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Parametric estimation for the simple linear regression

model under moving extremes ranked set sampling design

YAO Dong-sen CHEN Wang-xue∗ LONG Chun-xian

Abstract. Cost effective sampling design is a major concern in some experiments especially

when the measurement of the characteristic of interest is costly or painful or time consuming.

Ranked set sampling (RSS) was first proposed by McIntyre [1952. A method for unbiased

selective sampling, using ranked sets. Australian Journal of Agricultural Research 3, 385-390]

as an effective way to estimate the pasture mean. In the current paper, a modification of ranked

set sampling called moving extremes ranked set sampling (MERSS) is considered for the best

linear unbiased estimators(BLUEs) for the simple linear regression model. The BLUEs for this

model under MERSS are derived. The BLUEs under MERSS are shown to be markedly more

efficient for normal data when compared with the BLUEs under simple random sampling.

§1 Introduction

The ranked set sampling(RSS) technique was introduced by McIntyre (1952). This technique

is useful for cases when the variable of interest can be more easily ranked than quantified. This

is the case in many environmental and ecological studies. For example, the ranking of hazardous

waste sites with respect to their contamination levels can be made easier by a visual inspection

of defoliation or soil discoloration, while making actual measurement of toxic chemicals and

assessing their environmental impact may be very costly (Barabesi et al., 2001). For other

applications of RSS in ecology see Halls et al. (1966) and Chen et al. (2004).

In RSS one first draws m2 units at random from the population and partitions them into

m sets of m units. The m units in each set are ranked without making actual measurements.
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From the first set of m units the unit ranked the lowest is chosen for actual measurements.

From the second set of m units the unit ranked the second lowest is measured. The process is

continued until the unit ranked the largest is measured from the m-th set of m units. We call

this process a one cycle RSS of size m.

Takahasi et al. (1968) established a very important statistical foundation for the theory

of RSS. They showed that the mean of the RSS is an unbiased estimator for the population

mean and has a higher efficiency than the mean of simple random sampling (SRS). Barreto et

al. (1999) studied best linear unbiased estimators (BLUEs) of parameters for the simple linear

regression model under RSS and showed that the BLUEs are more efficient than that under

simple random sampling for normal data. For more studies of RSS refer to Chen et al. (2017)

and He et al. (2018). However, ranking accuracy affects the efficiency of the estimator. In order

to reduce the error of ranking and keep optimality inherited in the original RSS procedure, Al-

Odat et al. (2001) introduced the concept of varied set size RSS, which is coined here as Moving

Extremes Ranked Set Sampling (MERSS).

The procedure of MERSS is described as follows:

(1) Select m simple random sample sets of size 1, 2,..., m, respectively.

(2) Order the elements of each set by visual inspection or other relatively inexpensive methods,

without actual measurement of the characteristic of interest.

(3) Measure accurately the maximum ordered observation from the first set, then the second

set,..., the last set.

(4) Step (3) is repeated on another m sets of size 1, 2,..., m respectively, however the minimum

ordered observations are measured instead of the maximum ordered observations. We call this

process a one cycle MERSS of size 2m.

In the literature, there are numbers of studies focused on parametric inference of distri-

butions under MERSS. Chen et al. (2019) studied BLUEs of the parameters for the Pareto

distribution under MERSS. He et al. (2019) studied BLUEs of the parameters for the log-logistic

distribution under MERSS.

In this paper, we are interested in studying the BLUEs for the simple linear regression under

MERSS. The BLUEs for this model under MERSS are derived. The BLUEs under MERSS are

shown to be markedly more efficient for normal data when compared with the BLUEs under

SRS.

§2 Moving extremes ranked set sample

According to MERSS procedure which is described in Section 1. Let {y1i1, y1i2, ..., y1ii} and

{y2i1, y2i2, ..., y2ii} be 2m sets of random samples, i = 1, 2, ...,m. Let xii = max{y1i1, y1i2, ..., y1ii}
and y1i = min{y2i1, y2i2, ..., y2ii}. Thus the moving extremes ranked set sample with a one cycle

is defined as {x11, x22, ..., xmm, y11, y12, ..., y1m}. Note that the elements of this sample are

independent of each other. xii is distributed as the i-th order statistic from a simple random

sample of size i. y1i is distributed as the 1-th order statistic from a simple random sample of

size i.
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§3 BLUEs for the simple linear regression model under MERSS

Let {x11j , x22j , ..., xmmj , y11j , y12j , ..., y1mj} be moving extremes ranked set sample from the

population Y for each value of the predictor variable X = xj , j=1,2,...,n. The conditional mean

and variance of Y are respectively

E(Y |X = x ) = α+ βx

and

var(Y |X ) = σ2.

The reduced order statistics at each value of X, take the form

uiij =
xiij − α− βxj

σ
with means ηii and variances τii and

u1ij =
y1ij − α− βxj

σ
with means η1i and variances τ1i, i = 1, 2, ...,m, when Y is a continuous variable with distribu-

tion function

F

(
y − µ

σ

)
.

Then we have

E (xiij) = α+ βxj + σηii (3.1)

with

var(xiij) = σ2τii (3.2)

and

E (y1ij) = α+ βxj + ση1i (3.3)

with

var(y1ij) = σ2τ1i. (3.4)

A matrix form for the model is

Y = Xθ + ε, (3.5)

where

Y =
[
x111 ... xmm1 y111 ... y1m1 ... x11n ... xmmn y11n ... y1mn

]′
,

X =

 1 ... 1 1 ... 1... 1 ... 1 1 ... 1

x1 ... x1 x1 ... x1... xn ... xn xn ... xn

η11 ... ηmm η11 ... η1m... η11 ... ηmm η11 ... η1m


′

,

θ =
[
α β σ

]′
and ε is the random error vector with E (ε) = 0 and

var(ε) = σ2diag {τ11, ..., τmm, τ11, ..., τ1m, ..., τ11, ..., τmm, τ11, ..., τ1m} .

Using the same argument of Lloyd (1952) shown above, the BLUE of θ =
[
α β σ

]′
can

be obtained

θ̂BLUE, MERSS = (X
′
V−1X)−1X

′
V−1Y (3.6)

with

var(θ̂BLUE, MERSS) =
(
X

′
V−1X

)−1

σ2, (3.7)
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where V = diag {τ11, ..., τmm, τ11, ..., τ1m, ..., τ11, ..., τmm, τ11, ..., τ1m} ,

X
′
V−1X =


n

m∑
i=1

(
τ−1
ii + τ−1

1i

) n∑
j=1

xj

m∑
i=1

(
τ−1
ii + τ−1

1i

)
n

m∑
i=1

(
τ−1
ii ηii + τ−1

1i η1i
)

n∑
j=1

xj

m∑
i=1

(
τ−1
ii + τ−1

1i

) n∑
j=1

x2
j

m∑
i=1

(
τ−1
ii + τ−1

1i

) n∑
j=1

xj

m∑
i=1

(
τ−1
ii ηii + τ−1

1i η1i
)

n
m∑
i=1

(
τ−1
ii ηii + τ−1

1i η1i
) n∑

j=1

xj

m∑
i=1

(
τ−1
ii ηii + τ−1

1i η1i
)

n
m∑
i=1

(
τ−1
ii η2

ii
+ τ−1

1i η2
1i

)


and

X
′
V−1Y =



n∑
j=1

m∑
i=1

(
τ−1
ii xiij + τ−1

1i y1ij
)

n∑
j=1

xj

m∑
i=1

(
τ−1
ii xiij + τ−1

1i y1ij
)

n∑
j=1

m∑
i=1

(
τ−1
ii ηiixiij + τ−1

1i η1iy1ij
)

 .

After some calculations and simplifications, we can obtain

α̂BLUE, MERSS =
1

∆

a11 n∑
j=1

m∑
i=1

(
τ−1
ii xiij + τ−1

1i y1ij
)
+ a12

n∑
j=1

xj

m∑
i=1

(
τ−1
ii xiij + τ−1

1i y1ij
)

+a13

n∑
j=1

m∑
i=1

(
τ−1
ii ηiixiij + τ−1

1i η1iy1ij
) ,

(3.8)

β̂BLUE, MERSS =
1

∆

a12 n∑
j=1

m∑
i=1

(
τ−1
ii xiij + τ−1

1i y1ij
)
+ a22

n∑
j=1

xj

m∑
i=1

(
τ−1
ii xiij + τ−1

1i y1ij
) ,

(3.9)

σ̂BLUE, MERSS =
1

∆

a13 n∑
j=1

m∑
i=1

(
τ−1
ii xiij + τ−1

1i y1ij
)
+ a33

n∑
j=1

m∑
i=1

(
τ−1
ii ηiixiij + τ−1

1i η1iy1ij
) ,

(3.10)

where

a11 = n
n∑

j=1

x2
j

m∑
i=1

(
τ−1
ii + τ−1

1i

) m∑
i=1

(
τ−1
ii η2

ii
+ τ−1

1i η2
1i

)
−

(
n∑

j=1

xj

)2 [
m∑
i=1

(
τ−1
ii ηii + τ−1

1i η1i
)]2

,

a12 =n

n∑
j=1

xj

[
m∑
i=1

(
τ−1
ii ηii + τ−1

1i η1i
) m∑

i=1

(
τ−1
ii ηii + τ−1

1i η1i
)
−

m∑
i=1

(
τ−1
ii + τ−1

1i

) m∑
i=1

(
τ−1
ii η2

ii
+ τ−1

1i η2
1i

)]
,

a13 =
m∑
i=1

(
τ−1
ii + τ−1

1i

) m∑
i=1

(
τ−1
ii ηii + τ−1

1i η1i
) [( n∑

j=1

xj

) 2

− n
n∑

j=1

x2
j

]
,

a22 = n2

{
m∑
i=1

(
τ−1
ii + τ−1

1i

) m∑
i=1

(
τ−1
ii η2

ii
+ τ−1

1i η2
1i

)
−
[

m∑
i=1

(
τ−1
ii ηii + τ−1

1i η1i
)]2}

,
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a33 =

[
m∑
i=1

(
τ−1
ii + τ−1

1i

)]2 [
n

n∑
j=1

x2
j −

(
n∑

j=1

xj

)2


and

∆ = n2

(
n∑

j=1

x2
j

)[
m∑
i=1

(
τ−1
ii + τ−1

1i

)]2 m∑
i=1

(
τ−1
ii η2

ii
+ τ−1

1i η2
1i

)
+ 2n

(
n∑

j=1

xj

)2 [ m∑
i=1

(
τ−1
ii ηii + τ−1

1i η1i
)]2

m∑
i=1

(
τ−1
ii + τ−1

1i

)
− n2

(
n∑

j=1

x2
j

)[
m∑
i=1

(
τ−1
ii ηii + τ−1

1i η1i
)]2 m∑

i=1

(
τ−1
ii + τ−1

1i

)
− n

(
n∑

j=1

xj

)2 [ m∑
i=1

(
τ−1
ii ηii + τ−1

1i η1i
)]2 m∑

i=1

(
τ−1
ii + τ−1

1i

)
− n

(
n∑

j=1

xj

)2 m∑
i=1

(
τ−1
ii η2

ii
+ τ−1

1i η2
1i

) [ m∑
i=1

(
τ−1
ii + τ−1

1i

)]2
.

The variances and covariances of the estimators are

var(α̂BLUE, MERSS) = σ2 a11
∆

, (3.11)

var(β̂BLUE, MERSS) = σ2 a22
∆

(3.12)

and

var(σ̂BLUE, MERSS) = σ2 a33
∆

(3.13)

and cov(α̂BLUE, MERSS , β̂BLUE, MERSS) = σ2 a12
∆

, cov(α̂BLUE, MERSS , σ̂BLUE, MERSS) =

σ2 a13
∆

and cov(β̂BLUE, MERSS , σ̂BLUE, MERSS) = 0.

In the special case where the continuous random variable is symmetric about zero, then

from David (1981) and Balakrishnan et al.(1991) we have

ηii = −η1i (3.14)

and

τii = τ1i. (3.15)

Use the formulas (3.14) and (3.15) for (3.8), (3.9) and (3.10), then we can obtain

α̂BLUE, MERSS =
1

∆∗

a∗11 n∑
j=1

m∑
i=1

τ−1
ii (xiij + y1ij) + a∗12

n∑
j=1

xj

m∑
i=1

τ−1
ii (xiij + y1ij)

 , (3.16)

β̂BLUE, MERSS =
1

∆∗

a∗12 n∑
j=1

m∑
i=1

τ−1
ii (xiij + y1ij) + a∗22

n∑
j=1

xj

m∑
i=1

τ−1
ii (xiij + y1ij)

 , (3.17)

σ̂BLUE, MERSS =
a∗33
∆∗

n∑
j=1

m∑
i=1

τ−1
ii ηii (xiij − y1ij), (3.18)

where

a∗11 = 4n
n∑

j=1

x2
j

m∑
i=1

τ−1
ii

m∑
i=1

τ−1
ii η2

ii
,
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a∗12 = −4n
n∑

j=1

xj

m∑
i=1

τ−1
ii

m∑
i=1

τ−1
ii η2

ii
,

a∗22 = 4n2
m∑
i=1

τ−1
ii

m∑
i=1

τ−1
ii η2

ii
,

a∗33 = 4

(
m∑
i=1

τ−1
ii

)2
n n∑

j=1

x2
j −

(
n∑

j=1

xj

)2


and

∆∗ = 8n
m∑
i=1

τ−1
ii η2

ii

(
m∑
i=1

τ−1
ii

)2
n n∑

j=1

x2
j −

(
n∑

j=1

xj

)2
 .

The variances and covariances of the estimators are

var(α̂BLUE, MERSS) = σ2 a
∗
11

∆∗ , (3.19)

var(β̂BLUE, MERSS) = σ2 a
∗
22

∆∗ (3.20)

and

var(σ̂BLUE, MERSS) = σ2 a
∗
33

∆∗ (3.21)

and cov(α̂BLUE, MERSS , β̂BLUE, MERSS) = σ2 a
∗
12

∆∗ and

cov(α̂BLUE, MERSS , σ̂BLUE, MERSS) = cov(β̂BLUE, MERSS , σ̂BLUE, MERSS) = 0.

§4 The relative efficiency of the BLUEs

Let {y1j , y2j , ..., ymj , ..., y2mj} (j = 1, 2, ..., n) be the simple random sample from Y for each

value of the predictor variable X = xj . Then BLUEs of parameters (α, β, σ) are respectively

obtained as below

α̂BLUE, SRS = ȳ − β̂BLUE, SRS x̄, (4.1)

β̂BLUE, SRS =

2m∑
i=1

n∑
j=1

(yij − ȳ) (xj − x̄)

2m
n

n n∑
j=1

x2
j −

(
n∑

j=1

xj

)2
 (4.2)

and

σ̂2
BLUE, SRS =

1

2mn− 2

2m∑
i=1

n∑
j=1

(
yij − α̂BLUE, SRS − β̂BLUE, SRSxj

)2
. (4.3)

We have for normal error structure

var(α̂BLUE, SRS) =

σ2
n∑

j=1

x2
j

2m

n n∑
j=1

x2
j −

(
n∑

j=1

xj

)2
 , (4.4)



YAO Dong-sen, et al. Parametric estimation for the simple linear regression model... 275

var(β̂BLUE, SRS) =
σ2

2m
n

n n∑
j=1

x2
j −

(
n∑

j=1

xj

)2
 , (4.5)

var(σ̂2
BLUE, SRS) =

σ4

mn− 1
(4.6)

and cov(α̂BLUE, SRS , β̂BLUE, SRS) = −
σ2

n∑
j=1

xj

2m

n n∑
j=1

x2
j −

(
n∑

j=1

xj

)2
 and

cov(α̂BLUE, SRS , σ̂2
BLUE, SRS) = cov(β̂BLUE, SRS , σ̂2

BLUE, SRS) = 0.

Combining (3.19), (3.20), (4.4) with (4.5), we can respectively obtain the efficiencies

α̂BLUE, MERSS with respect to (w.r.t.) α̂BLUE, SRS and β̂BLUE, MERSS w.r.t. β̂BLUE, SRS

eff(α̂BLUE, SRS , α̂BLUE, MERSS) =
var(α̂BLUE, SRS)

var(α̂BLUE, MERSS)
=

m∑
i=1

τ−1
ii

m
(4.7)

and

eff(β̂BLUE, SRS , β̂BLUE, MERSS) =
var(β̂BLUE, SRS)

var(β̂BLUE, MERSS)
=

m∑
i=1

τ−1
ii

m
. (4.8)

To calculate the efficiency of σ̂2
BLUE, MERSS w.r.t. σ̂2

BLUE, SRS , we use the well known result

on the approximate form of the sampling variance of a random sample standard deviation (see

Kendall et al., 1979, p. 46). This implies

var(σ̂BLUE, SRS) =
σ2

4 (mn− 1)
. (4.9)

Combining (3.21) with (4.9), we can obtain the efficiency σ̂BLUE, MERSS w.r.t. σ̂BLUE, SRS

eff(σ̂BLUE, SRS , σ̂BLUE, MERSS) =
n

2(mn− 1)

m∑
i=1

η2
ii
τ−1
ii . (4.10)

The following simulation result is calculated after 10000 times sampling.

Table 1. Efficiency of α̂BLUE, MERSS w.r.t. α̂BLUE, SRS and β̂BLUE, MERSS w.r.t.

β̂BLUE, SRS .

m efficiency m efficiency

2 1.2448 11 2.2557

3 1.4513 12 2.3144

4 1.5614 13 2.4004

5 1.7108 14 2.4657

6 1.8194 15 2.5135

7 1.9265 16 2.5657

8 2.0049 17 2.6211

9 2.0957 18 2.6693

10 2.1927 19 2.7287
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Table 2. Efficiency of σ̂BLUE, MERSS w.r.t. σ̂BLUE, SRS .

m n=5 n=7 n=10

2 0.1298 0.1303 0.1255

3 0.3140 0.3110 0.3036

4 0.5174 0.5037 0.4989

5 0.7207 0.7153 0.7024

6 0.9279 0.9245 0.9206

7 1.1364 1.1306 1.1174

8 1.3258 1.3281 1.3236

9 1.5533 1.5168 1.5317

10 1.7263 1.7097 1.7113

11 1.9148 1.9143 1.8990

12 2.1152 2.0884 2.0888

13 2.2790 2.2800 2.2624

14 2.4515 2.4338 2.4359

15 2.6381 2.6104 2.6241

16 2.8107 2.7727 2.7609

17 2.9504 2.9583 2.9447

18 3.1322 3.1238 3.1173

19 3.2974 3.2524 3.2414

From Table 1 and Table 2, we may be conclude the following:

(1) These efficiencies increase with the increase of m.

(2) α̂BLUE, MERSS is more efficient than α̂BLUE, SRS for m > 2.

(3) β̂BLUE, MERSS is more efficient than β̂BLUE, SRS for m > 2.

(4) σ̂BLUE, MERSS is more efficient than σ̂BLUE, SRS for m > 7.

(5) In conclusion, the BLUEs of α and β for the simple linear regression model under MERSS

are more efficient than that under SRS for m > 2.

(6) In conclusion, the BLUE of σ for the simple linear regression model under MERSS is more

efficient than that under SRS for m > 7.

(7) In conclusion, the BLUEs for the simple linear regression model under MERSS are more

efficient that under SRS for moderate m.

§5 Conclusions

RSS has previously proven advantageous for estimating population parameters compared

with nonparametric, maximum likelihood, and least squares estimation. In this paper, we have

obtained the BLUEs in the classes of linear combinations of the moving extremes ranked set

sample values for the simple linear regression models with replicated observations. The BLUEs

under MERSS are shown to be markedly more efficient for normal data when compared with

the BLUEs under simple random sampling. The estimation of parameters is the first step in
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the use of MERSS for the simple linear regression models. A further stage would be to extend

the use of MERSS methods to multiple and multivariate regression models.

References

[1] M T Al-Odat, M F Al-Saleh. A variation of ranked set sampling, Journal of Applied Statistical

Science, 2001, 10(2): 137-146.

[2] N Balakrishnan, C Cohen. Order Statistics and Inference: Estimation Methods, Academic Press,

San Diego, 1991.

[3] L Barabesi, A El-Sharaawi. The efficiency of ranked set sampling for parameter estimation,

Statistics and Probability Letters, 2001, 53(2): 189-199.

[4] M C M Barreto, V Barnett. Best linear unbiased estimators for the simple linear regression

model using ranked set sampling, Environmental and Ecological Statistics, 1999, 6(2): 119-133.

[5] W X Chen, M Y Xie, M Wu. Maximum likelihood estimator of the parameter for a continuous

one parameter exponential family under the optimal ranked set sampling, Journal of Systems

Science and Complexity, 2017, 30(6): 1350-1363.

[6] W X Chen, R Yang, D S Yao, C X Long. Pareto parameters estimation using moving extremes

ranked set sampling, Statistical Papers, 2019, https://doi.org/10.1007/s00362-019-01132-9.

[7] Z H Chen, Z D Bai, B K Sinha. Ranked set sampling, theory and applications, Lecture Notes in

Statistics, Springer, New York, 2004.

[8] H A David. Order Statistics, 2nd ed., John Wiley, New York, 1981.

[9] L K Halls, T R Dell. Trial of ranked set sampling for forage yields, Forest Science, 1966, 12(1):

22-32.

[10] X F He, W X Chen, W S Qian. Maximum likelihood estimators of the parameters of the log-

logistic distribution, Statistical Papers, 2020, 61(5): 1875-1892.

[11] X F He, W X Chen, R Yang. Log-logistic parameters estimation using moving extremes ranked

set sampling design, Applied Mathematics-A Journal of Chinese Universities (Series B), 2021,

36(1): 99-113.

[12] M G Kendall, A Stuart. The Advanced Theory of Statistics, Volume 1: Inference and Relation-

ship, 4th ed, Griffin, London, 1979.

[13] E H Lloyd. Generalized least-squares theorem, In Contributions to order statistics, A E Sarhan,

B G Greenberg (eds), (1992), John Wiley, New York, pp: 20-7, 1952.

[14] G A McIntyre. A method of unbiased selective sampling, using ranked sets, Australian Journal

of Agricultural Research, 1952, 3(4): 385-390.

[15] K Takahasi, K Wakimoto. On unbiased estimates of the population mean based on the sample

stratified by means of ordering, Annals of the Institute of Statistical Mathematics, 1968, 20(1):

1-31.

Department of Mathematics and Statistics , Jishou University, Jishou 416000, China.

Email: chenwangxue2017@163.com


