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Abstract

Objectives Firstly, according to the characteristics of COVID-19 epidemic and the control

measures of the government of Shaanxi Province, a general population epidemic model is es-

tablished. Then, the control reproduction number of general population epidemic model is

obtained. Based on the epidemic model of general population, the epidemic model of general

population and college population is further established, and the control reproduction number

is also obtained.

Methods For the established epidemic model, firstly, the expression of the control reproduc-

tion number is obtained by using the next generation matrix. Secondly, the real-time reported

data of COVID-19 in Shaanxi Province is used to fit the epidemic model, and the parameters

in the model are estimated by least square method and MCMC. Thirdly, the Latin hypercube

sampling method and partial rank correlation coefficient (PRCC) are adopted to analyze the

sensitivity of the model.

Conclusions The control reproduction number remained at 3 from January 23 to January

31, then gradually decreased from 3 to slightly greater than 0.2 by using the real-time reports on

the number of COVID-19 infected cases from Health Committee of Shaanxi Province in China.

In order to further control the spread of the epidemic, the following measures can be taken: (i)

reducing infection by wearing masks, paying attention to personal hygiene and limiting travel;

(ii) improving isolation of suspected patients and treatment of symptomatic individuals. In

particular, the epidemic model of the college population and the general population is estab-

lished, and the control reproduction number is given, which will provide theoretical basis for

the prevention and control of the epidemic in the colleges.
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§1 Introduction

Coronavirus disease (COVID-19) [17, 18] infection has spread rapidly to other provinces

and neighboring countries since the first case of pneumonia in Wuhan, China. COVID-19 is the

third large-scale outbreak caused by highly pathogenic coronavirus. The first two outbreaks

were ”Severe Acute Respiratory Syndrome” (SARS) in mainland China in 2003 [3] and ”Middle

East Respiratory Syndrome” (MERS) in Saudi Arabia in 2012 [2]. COVID-19 is an infectious

disease caused by a newly discovered corona-virus named the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) virus strain. As of the morning of February 17, 2020, according

to the report of the National Health and Health Commission of the People’s Republic of China

[10], the total number of confirmed cases was 70639, the total number of death was 1772, the

total number of cures was 11025, and the number of existing severe cases was 10644, and the

epidemic was spread to many countries.

Mathematical modeling and simulations are helpful to reveal the epidemic law of infectious

diseases, determine the key factors of transmission, and predict the epidemic trend, so as to

provide theoretical basis and strategies for the prevention and control of infectious diseases.

By the propagation mechanism and control strategy of COVID-19, many mathematical models

are formulated to study its propagation law. For example, in [1], the transmission network

models of bats, hosts, reservoirs and humans simulate the potential transmission from the

source of infection to human infection. In [8], a prediction model for the potential domestic and

international spread of the outbreak of COVID-19 was studied. In [14], based on the clinical

progress of the disease, a deterministic SEIR model was proposed, and the epidemiological

status and intervention measures of individuals were studied as well as the control reproduction

number of the model was obtained by maximum likelihood estimation. In [11], Peng et al.

established SEIRD model and studied the prevention and control measures of COVID-19. In

[15], Tang et al. established a stochastic discrete transmission dynamic model. Then by the

actual situation of the infected patients and population flow reported in Shaanxi Province, the

epidemic transmission chain of Shaanxi Province was obtained. Most of the above papers are

based on the data analysis and prediction of the infected population in Wuhan. The estimation

of control reproduction number by mathematical model can help to determine the severity and

the possibility of outbreak, and provide key information and some control strategies for the

determination of disease. The combination of infectious disease dynamics, biostatistics and

computer simulations can make the theoretical basis and prevention and control strategy more

reliable and practical.

Shaanxi Province is located in the central region of China, bordering Hubei Province, which

is the only way to reach the northeast and northwest from Wuhan. With a large population

in Shaanxi Province, the epidemic has also been introduced to Shaanxi, and the epidemic has

been further spread. Based on the above mentioned papers and the usual methods to study

the spread of infectious diseases, this paper aims to study the situation of COVID-19 epidemic

in Shaanxi Province, and provide support for the control of COVID-19 epidemic in Shaanxi

Province.
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§2 Epidemic model of general population

The early transmission of COVID-19 can be described by a SEQIJR model. Based on

the model of [4], we will describe the transmission mechanism of COVID-19 and the meaning

of specific parameters in detail, and then modify the contact rate in the model to a specific

function to describe the transmission of COVID-19. The model consists of six sub populations:

susceptible S(t), asymptomatic E(t), quarantined Q(t), symptomatic I(t), isolated J(t) and

recovered R(t) individuals in a population of N(t) = S(t) + E(t) + Q(t) + I(t) + J(t) + R(t)

individuals. The main modeling ideas are as follows:

(i) S(t): The susceptible population increased due to the net inflow of individuals and de-

creased due to natural death. The susceptible population will also decrease after infection,

which is obtained through the contact between the susceptible and the infected. The infected

may be symptomatic, asymptomatic, quarantined, or isolated. (ii) E(t): Asymptomatic in-

dividuals have been exposed to the virus, but have no clinical symptoms of COVID-19. (iii)

Q(t): These are asymptomatically infected individuals who are quarantined because of contact

with the source of the COVID-19. For simplicity, we assume that all isolated individuals are

asymptomatic and who will continue to show symptoms and then move to the isolated class.

(iv) I(t): The symptomatic population is produced after the asymptomatic members show the

clinical symptoms of COVID-19. And it is diminished by isolation, death caused by disease,

rehabilitation and natural death. (v) J(t): These people have developed clinical symptoms and

have been isolated through hospitalization and other means. These come from symptoms and

isolation. This population is diminished by recovery, death from disease and natural death. (vi)

R(t): Symptomatic and isolated individuals recover from the disease, and this population is di-

minished by natural death. The detailed schematic diagram for the transmission of COVID-19

among the general population is shown in Figure 1.

Accordingly, we obtain the definitions of some parameters in Table 1 and the following

SEQIJR model:

dS

dt
= A− βISI

N
− βESE

N
− βQSQ

N
− βJSJ

N
− µS,

dE

dt
= B +

βISI

N
+

βESE

N
+

βQSQ

N
+

βJSJ

N
− (γ1 + k1 + µ)E,

dQ

dt
= γ1E − (k2 + µ)Q,

dI

dt
= k1E − (γ2 + d1 + σ1 + µ)I,

dJ

dt
= γ2I + k2Q− (σ2 + d2 + µ)J,

dR

dt
= σ1I + σ2J − µR.

(1)

Let N(t) = S(t) +E(t) +Q(t) + I(t) + J(t) +R(t) be the total population number at time

t. It is clear that N ′(t) = A + B − µN − d1I + d2J . Therefore, in the disease-free state, the
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Figure 1. Schematic diagram for the transmission of COVID-19 among the general population.

Table 1. Definitions of some model parameters.

Parameters Description

A Recruitment rate of susceptible individuals
B Recruitment rate of asymptomatic individuals
βI Adequate contact rate of an symptomatic individual with others
βE Adequate contact rate of an asymptomatic individual with others
βQ Adequate contact rate of an quarantined individual with others
βJ Adequate contact rate of an isolated individual with others
µ Natural death rate
γ1 Isolation rate of asymptomatic individuals
γ2 Isolation rate of symptomatic individuals
σ1 Recovery rate of symptomatic individuals
σ2 Recovery rate of isolated individuals
d1 Disease-induced death rate of symptomatic individuals
d2 Disease-induced death rate of isolated individuals
k1 Moving rate from asymptomatic individuals to symptomatic individuals
k2 Moving rate from quarantined individuals to isolated individuals

total population converges to A+B
µ , that is, limt→∞ N(t) = A+B

µ .

We adopt the next generation matrix [16] to get an expression for the control reproduction

number when control measures are in force as follows (by linearizing the model around the

disease-free equilibrium with B = 0)

R0 = βE

γ1+k1+µ + βIk1

(γ1+k1+µ)(γ2+d1+σ1+µ) +
βQγ1

(γ1+k1+µ)(k2+µ)

+ βJk1γ2

(γ1+k1+µ)(γ2+d1+σ1+µ)(σ2+d2+µ) +
βJγ1k2

(γ1+k1+µ)(σ2+d2+µ)(k2+µ) .
(2)

It is worth noting that the adequate contact rate βI of symptomatic individuals is constant

when there is no artificial control, and when the artificial control starts at time τ , according to



LI Zhi-min, et al. Preliminary prediction of the control reproduction number... 291

the reference [7], βI shows an exponential decay, which meets the following requirements

βI(t) =

{
βI0, t < τ,

βI0e
−m(t−τ), t > τ,

(3)

where m is the intensity of control over symptomatic individuals.

In the next section, we summarize the reported data of COVID-19 in Shaanxi Province,

then adopt the reported data to fit the model (1), and estimate the value of the parameters

by least square method and MCMC. Specifically, we employ an adaptive Metropolis-Hastings

(M-H) algorithm to carry out extensive Markov-chain Monte-Carlo (MCMC) simulations [5],

and to estimate mean values of parameters including adequate contact rate, recruitment rate

of susceptible individuals, recruitment rate of asymptomatic individuals and the intensity of

control over symptomatic individuals.

§3 Numerical simulation

In this section, firstly, according to the reported data of COVID-19 from the Health Com-

mittee of Shaanxi Province, we make statistics on the cumulative number of infected people

from January 23, 2020 to February 15, 2020 (see Figure 8 and Table 5 in the Appendix). Then

we look up the parameters values with the same meaning as those in the model (1) in some

recent COVID-19 research results as the basis of our research. These parameters include µ and

τ , as well as initial values S(0), E(0), I(0), J(0) and R(0). For the remaining parameters in

model (1), including A, B, βI0, βE , βQ, βJ , γ1, γ2, σ1, σ2, d1, d2, k1, k2 and m, as well as the

initial value Q(0), we use statistical data to fit the model, and the fitting diagram is shown in

Figure 2 and Figure 3. Specifically, the statistical data of the first nine days are used to fit the

model to get the estimated value of parameter βI0, as shown in Figure 2. The statistical data

of 24 days are used to fit the model to get the estimated value of the remaining parameters,

as shown in Figure 3. At the same time, we use MCMC simulations to estimate the average

value of these parameters. The detailed parameter values and initial values are shown in Table

2, where the MCMC analysis of parameters βE , γ1, γ2, k1 and k2 is shown in Figure 4. In

numerical simulations, we consider the isolated individuals (including quarantined Q(t) and

isolated J(t)) through their own protective measures, such as wearing masks, so we assume

βQ = βJ = 0. The following theoretical analysis provides the reasonableness of the assumption.

Lemma 1 [21] Signalling game is a dynamic game with incomplete information. In this

game, there are two participants, i = 1, 2. Among them, the participant 1 is the signal sender

and the participant 2 is the signal receiver. The type of participant 1 is private information,

and the type of participant 2 is public information (that is, there is only one type). The specific

order of the game is as follows:

(i) The type of participant 1 is θ ∈ Θ, where Θ = {θ1, · · · θk} is the type space of participant

1. Participant 1 knows his type, but participant 2 only knows that the prior probability of

participant 1 belonging to θ is p = p(θ), and
∑

k p(θ
k) = 1.

(ii) After observing type θ, participant 1 sends signal m ∈ M , where M =
{
m1, · · ·mj

}
is
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the signal space.

(iii) When participant 2 observes signal m (but not type θ) sent by participant 1, participant

2 uses Bayes rule to obtain a posterior probability p̃ = p̃ (θ|m) from prior probability p = p (θ),

and then makes action a ∈ A, where A =
{
a1, · · · ah

}
is the action space of participant 2. In

statistics, the probability before correction is called ”prior probability”, and the probability

after correction is called ”posterior probability”.

(iv) The payment functions are u1 (m, a, θ) and u2 (m, a, θ), respectively. (The payment

function is the utility level that participants get from the game).

Lemma 2 [21] The refined Bayesian equilibrium of signalling game includes strategic

combination (m∗(θ), a∗(m)) and a posteriori probability p̃ (θ|m), which satisfies the following

conclusions:

(i) a∗(m) ∈ argmax
a

∑
θ

p̃ (θ|m)u2 (m, a, θ);

(ii) m∗(θ) ∈ argmax
m

u1 (m, a∗(m), θ);

(iii) Participant 2 considers the prior probability p (θ), the observed signalm and the optimal

strategy m∗(θ) of participant 1, and then according to the Bayes rule, participant 2 gets p̃ (θ|m).

Lemma 3 [21] All the possible refined Bayesian equilibria of signalling game can be

divided into three categories. One of the special equilibria is the semi-separation equilibrium.

Semi-separation equilibrium means that some types of senders (participant 1) randomly select

signals, while others select specific signals.

Next, we divide the whole population into two categories: the free group and the isolated

group (including quarantined Q(t) and isolated J(t)). By Lemma 1 and Lemma 2, we get

that free group (θ1) have two choices, i.e. no mask and wear mask, and denote m1 and m2

respectively; while the isolated group (θ2) can only choose to wear mask (m2) with a probability

of 1. By Lemma 3, the case belongs to semi-separating equilibrium. From Lemma 1 and Lemma

2, the isolated people will wear masks. When the free people see the people wearing masks, they

will react far away from the people wearing masks. That is to say, the spread of the epidemic

among the masked people and the free people will be eliminated, that is, the isolated people

and the free people can not be contacted. In detail, according to the payment functions and

posteriori probability of the two lemmas, the analysis is as follows:

u1

(
m1, a∗ (m) , θ1

)
= u1

(
m2, a∗ (m) , θ1

)
,

u1

(
m1, a∗ (m) , θ2

)
< u1

(
m2, a∗ (m) , θ2

)
,

p̃
(
θ1

∣∣m1
)
=

α× p
(
θ1
)

α× p (θ1) + 0× p (θ2)
= 1,

p̃
(
θ1

∣∣m2
)
=

(1− α)× p
(
θ1
)

(1− α)× p (θ1) + 1× p (θ2)
< p

(
θ1
)
,

p̃
(
θ2

∣∣m2
)
=

1× p
(
θ2
)

(1− α)× p (θ1) + 1× p (θ2)
> p

(
θ2
)
,

here, α is the probability that individuals in the free group choose not to wear masks. Here we

mainly focus on the first and third expressions in the above formula and we further get that
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m2 must be the best choice for the isolated group. As a rational person, an isolated individual

must wear a mask, so we assume that βQ = βJ = 0 is reasonable.

Table 2. Parameters and numerical values chosen for the simulation.

Parameters Description Value (day−1) Source

A Recruitment rate of susceptible individuals 75.6599 MCMC
B Recruitment rate of asymptomatic individuals 30.7003 MCMC
βI0 Adequate contact rate of an symptomatic 0.5 MCMC

individual with others
βE Adequate contact rate of an asymptomatic 0.0287 MCMC

individual with others
βQ Adequate contact rate of an quarantined 0 Assumption

individual with others
βJ Adequate contact rate of an isolated 0 Assumption

individual with others
µ Natural death rate 1/(75.7× 365) [12]
γ1 Isolation rate of asymptomatic individuals 0.0798 MCMC
γ2 Isolation rate of symptomatic individuals 0.1053 MCMC
σ1 Recovery rate of symptomatic individuals 0.0001 MCMC
σ2 Recovery rate of isolated individuals 0.1788 MCMC
d1 Disease-induced death rate of 0.000001989 MCMC

symptomatic individuals
d2 Disease-induced death rate of 0.0098 MCMC

isolated individuals
k1 Moving rate from asymptomatic individuals 0.1032 MCMC

to symptomatic individuals
k2 Moving rate from quarantined individuals 0.2198 MCMC

to isolated individuals
m Intensity of control over symptomatic individuals 0.1827 MCMC
τ The delay time between the start time of 9 [6]

artificial control and the time of symptomatic
individuals contacting others

Initial values Description Value Source

S(0) Susceptible individuals 21,781,500 [13]
E(0) Asymptomatic individuals 53 [6]
Q(0) Quarantined individuals 600 Assumption
I(0) Symptomatic individuals 3 [6]
J(0) Isolated individuals 3 [6]
R(0) Recovered individuals 0 [6]

Sensitivity analysis is vital to identify key parameters and find effective control strategies

for combatting the spread of the disease. It is well known that the control reproduction number

R0 is a very important parameter in the infectious disease model, which determines whether

the epidemic could spread. In model (1), we focus on the parameters βI , βE , βQ, βJ , d1,

d2, σ1, σ2, γ1, γ2 in R0. In order to identify the impacts of theses parameters on COVID-19

transmission and prevalence, we used the Latin hypercube sampling method and partial rank

correlation coefficient (PRCC) (see [9]). From model (1), 2000 samples are randomly generated

by assuming a uniform distribution for each parameter based on values from Table 2. We choose

all parameters as the input variables, and the value of R0 as the output variable. The PRCC
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Figure 2. The fitting between the cumulative number of COVID-19 case from January 23, 2020
to January 31, 2020 and the simulation of model (1). And the purpose of this fitting is to
estimate βI0 without artificial control, which is equivalent to satisfying m = 0 in (3).
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Figure 3. The fitting between the cumulative number of COVID-19 case from January 23, 2020
to February 15, 2020 and the simulation of model (1). Specifically, from January 23 to January
31, we think that βI(t) = βI0, and artificial control has been started after January 31, that is,
from February 1 to February 15, there is βI(t) = βI0e

−m(t−τ), where m = 0.1827, τ = 9 days.
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Table 3. Partial rank correlation coefficients (PRCCs) for R0 and each input parameter.

Input parameter PRCC p value

βI 0.9458 0
βE 0.8894 0
βQ 0.6310 < 0.0001
βJ 0.6875 < 0.0001
d1 −0.3295 < 0.0001
d2 −0.0567 0.0113
σ1 −0.3443 < 0.0001
σ2 −0.0628 0.0051
γ1 −0.7533 0
γ2 −0.2705 < 0.0001
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Days from January 23, 2020
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Figure 6. We consider that βI shows an exponential decay, then R0 changes with time t.

values of all parameters and corresponding p-values are computed (see Table 3 and Figure 5).

The larger PRCCs in absolute value, the more important the parameter in responding to the

change in R0. Plus sign or minus sign means the influence is positive or negative respectively.

Table 3 and Figure 5 show that βI , βE , βQ and βJ have positive impact upon R0, whilst d1,

d2, σ1, σ2, γ1 and γ2 have negative impact. Hence, from sensitivity we conclude that the most

effective approach to reduce the COVID-19 infection is to reduce the parameters βI , βE , βQ

and βJ , and increase σ1, σ2, γ1 and γ2.

In the following, firstly, we focus on βI shows an exponential decay, so R0 changes with

time t. According to the parameters values in Table 2, we get the change curve of R0 (as

shown in Figure 6). We can see from Figure 5 that the control reproductive number will remain

unchanged at 3 when t < τ , and gradually decrease from 3 to slightly greater than 0.2 as time

increases after t > τ .
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Next, based on the general population epidemic model (1), we establish the college popula-

tion and general population epidemic model, and give the control reproduction number.

§4 Epidemic model of college populations and general populations

As a result of the outbreak of COVID-19, schools across the country are still not open as

of mid March 2020. Xi’an is the capital of Shaanxi Province, where there are more than 50

universities. At present, when the universities start and the specific prevention and control

strategies after the beginning of the universities have been the topic of many people’s attention.

Therefore, it is necessary for us to study the infectious disease model of college populations

and general populations. Based on the paper of Xiao et al. [20], we will embed the general

population model (1) into their model. We know that it is impossible to completely isolate the

flow between schools and the general populations, so the topic of concern is how the intensity

of school closure, the time of school closure and school populations flow affect the spread of

COVID-19 for the whole populations. First of all, we assume that the individual in the school

is allowed to leave the campus for a period of time and then return, and the general population

is not allowed to enter the school. Without losing generality, we assume that the average

proportions of individual students exposed to the virus leaving school to enter the general

populations is h (school leaving rate).

Table 4. Definitions of some model parameters.

Parameters Description

β Propagation probability of contact once
cu Contact rate of college population (day−1)
cg Contact rate of general population (day−1)
qu Isolation rate of college population (day−1)
qg Isolation rate of general population (day−1)
ϕu The efficiency of personal prevention of college population
ϕg The efficiency of personal prevention of general population
λ The rate at which isolated susceptible individuals return to susceptible class
δ1 Migration rate of asymptomatic individuals (day−1)
δ2 Diagnostic rate (day−1)
σ1 Removal rate of infected individuals (day−1)
σ2 Removal rate of treatment individuals (day−1)
h Leaving rate of college population

For college population at time t, let Su(t), Eu(t), Iu(t) and Ru(t) denote the susceptible

population size, the asymptomatic population size, the symptomatic population size and re-

covered population size, respectively. Some of the symptomatic individuals will be isolated and

treated in hospital, i.e. class Hu. Individuals exposed to the virus, in which a proportion of

qu individuals are isolated before they become infected. The asymptomatic individuals in the

isolated population will enter Sq
u, and the symptomatic individuals will enter the isolated latent

class Eq
u, after which the class Eq

u individuals will enter the hospital for treatment, that is, Hq
u.

Individuals in Sq
u return to Su after a period of isolation, which is usually the longest incubation
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period of this infectious disease. For general population at time t, the biological meaning of

Sg(t), Eg(t), Qg(t), Ig(t), Jg(t) and Rg(t) is the same as S(t), E(t), Q(t), I(t), J(t) and R(t)

in model (1). And the main modeling ideas are as follows: (i) For college population, we con-

Figure 7. Schematic diagram for the transmission of COVID-19 among general population and
college population.

sider isolation of close contacts, isolation of confirmed cases and personal epidemic prevention

strategies. If a susceptible individual Su exposed to COVID-2019 virus is infected, the indi-

vidual enters latent Eu, then enters symptomatic Iu after the incubation period, until recovery

or death enters removed Ru. (ii) When individuals exposed to the virus take self-protection

measures, such as wearing masks and personal hygiene, we assume that susceptible people with

the proportion of φu are protected from infection. In particular, some parameters in the model

are denoted as Nu = (1 − h)Su + (1 − h)Eu + (1 − h)Iu + Sq
u + Eq

u + Hq
u + (1 − h)Ru, Ng =

Sg+Eg+Qg+Ig+Jg+Rg+hSu+hEu+hIu+hRu, Nu andNg denote the total number of college

populations and general populations, respectively. And PSu = (1−h)2[βcu(1−φu)+cuqu(1−β)],

PEu = (1− h)2βcu(1− qu)(1− φu), QSu = (1− h)2(1− β)cuqu, QEu = (1− h)2βcuqu(1− φu),

PSg = (1−h)[βcg(1−φg)+cgqg(1−β)], PEg = (1−h)βcg(1−qg)(1−φg), QSg = (1−h)(1−β)cgqg,

QEg = (1 − h)βcgqg(1 − φg), where PSu is the infection rate of Iu to Su, PEu is the infection

rate of Iu to Eu, QSu is the infection rate of Iu to Sq
u, QEu is the infection rate of Iu to Eq

u,

PSg is the infection rate of Ig to Su, PEg is the infection rate of Ig to Eu, QSg is the infection

rate of Ig to Sq
u, and QEg is the infection rate of Ig to Eq

u. In addition, compared with model

(1), it is obvious that βI = βcg(1− φg).

The biological meaning for the parameters are given in Table 4, and the flow diagram

between the variables is shown in Figure 7, so the following model is established:
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

dSu

dt
= −PSuSuIu

Nu
− PSgSuIg

Ng
+ λSq

u,

dEu

dt
=

PEuSuIu
Nu

+
PEgSuIg

Ng
− δ1Eu,

dIu
dt

= δ1Eu − (δ2 + σ1)Iu,

dSq
u

dt
=

QSuSuIu
Nu

+
QSgSuIg

Ng
− λSq

u,

dEq
u

dt
=

QEuSuIu
Nu

+
QEgSuIg

Ng
− δ1E

q
u,

dHq
u

dt
= δ2Iu + δ1E

q
u − σ2H

q
u,

dRu

dt
= σ1Iu + σ2H

q
u,

dSg

dt
= A− βISg(Ig + hIu)

Ng
− βESgEg

Ng
− βQSgQg

Ng
− βJSgJg

Ng
− µSg,

dEg

dt
= B +

βISg(Ig + hIu)

Ng
+

βESgEg

Ng
+

βQSgQg

Ng
+

βJSgJg
Ng

− (γ1 + k1 + µ)Eg,

dQg

dt
= γ1Eg − (k2 + µ)Qg,

dIg
dt

= k1Eg − (γ2 + d1 + σ1 + µ)Ig,

dJg
dt

= γ2Ig + k2Qg − (σ2 + d2 + µ)Jg,

dRg

dt
= σ1Ig + σ2Jg − µRg.

(4)

Then we obtain the disease-free equilibrium E0 = (Su(0), 0, 0, 0, 0, 0, 0, Sg(0), 0, 0, 0, 0, 0) of

model (4). By the concepts of next generation matrix and reproduction number presented

in [16], we get the the basic reproduction number is

Rug
0 = max

{
A1,

(A1 +A4) +
√
A2

1 +A2
4 − 2A1A4 + 4A2A3

2

}

=
(A1 +A4) +

√
A2

1 +A2
4 − 2A1A4 + 4A2A3

2
.

(5)

where

A1 =
PEu

(1− h)(δ2 + σ1)
, A2 =

PEgSu(0)k1
(Sg(0) + hSu(0)) (γ1 + k1 + µ)(γ2 + d1 + σ1 + µ)

,

A3 =
βIhSg(0)

(Sg(0) + hSu(0)) (δ2 + σ1)
, A4 =

βESg(0)

(Sg(0) + hSu(0)) (γ1 + k1 + µ)

+
βISg(0)k1

(Sg(0) + hSu(0)) (γ1 + k1 + µ)(γ2 + d1 + σ1 + µ)
+

βQSg(0)γ1
(Sg(0) + hSu(0)) (k2 + µ)(γ1 + k1 + µ)

+
βJSg(0) (γ1γ2k2 + γ2k1k2 + γ1k2σ1 + γ2k1µ+ γ1k2µ+ γ1k2d1)

(Sg(0) + hSu(0)) (k2 + µ)(γ1 + k1 + µ)(µ+ d2 + σ2)(γ2 + d1 + σ1 + µ)
.
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In particular, when the school leaving rate h = 0, we get A3 = 0 and

A4 =
βE

(γ1 + k1 + µ)
+

βIk1
(γ1 + k1 + µ)(γ2 + d1 + σ1 + µ)

+
βQγ1

(k2 + µ)(γ1 + k1 + µ)

+
βJ (γ1γ2k2 + γ2k1k2 + γ1k2σ1 + γ2k1µ+ γ1k2µ+ γ1k2d1)

(k2 + µ)(γ1 + k1 + µ)(µ+ d2 + σ2)(γ2 + d1 + σ1 + µ)

= R0,

where R0 is the control reproduction number of the general population model (1), and so we

get

Rug
0 =

(A1 +A4) +
√

A2
1 +A2

4 − 2A1A4

2
= max {A1, A4} = max

{
PEu

(1− h)(δ2 + σ1)
,R0

}
.

(6)

Specifically, the college population model is as follows

dSu

dt
= −PSuSuIu

Nu
+ λSq

u,

dEu

dt
=

PEuSuIu
Nu

− δ1Eu,

dIu
dt

= δ1Eu − (δ2 + σ1)Iu,

dSq
u

dt
=

QSuSuIu
Nu

− λSq
u,

dEq
u

dt
=

QEuSuIu
Nu

− δ1E
q
u,

dHq
u

dt
= δ2Iu + δ1E

q
u − σ2H

q
u,

dRu

dt
= σ1Iu + σ2H

q
u,

(7)

we can get that the control reproduction number of the college population model (7) is Ru
0 =

PEu

(1−h)(δ2+σ1)
.

From the above analysis, when the school leaving rate h is 0, it follows that the college

populations and the general populations are isolated from each other, simultaneously, the model

(4) becomes two independent models (1) and (7).

§5 Discussion

Based on the transmission characteristics of COVID-19 epidemic in Shaanxi Province, on

the one hand, we consider that both susceptible and asymptomatic individuals with potential

contact have external input, especially the population input from Wuhan region, on the other

hand, we take into account the policy and medical situation of Shaanxi Province, the government

publicizes that individuals with potential contact are isolated for 14 days by themselves, and

the symptomatic individuals are hospitalized for observation and treatment in time. So we set

up the SEQIJR model to describe the epidemic situation in Shaanxi Province. In the light

of the COVID-19 infection reported by Health and Health Committee of Shaanxi Province, we
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counted the confirmed cases from January 13, 2020 to February 15, 2020, and then we used

the statistical data to fit the model (1). Some parameters of the model can be found in some

official websites and academic papers, and the average values of other parameters are obtained

by least square method and MCMC.

From the analysis of the epidemic model (1) of the general population, the control repro-

duction number of the epidemic spread in Shaanxi Province is obtained, that is, the control

reproduction number remained at 3 from January 23 to January 31, then gradually decreased

from 3 to slightly greater than 0.2. Then we discuss some biological implications and focus on

the impact of some key model parameters, and combine with sensitivity analysis, the strategies

of controlling COVID-19 are given, i.e., (i) reducing the infection rate, in particular, measures

such as wearing masks, and restrict travel and paying attention to personal hygiene can be

taken, and under special circumstances, urban blockade strategy is adopted; (ii) increasing iso-

lation of individuals exposed to the virus and treatment of symptomatic individuals and (iii)

increasing medical level and medical equipment to improve treatment rate. In Section 4, con-

sidering the actual problems of when and how to prevent and control the epidemic in colleges,

based on the epidemic model of general population, a high-dimensional epidemic model of gen-

eral population and college population is established, and the control reproduction number is

given, which will provide a theoretical basis for the prevention and control of infectious diseases

in colleges and universities.

§6 Appendix

Figure 8. Heat-map showing the spreading of COVID-19 infection in Shaanxi Province.
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Table 5. Cumulative total of reported the COVID-19 cases in Shaanxi Province of China [6].

Date 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30
Shaanxi Province 3 5 15 22 35 46 56 63

Date 1.31 2.1 2.2 2.3 2.4 2.5 2.6 2.7
Shaanxi Province 87 101 116 128 142 165 173 184

Date 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15
Shaanxi Province 195 208 213 219 225 229 230 232
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