 16×16×5

Transition3 1×1×1 conv + 2×2×2 AP ,stride2 (2,2,1) 8×8×5

Dense block4 (1×1×1 conv + 3×3×3 conv)×8 8×8×5

US1+Dense block3 stride: (2,2,1) 16×16×5

US2+Dense block2 stride: (2,2,1) 32×32×5

US3+Dense block1 stride: (2,2,2) 64×64×10

US4+Convolution2 stride: (2,2,2) 128×128×20

US5+Convolution1 stride: (2,2,2) 256×256×20

US6 stride: (2,2,2) 512×512×40

Convolution3 5×5×3,stride: (1,1,1),2 512×512×40
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For the tumor segmentation, we adopt the same network architecture of the live segmenta-

tion except the first two convolutional layers. The inputs are I × liverlabel, where the liverlabel

is the segmentation results of the liver. By doing this, we can focus on the region inside liver

and prevent miss-locating the tumor area to the outside of the live region. The input images

(512×512×40) are firstly entering a convolution layer with a kernel size of (3×3×3) and stride

of (2,2,2), then a convolution layer with kernel size of (3×3×3) and stride of (2,2,1) is applied.

Since the tumor region is small compared with the liver region, in order to achieve a smaller

receptive field, the kernel size of first two convolutional layers are smaller than the ones for liver

segmentation. The details of the network architecture for the segmentation of liver tumor are

shown in Table 2.

Table 2. The details of the network architecture for the segmentation of liver tumor.

3D Dense U-NET Feature size

Input 512×512×40

Convolution1 3×3×3,stride:(2,2,2),96 256×256×20

Convolution2 3×3×3,stride:(2,2,1),128 128×128×20

Max pooling 3×3×3,stride:(2,2,2),96 64×64×10

Dense block1 (1×1×1 conv + 3×3×3 conv)×4 64×64×10

Transition1 1×1×1 conv + 2×2×2 AP ,stride2 (2,2,2) 32×32×5

Dense block2 (1×1×1 conv + 3×3×3 conv)×6 32×32×5

Transition2 1×1×1 conv + 2×2×2 AP ,stride2 (2,2,1) 16×16×5

Dense block3 (1×1×1 conv + 3×3×3 conv)×16 16×16×5

Transition3 1×1×1 conv + 2×2×2 AP ,stride2 (2,2,1) 8×8×5

Dense block4 (1×1×1 conv + 3×3×3 conv)×8 8×8×5

US1+Dense block3 stride: (2,2,1) 16×16×5

US2+Dense block2 stride: (2,2,1) 32×32×5

US3+Dense block1 stride: (2,2,2) 64×64×10

US4+Convolution2 stride: (2,2,2) 128×128×20

US5+Convolution1 stride: (2,2,2) 256×256×20

US6 stride: (2,2,2) 512×512×40

Convolution3 5×5×3,stride: (1,1,1),2 512×512×40

For the liver segmentation, the model uses the Adam optimizer and the binary cross-entropy

as the loss function.

C = − 1

M

M∑
i

[yilogỹi + (1− yi)log(1− ỹi)] (2)

where yi denotes the ground truth of voxel i, ỹi denotes the output prediction probability of
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the network, M is the number of voxels in one image(512×512×40).

The initial learning rate l0 was 0.0001 and decayed according to the equation l0×0.5(⌊
1+n
5 ⌋),

where ⌊·⌋ denotes the rounded down operator, n is the training period.Almost all tumors are

significantly smaller than livers, so for the tumor segmentation, Adam optimizer is adopted and

the weighted categorical cross-entropy is used as loss function.

C = − 1

M

M∑
i

[(1− w)yilogỹi + w(1− yi)log(1− ỹi)] (3)

Here yi denotes the ground truth of voxel i, ỹi means the output of the network, w is the

weight balancing tumor and background. w = Vtumor

Vtotal
,where Vtumor is the volume of tumor,

Vtotal is the total volume of image. In order to accelerate the convergence of the network

and gain more precisely training results, we set the learning rate as: lr = l0 × (1 − n
N+1 )

0.9,

l0 = 0.0001,N is the number of epochs which is set to 40 .

2.4 Globally optimized refinement

The outputs of the networks are not precisely enough if we directly threshold the probability

maps of the liver and the tumor. We need post processing to get more smooth, precise and

connective segmentation results. In this paper, we simply threshold the probability maps of

the liver and the tumor as the initial foreground. Than we adopt graph-cut based method to

refine the segmentation results. In this section, a novel energy function that integrates region

statistics and shape prior constraint is proposed. The energy functional is defined as:

E(l) = λED(l) + EB(l) (4)

where l denotes the labels of all voxels, ED(l) and EB(l) represent the region term energy and

boundary term energy respectively, and λ is the weight balancing them.The boundary term

energy is defined as:

EB(l) =

∫
∂Ω

1

1 + δ|∇I(x)|2
dx (5)

where Ω is one entire volume image, ∇I(x) represents the square sum of gradients in three

directions. The region term energy is defined as:

ED(l) =

∫
Ω

[max(R(x), 0)lx +max(−R(x), 0)(1− lx)]dx (6)

where lx is the label of voxel x, R denotes the region term consisting of voxel intensity, voxel

intensity cumulative histogram, and the output probability map of the proposed network.The

region term is defined as:

R(x) = α
(I(x)− Imax)(I(x)− Imin)

(Imax − Imin)2
+ β|Histlocal(x)|L1 − γ(P (x)− T ) (7)

Here, I(x) denotes the intensity value of voxel x in the image I and Imin and Imax denote the

value of 5% and 95% of the initial foreground intensity histogram respectively. |Histlocal(x)|L1

represents the L1 norm between the cumulative histogram of the initial foreground region and

cumulative histogram of the (5×5×5) neighborhood region centered at x, which is defined as:



312 Appl. Math. J. Chinese Univ. Vol. 36, No. 2

|Histlocal(x)|L1 =
K∑
j

|Histjinitial −Histjlocal| (8)

where Histjinitial and Histjlocal indicate the j-th value of cumulative histogram of initial

foreground and neighborhood region centered at x, K = 125. P (x) denotes the output prob-

ability of the proposed network. T represents the threshold value, where we chose 0.5 for

liver segmentation and 0.75 for tumor segmentation. In our experiment we set α = 0.2, β =

Imax − Imin, γ = 4β.

§3 Results

The proposed model is trained using Keras and Tensorflow python libraries on a NVIDIA

GTX 1080 Ti GPU. The total training time is about 26 hours each for liver and tumor segmen-

tation. The post globally optimized refinement is implemented using C++, and the average

runtime for one image globally optimized refinement is about 17 seconds. Figure 3 shows the

loss and accuracy of training and test dataset of tumor segmentation network. As we can see

the result of test data set is more volatile than that achieved by training data set, but still has

convergent tendency.

(a) (b)

Figure 3. (a)Training loss and (b)Training accuracy of the tumor segmentation network.

To evaluate the liver and tumor segmentation result of our proposed model, we calculate dice

similarity coefficient(DSC), root mean square symmetric surface distance(RMSD), mean square

symmetric surface distance(MSD), average symmetric surface distance(ASD), and relative vol-

ume difference(RVD). The five mean evaluation metrics of 100 test voxel image segmented by

our framework are summarized in table3. The better segmentation result of liver is due its

relatively larger size and regular shape. Our network and post refinement model are based on

3D, for clarity, we demonstrate some segmentation result of slices in one test voxel image. As

shown in Fig 4, the green contours are manually segmentation results by radiologists, the red
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contours indicate the final liver segmentation result of our framework.

Table 3. Liver and tumor segmentation results on testing cases.

DSC RMSD ASD MSD RVD

liver 97.07 1.98 0.174 47.22 0.32%

tumor 73.6 1.82 21.4 81.02 6.49%

(a) (b)

(c) (d)

Figure 4. Example of liver segmentation result of a testing image.

The tumor segmentation result of one test voxel image is shown in Fig 5. The green contour

on the left is manually delineated by radiologists, yellow contour is obtained by thresholding of

probability map and shown on the right. We can see simply thresholding the probability map

cannot get accurate segmentation. The red contour indicates the final tumor segmentation

result of our framework, which demonstrate our post globally optimized refinement process

can effectively solve the under segmentation problem caused by threshoding. Also the 3D

reconstruction result in Fig.6 illustrates our final result which is recognized by radiologists.



314 Appl. Math. J. Chinese Univ. Vol. 36, No. 2

Figure 5. Example of tumor segmentation result of a testing image.

Figure 6. 3D rendering of tumor segmentation.

§4 Conclusion

In this study, we explored 3D network based on U-net with dense connections for automatic

liver segmentation in abdominal CT images. Specifically, a 3D model was trained for automatic

liver location. The learned liver probability map was then integrated into the graph cut energy

function for further segmentation refinement. Meanwhile, based on the result of liver segmen-

tation, we applied the same framework to liver tumor segmentation. Liver tumor probability

map was obtained to generate an initial segmentation. The learned probability map was then

integrated into the graph cut energy function for further segmentation refinement. The main

advantage of our method is that it does not require any user interaction for initialization. The

high correlation between our segmentation and manual reference indicated that the proposed

method has the clinical applicability for hepatic volume estimation. In the future, we will apply

our method to more liver and tumor data, and other medical image segmentation tasks, such

as kidney and spleen segmentation.
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