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Non-uniform Berry-Esseen bound by unbounded

exchangeable pairs approach

LIU Da-li1 LI Zheng2 WANG Han-chao3,∗ CHEN Zeng-jing4

Abstract. In this paper, a new technique is introduced to obtain non-uniform Berry-Esseen

bounds for normal and nonnormal approximations by unbounded exchangeable pairs. This

technique does not rely on the concentration inequalities developed by Chen and Shao [4,5] and

can be applied to the quadratic forms and the general Curie-Weiss model.

§1 Introduction

Since Charles Stein presented his ideas in the seminal paper [15], there have been a lot of

research activities around Stein’s method. Stein’s method is a powerful tool to obtain the ap-

proximate error of normal and non-normal approximations. The readers can refer to Chatterjee

[2] for recent developments of Stein’s method.

While several works on Stein’s method pay attention to the uniform error bounds, Stein’s

method showed to be powerful on the non-uniform error bounds, too. By Stein’s method, Chen

and Shao [4,5] obtained non-uniform Berry-Esseen bounds for independent or locally dependent

random variables. The key point in their works is the concentration inequality, which also has

strong connection with another approach called the exchangeable pairs approach.

The exchangeable pairs approach turned out to be an important topic within Stein’s method.

Let W be the random variable under study. The pair (W,W ′) is called an exchangeable pair

if (W,W ′) and (W ′,W ) share the same distribution. With ∆ = W − W ′, Rinott and Rotar

[12], Shao and Su [11] obtained a Berry-Esseen bound of the normal approximation when ∆

is bounded. If ∆ is unbounded, Chen and Shao [6] provided a Berry-Esseen bound and got

the optimal rate for an independence test. The concentration inequality plays a crucial role

in previous studies, such as Shao and Su [11] , Chen and Shao [6]. Recently, Shao and Zhang
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[13] made a big step for unbounded ∆ and without using the concentration inequality. They

obtained a simple bound as seen from the following result.

Theorem 1. (Shao and Zhang [13]) Let (W,W ′) be an exchangeable pair, ∆ = W −W ′, and

the relation

E(∆|W ) = λ(W +R), a.s.,

holds for some constant λ ∈ (0, 1) and a random variable R . Then,

sup
z∈R

∣∣P (W ≤ z)− Φ(z)
∣∣

≤ E
∣∣1− 1

2λ
E(∆2|W

)
|+ 1

λ
E
∣∣E(

∆∆∗|W
)∣∣+ E|R|, (1)

where Φ(z), z ∈ R, is the standard normal ditribution function, ∆∗(W,W ′) is a random variable

satisfying ∆∗(W,W ′) = ∆∗(W ′,W ) and ∆∗ ≥ |∆|, a.s. .

In this paper, inspired by the idea of Shao and Zhang [13], we extend their results and

get a non-uniform Berry-Esseen bound for unbounded exchangeable pairs by combining new

techniques. In addition, Chatterjee and Shao [3] introduced a new approach for non-normal

approximation by Stein’s method in the case of bounded ∆. When ∆ is unbounded, Shao and

Zhang [13] obtained Berry-Esseen bounds for non-normal approximation. In this paper, we

extend their result to the non-uniform case.

The main contribution of this paper is threefold. First, we introduce a new technique

to obtain non-uniform Berry-Esseen bounds for unbounded exchangeable pairs. Our proof

does not rely on the concentration inequality. Second, we present a non-uniform Berry-Esseen

bound for non-normal approximation. As far as we know, there are only a few results in this

area. Shao, Zhang and Zhang [14] obtained a Cramér-type moderate deviation for non-normal

approximation. At last, we apply our results to quadratic forms and the general Curie-Weiss

model.

The paper is organized as follows. We present the main result in Section 2. We give some

technical lemmas and the proof of the main result in Section 3. The applications of our result

are collected in Section 4.

§2 Main result

In this section, we present some notions and notations about Stein’s method. Further details

can be found in Shao and Zhang [13]. We then state our main result.

Let the function g(x), x ∈ R, of the class C2, satisfy the following conditions:

(A1) g(x) is non-decreasing, and xg(x) ≥ 0 for x ∈ R;

(A2) g′(x) is abusolutely continuous and 2(g′(x))2 − g(x)g′′(x) ≥ 0 for all x ∈ R;

(A3) limx↓−∞ g(x)p(x) = 0 and limx↑+∞ g(x)p(x) = 0 , where

p(x) = c1e
−G(x), G(x) =

∫ x

0

g(t)dt, x ∈ R, (2)
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and c1 is the constant such that
∫ +∞
−∞ p(x)dx = 1 .

Let us note that if g(x) = x, then p(x), x ∈ R, is the standard normal density function.

Let F (z), z ∈ R, be the distribution function whose density function is p(z) as defined

in (2). For a fixed z ∈ R, let fz(x) denote the solution of Stein’s equation, here and below

f ′
z(x) =

d
dxfz(x):

f ′
z(x)− g(x)fz(x) = I(x ≤ z)− F (z), x ∈ R,

I(·) is the indicator function.

By Chatterjee and Shao [3],

fz(x) =


F (x)(1− F (z))

p(x)
, x ≤ z,

F (z)(1− F (x))

p(x)
, x > z.

From Shao and Zhang [13], we know that if (A1)∼(A3) hold, then, fz(x) has the following

properties, for any fixed z ∈ R:

(B1) 0 ≤ fz(x) ≤
1

c1
, x ∈ R;

(B2) ∥f ′
z∥ ≤ 1 (∥·∥ is the sup norm.) ;

(B3) F (z)− 1 ≤ g(x)fz(x) ≤ F (z) ;

(B4) g(x)fz(x) is non-decreasing in x.

For a random variable W , applying Stein’s equation to it and taking expectation on both

sides, we have:

P (W ≤ z)− F (z) = Ef ′
z(W )− Eg(W )fz(W ), z ∈ R.

Before presenting our main result, we introduce another condition we want g(x) to satisfy:

(A4) There is a number τ ∈ (0, 1) and a positive constant Kτ such that

g(x)

g(τx)
≤ Kτ , for all x ∈ R.

There is a large class of functions g satisfying condition (A4), besides the conditions (A1)∼(A3).

A typical example is g(x) = sgn(x)|x|α, α ≥ 1 (α is a real number).

Let X be a random vector in Rn and W = φ(X) the random variable of interest (φ is a

certain measurable function). Denote by F (z), z ∈ R, the distribution function whose density

function is defined by (2). Now we present our main result.

Theorem 2. Let (W,W ′) be an exchangeable pair, ∆ = W −W ′, and let the following relation

be satisfied

E(∆|X) = λ(g(W ) +R) a.s., (3)
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for some constant λ ∈ (0, 1) and a random variable R. Assume that g(x), x ∈ R, satisfies (A1)
∼(A4) and Eg2(W ) < ∞. Then, for any z ∈ R,∣∣P (W ≤ z)− F (z)

∣∣ ≤ C

1 + |g(z)|

{√
E
∣∣(1− 1

2λ
E(∆2|X))

∣∣2 + 1

λ

√
E|E(∆∆∗|X)|2 + E|R|

}
.

(4)

Here C is a constant depending on τ and Eg2(W ), ∆∗ is a random variable such that ∆∗(W,W ′)

= ∆∗(W ′,W ) and ∆∗ ≥ |∆| a.s..

Remark 1. Shao and Zhang [13] provided the Berry-Esseen bound for non-normal approxima-

tion similar to (1). Theorem 2 is a non-uniform refinement of their result.

Remark 2. Let W =
n∑

i=1

Xi, where {Xi, i = 1, ..., n} are independent random variables with

zero mean and EW 2 = 1. Our general result (4) cannot directly cover the following classical

result in Chen and Shao [?]: there is an absolute constant C such that for any z ∈ R,∣∣∣P (W ≤ z)− Φ(z)
∣∣∣ ≤ C

n∑
i=1

{EX2
i I(|Xi| > 1 + |z|)

(1 + |z|)2
+

E|Xi|3I(|Xi| ≤ 1 + |z|)
(1 + |z|)3

}
. (5)

Here, Φ(z), z ∈ R is the standard normal distribution function. However, the technique ”leave

one out” to deal with sums of independent variables is very similar to the exchangeable pair

technique. If we begin with (9) (see in the proof of the main result) and use some results from

Chen and Shao [4], it is not difficult to obtain (5) . In some applications such as the quadratic

forms treated later in this paper, where relation (3) is satisfied with R = 0 and g(x) = x, the

non-uniform part C
1+|z| in (4) can be improved significantly by replacing it with C

(1+|z|)2 .

§3 Proof of Theorem 2

Proof. In what follows, C is used to denote a constant whose value may change at each occur-

rence.

Since (W,W ′) and (W ′,W ) have the same distribution and E(∆|X) = λ(g(W ) + R), we

obtain

0 = E(W −W ′)(fz(W ) + fz(W
′))

= E(W −W ′)(2fz(W ) + fz(W
′)− fz(W ))

= 2λE(g(W )fz(W )) + 2λEfz(W )R− E∆

∫ 0

−∆

f ′
z(W + t)dt.

Thus Eg(W )fz(W ) = 1
2λE∆

∫ 0

−∆
f ′
z(W + t)dt− Efz(W )R. Then

Ef ′
z(W )− Eg(W )fz(W )

= Ef ′
z(W )− 1

2λ
E∆

∫ 0

∆

f ′
z(W + t)dt+ Efz(W )R
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= Ef ′
z(W )

(
1− 1

2λ
∆2

)
− 1

2λ
E∆

∫ 0

−∆

f ′
z(W + t)− f ′

z(W )dt+ Efz(W )R

= Ef ′
z(W )

(
1− 1

2λ
E(∆2|X)

)
− 1

2λ
E∆

∫ 0

−∆

f ′
z(W + t)− f ′

z(W )dt+ Efz(W )R.

With the notation J = 1
2λE∆

∫ 0

−∆
f

′

z(W + t)− f
′

z(W )dt, we find that

J =
1

2λ
E
(
∆

∫ 0

−∆

g(W + t)fz(W + t)− g(W )fz(W )dt
)

+
1

2λ
E
(
∆

∫ 0

−∆

I(W + t ≤ z)− I(W ≤ z)dt
)

= J1 + J2,

where

J1 =
1

2λ
E
(
∆

∫ 0

−∆

g(W + t)fz(W + t)− g(W )fz(W )dt
)
,

J2 =
1

2λ
E
(
∆

∫ 0

−∆

I(W + t ≤ z)− I(W ≤ z)dt
)
.

From Shao and Zhang [13], it is known that

|J1| ≤
1

2λ
E∆∆∗g(W )fz(W ) (6)

and

|J2| ≤
1

2λ
E∆∆∗I(W > z). (7)

Observe that

E∆∆∗ = 0.

Then we obtain

|J2| ≤
1

2λ
E∆∆∗(I(W > z)− 1

)
=

1

2λ
E∆∆∗I(W ′ ≤ z). (8)

Combining (6) and (7), for z > 0, we have∣∣P (W ≤ z)− F (z)
∣∣

≤ E
∣∣∣f ′

z(W )
(
1− 1

2λ
E(∆2|X)

)∣∣∣+ 1

2λ
E
∣∣∣g(W )fz(W )E(∆∆∗|X)

∣∣∣
+

1

2λ
E
∣∣E(∆∆∗|X)I(W > z)

∣∣+ E|fz(W )R|. (9)

For z ≤ 0, using (6) and (8), we have∣∣P (W ≤ z)− F (z)
∣∣

≤ E
∣∣∣f ′

z(W )
(
1− 1

2λ
E(∆2|X)

)∣∣∣+ 1

2λ
E
∣∣∣g(W )fz(W )E(∆∆∗|X)

∣∣∣
+

1

2λ
E
∣∣E(∆∆∗|X)I(W ′ ≤ z)

∣∣+ E|fz(W )R|. (10)

The only difference between (9) and (10) is that the expectation E
∣∣E(∆∆∗|X)I(W > z)

∣∣ is
replaced by E

∣∣E(∆∆∗|X)I(W ′ ≤ z)
∣∣.

To prove (4), we first assume that z > 0.
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Using Cauchy’s inequality to the fist term of (9) yields

E
∣∣∣f ′

z(W )
(
1− 1

2λ
E(∆2|X)

)∣∣∣ ≤ √
E|f ′

z(W )|2 ·
√
E
∣∣∣(1− 1

2λ
E(∆2 | X))

∣∣∣2. (11)

We will show now that √
E|f ′

z(W )|2 ≤ C

1 + |g(z)|
. (12)

Since g(x), x ∈ R, satisfies (A4), for the τ in (A4) , we have

E|f ′
z(W )|2 = E|f ′

z(W )|2I(W ≤ 0) + E|f ′
z(W )|2I(0 < W ≤ τz) + E|f ′

z(W )|2I(W > τz).

Recall that for x ≤ 0,

f ′
z(x) = g(x)fz(x) + 1− F (z) =

(F (x)g(x)

p(x)
+ 1

)
· (1− F (z)).

Because g(x)fz(x) is increasing in x ∈ (−∞, 0) and for fixed z, F (z) − 1 ≤ g(x)fz(x) ≤ F (z),

we see that

−1 ≤ F (x)g(x)

p(x)
≤ F (0)g(0)

p(0)
= 0.

Thus we conclude that F (x)g(x)
p(x) + 1 is bounded on (−∞, 0) and it does not depend on z. We

notice further that

1− F (z) =

∫ ∞

z

p(y)dy ≤
∫ ∞

z

g(y)

g(z)
p(y)dy ≤ p(z)

g(z)
. (13)

Hence

E|f ′
z(W )|2I(W ≤ 0) ≤ C(1− F (z))2 ≤ C

(
p(z)

g(z)

)2

≤ C

g2(z)
. (14)

By (13), we have

E|f ′
z(W )|2I(0 < W ≤ τz) = EI(0 < W ≤ τz) · (1 + 1

c1
F (W ) · g(W )eG(W )) · (1− F (z))2

≤ C
(
1 + g(τz)exp

(∫ τz

0

g(y)dy
))2

· exp
(
− 2

∫ z

0

g(y)dy
)
· 1

g2(z)
.

We notice that

g(τz)exp

(∫ τz

0

g(y)dy

)
· exp

(
−
∫ z

0

g(y)dy

)
= g(τz)exp

(
−
∫ z

τz

g(y)dy

)
≤ g(τz)e−(1−τ)zg(τz)

≤ C.

Therefore E|f ′
z(W )|2I(0 < W ≤ τz) ≤ C

g2(z)
and C depends on τ.

For the term E|f ′
z(W )|2I(W > τz), by (B3) and (A4), we find, by Markov’s inequality, that

E|f ′
z(W )|2I(W > τz) ≤ P (W > τz)

≤ Eg2(W )

g2(τz)

≤ C

g2(τz)
=

g2(z)

g2(τz)
· C

g2(z)

≤ K2
τ · C

g2(z)
.

Thus E|f ′
z(W )|2 ≤ C

g2(z) for z > 0 with a constant C depending on τ and Eg2(W ).



262 Appl. Math. J. Chinese Univ. Vol. 36, No. 2

The next is to use the fact that ∥f ′

z∥ ≤ 1 and see that√
E | f ′

z(W ) |2 ≤ min
{
1,

C

|g(z)|

}
≤ C

1 + |g(z)|
,

which complete the proof of (12) for z > 0. By (11) and (12), we have

E
∣∣∣f ′

z(W )
(
1− 1

2λ
E(∆2|X)

)∣∣∣ ≤ C

1 + |g(z)|
·
√

E
∣∣∣(1− 1

2λ
E(∆2 | X))

∣∣∣2. (15)

Using Cauchy’s inequality, for the second term of (9), we find
1

2λ
E
∣∣∣g(W )fz(W )E(∆∆∗|X)

∣∣∣ ≤ √
E|g(W )fz(W )|2 · 1

2λ

√
E|E(∆∆∗ | X)|2. (16)

We will show that √
E|g(W )fz(W )|2 ≤ C

1 + |g(z)|
. (17)

Since we know that g(x)fz(x) = f ′
z(x)−

(
I(x ≤ z)−F (z)

)
, ∥gfz∥ ≤ 1 and E|f ′

z(W )|2 ≤ C
g2(z) ,

we only need to show that E
(
I(W ≤ z)− F (z)

)2 ≤ C
g2(z) .

For z > 0,

E
(
I(W ≤ z)− F (z)

)2
= E

(
1− F (z)

)2
I(W ≤ z) + F 2(z)I(W > z) ≤ C

g2(z)
.

Thus we have proved (17) for z > 0. By (16) and (17), we have

1

2λ
E
∣∣∣g(W )fz(W )E(∆∆∗|X)

∣∣∣ ≤ C

1 + |g(z)|
· 1

2λ

√
E|E(∆∆∗ | X)|2. (18)

For the third term of (9), we obtain

1

2λ
E
∣∣E(∆∆∗|X)I(W > z)

∣∣ ≤ √
P (W > z) · 1

2λ

√
E
∣∣E(∆∆∗|X)

∣∣2. (19)

By Markov’s inequality,

P (W > z) ≤ Eg2(W )

g2(z)

≤ C

g2(z)
.

Then , (19) becomes

1

2λ
E
∣∣E(∆∆∗|X)I(W > z)

∣∣ ≤ C

1 + |g(z)|

√
1

2λ
E
∣∣E(∆∆∗|X)

∣∣2. (20)

From Shao, Zhang and Zhang [14], we know that

∥fz∥ ≤ min
{ 1

c1
,

1

|g(z)|

}
(21)

for z ∈ R. For the last term of ( 9), we have

E|fz(W )R| ≤ C

1 + |g(z)|
E|R|. (22)

To show (22 ) holds, it suffices to consider z ≥ 0 where |g(z)| = g(z). There is z0 ∈ (0,+∞]

such that

min
{
c1,

1

g(z)

}
=

c1, z ≤ z0,

1
g(z) , z > z0.

Since 1+g(z)
g(z) is bounded for z > z0,

1
g(z) = g(z)+1

g(z) · 1
1+g(z) ≤ C

1+g(z) for z > z0. Also, for
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0 ≤ z ≤ z0, c1 = c1 · (1 + g(z)) · 1
1+g(z) ≤ C

1+g(z) . Thus, min
{
c1,

1
|g(z)|

}
≤ C

1+|g(z)| . Then we

have

E|fz(W )R| ≤ ∥fz∥E|R| ≤ min
{
c1,

1

|g(z)|

}
· E|R| ≤ C

1 + |g(z)|
E|R|.

From (9), (15), (18), (20) and (22), it follows that we have proved (4) for z > 0.

For z ≤ 0, we take (10) and use Cauchy’s inequality. For the third term of ( 10), it is easy to

see that

1

2λ
E
∣∣E(∆∆∗|X)I(W ′ ≤ z)

∣∣ ≤ √
P (W ′ ≤ z)

√
1

2λ
E
∣∣E(∆∆∗|X)

∣∣2
≤ C

1 + |g(z)|

√
1

2λ
E
∣∣E(∆∆∗|X)

∣∣2. (23)

For the last term of (10), in view of (21),

E|fz(W )R| ≤ C

1 + |g(z)|
E|R|. (24)

Thus we only need to prove (12) and (17) for z ≤ 0.

For z ≤ 0, we have, for any τ ∈ (0, 1), that

E|f ′
z(W )|2 = E|f ′

z(W )|2I(W ≤ τz) + E|f ′
z(W )|2I(τz ≤ W ≤ 0) + E|f ′

z(W )|2I(W > 0).

By the same arguments as above, we obtain

F (z) ≤ p(z)

|g(z)|
, z ≤ 0. (25)

Then following similar steps as in the proof for z ≥ 0, we establish (12) for z ≤ 0. To prove

(17) for z ≤ 0, it suffices to show that E
(
I(W ≤ z)− F (z)

)2 ≤ C/|g(z)|2 for z ≤ 0. Indeed, by

(25) and Markov’s inequality,

E
(
I(W ≤ z)− F (z)

)2 ≤ 2P (W ≤ z) + 2F 2(z) ≤ C

|g(z)|2
.

Let us summarize our findings:(9), (15), (18), (20) and (22) show that the bound (4) is true for

z > 0, while (12), (17) proved for z ≤ 0, and (24), (25) show that this bound holds for z ≤ 0.

Theorem 2 is proved.

§4 Applications

4.1 Quadratic forms

Let X1, X2, ..., Xn be i.i.d. random variables with zero mean, unit variance and a finite

fourth moment. Let A = (aij)1≤i,j≤n be a real symmetric matrix with aii = 0 and let

Wn =
1

σn

∑
i̸=j

aijXiXj , σ2
n = 2

n∑
i=1

n∑
j=1

a2ij .

This is a classical example which has been widely discussed in the literature. For example, de

Jong [7] obtained the asymptotic normality of Wn, Chatterjee [1] gave an L1 bound and Götze

and Tikhomirov [10] studied the Kolmogorov distance between the distribution of Wn and the
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distribution of the same quadratic forms with Xij repalced by corresponding Gaussian random

variables. Shao and Zhang [13] established the following bound:

sup
z∈R

∣∣P (Wn ≤ z)− Φ(z)
∣∣ ≤ CEX4

1

σ2
n

√∑
i

(∑
j

a2ij

)2

+

√∑
i,j

(∑
k

(aikajk)2
) .

The next theorem is a non-uniform refinement of this bound.

Theorem 3. Let {X1, X2, ..., Xn} be i.i.d random variables with zero mean, unit variance and

a finite fourth moment. Let A = (aij)
n
i,j=1 be a real symmetric matrix with aii = 0 for all

1 ≤ i ≤ n. Put Wn =
1

σn

∑
i ̸=j aijXiXj and σ2

n = 2
∑n

i=1

∑n
j=1 a

2
ij. Then,

∣∣P (Wn ≤ z)− Φ(z)
∣∣ ≤ CEX4

1

(1 + |z|)2σ2
n

√∑
i

(∑
j

a2ij

)2

+

√∑
i,j

(∑
k

(aikajk)2
) , (26)

where C is an absolute constant depending on EX4
1 .

Proof. Let (X ′
1, X

′
2, ..., X

′
n) be an independent copy of (X1, X2, ..., Xn) and θ a disrete uniform-

ly distributed random variable over the set {1, 2, ..., n} and independent of all oher random

variables. Define

W ′
n = Wn − 2

σn

n∑
j=1

aθjXθXj +
2

σn

n∑
j=1

aθjX
′
θXj .

Then (W,W ′) is an exhcangeable pair. It is easy to see that

∆ = Wn −W ′
n =

2

σn

n∑
i=1

I{θ = i}
n∑

j=i

aijXj(Xi −X ′
i)

and

E(∆|X) =
2

n
Wn.

These relations imply that condition (3) is satisfied with g(x) = x, λ = 2
n and R = 0. By Shao

and Zhang [13],

E
∣∣∣1− 1

2λ
E(∆2|X)

∣∣∣2 ≤ Cσ−4
n

(
E(X4

1 )
)2

 n∑
i=1

( n∑
j=1

a2ij

)2

+
n∑

i,j=1

( n∑
k=1

(aikajk)
2
) (27)

and

V ar
( 1

λ
E(∆|∆||X)

)
≤ Cσ−4

n E2(X4
1 )

n∑
i

( n∑
j

a2ij

)2

. (28)

Note that EX4
1 < ∞ and EW 4

n < C for any n = 1, 2 · · · . Then,

P (|Wn| > z) ≤ EW 4
n

z4
∧ 1 = min{1, C/z4} ≤ C

(1 + |z|)4
.
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For τ involved in (A4), we can take, for example τ = 1
2 and derive that

E|f ′
z(Wn)|2I(0 < W ≤ 1

2
z) ≤

[
C
(
1 + ze

∫ z/2
0 ydy

)2 · e−2
∫ z
0

ydy · 1

z2

]
∧ 1

≤
[
C
(
e−z2

/z2 + e−3z2/4
)]

∧ 1

=
[
C
(
z2e−z2

/z4 + z4e−3z2/4/z4
)]

∧ 1

≤ min{1, C/z4}

≤ C

(1 + |z|)4
.

By( 14), we have

E|f ′
z(Wn)|2I(W ≤ 0) ≤ C(

p(z)

g(z)
)2 = Ce−z2/2/z2 = Cz2e−z2/2/z4 ≤ C/z4.

Then,

E|f ′
z(Wn)|2 ≤ C

(1 + |z|)4
.

Using the same arguments as those in the proof of the main result, we find that√
E|f ′

z(Wn)|2 ≤ C

(1 + |z|)2
,√

E|Wnfz(Wn)|2 ≤ C

(1 + |z|)2
.

Hence the bound C
1+|z| in (4) can be improved replacing it by C

(1+|z|)2 . Thus, referring to

Theorem 2, in view of (27) and (28), we complete the proof of this theorem.

4.2 General Curie-Weiss model

The Curie-Weiss model is important in statistical physics and has been extensively discussed

in the literature. For some history and the first asymptotic results, the reader is referred to Ellis

and Newman [8], [9]. Using the technique of exchangeable pair approach, Chatterjee and Shao

[3] studied a kind of Curie-Weiss model. Shao and Zhang [13] studied a general Curie-Weiss

model and got the optimal convergence rate. In this subsection, we refine the bound in Shao

and Zhang [13] to the non-uniform case.

Let L(x),x ∈ R, be a distribution function satisfying the conditions:

∫ +∞

−∞
xdL(x) = 0 and

∫ +∞

−∞
x2dL(x) = 1 (29)

For a positive integer k and a real number λ, say that L be of type k with strength λ, if∫ +∞

−∞
xjdΦ(x)−

∫ +∞

−∞
xjdL(x) =

0, for j = 1, · · · , 2k − 1,

λ, for j = 2k,

where, to recall that Φ(x),x ∈ R, is the standard normal distribution function.

Let (X1, ..., Xn) be a random vector with joint distribution function Pn,β(x), x = (x1, ..., xn) ∈
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Rn, such that

dPn,β(x) =
1

Kn
exp

(β(x1 + ...+ xn)
2

2n

) n∏
i=1

dL(xi) (30)

where Kn is the normalizing constant. Let ξ be a random variable with distribution function

L. Moreover, assume that:

(1) for 0 < β < 1, there exists a constant b > β such that

Eetξ ≤ et
2/2b, t ∈ R. (31)

(2) for β = 1, there exist constants b0 > 0, b1 > 0 and b2 > 1 such that:

Eetξ ≤

exp(t2/2− b1t
2k), |t| ≤ b0,

exp(t2/2b2), |t| > b0.
(32)

We have the following results:

Theorem 4. Suppose that the distribution function of the random vector (X1, X2, ..., Xn) is

given by (30), where L satisfies (29) and let Sn = X1 + · · ·+Xn.

(i) If 0 < β < 1 and (31) is satisfied, Wn = Sn/
√
n. Then∣∣P (Wn ≤ z)− F1(z)

∣∣ ≤ C

1 + (1− β)|z|
· 1√

n
, (33)

where F1(z), z ∈ R, is the distribution function of a random variable Z1 ∼ N (0, 1
1−β ) and C is

a constant depending on b and β.

(ii) If β = 1, L is of type k, (32) holds and Wn = Sn/n
1−1/2k, then∣∣P (Wn ≤ z)− Fk(z)

∣∣ ≤ C

1 + 2kc2|z|2k−1
· 1

n1/2k
, (34)

where C is a constant depending on b0, b1, b2 and k. Fk(z), z ∈ R, is the distribution function

whose density function is pk(z) = c1e
−c2y

2k

, c2 =
H(2k)(0)

(2k)!
, c1 is the normalizing constant,

and

H(s) =
s2

2
− ln

(∫ +∞

−∞
exp(sx)dL(x)

)
, s ∈ R.

.

Proof. Recall that Sn =
n∑

i=1

Xi. We first construct an exchangeable pair as follows. For a

fixed i, 1 ≤ i ≤ n, given {Xj , j ̸= i}, let X ′
i be a random variable which is conditionally

independent of Xi and has the same conditional distribution as Xi. Let θ be a random index

unformly distributed over {1, · · · , n} and independent of all other random variables. Let S′
n =

Sn −Xθ +X ′
θ. Then (Sn, S

′
n) is an exhangeable pair.

When 0 < β < 1, let Wn = Sn/
√
n and W ′

n = S′
n/

√
n. Then (Wn,W

′
n) is an exchangeable
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pair. By Shao and Zhang [13], the following relations are satisfied:

E(Wn −W ′
n|X) =

1

n

(
(1− β)Wn +

√
nR2

)
; (35)

E|R2| ≤ Cn−1/2; (36)

E
∣∣∣ 1
2λ

E((Wn −W ′
n)

2|X)− 1
∣∣∣2 ≤ Cn−1; (37)

E
∣∣∣ 1
2λ

E((Sn − S′
n)|Sn − S′

n||X)
∣∣∣2 ≤ n−1. (38)

Here C depends on β and b. Thus (3) is satisfied with g(x) = (1− β)x, and λ = 1
n . Using (36),

(37), (38) and Theorem 2 , we obtained (33).

When β = 1 , recall that Wn = Sn/n
1−1/2k and define W ′

n = S′
n/n

1−1/2k, so (Wn,W
′
n) is

an exchangeable pair. By Shao and Zhang [13], we obtain the following:

E(Wn −W ′
n|X) = n−2+1/k

(H(2k)(0)

(2k − 1)!
W 2k−1

n + n−1+1/2kR1

)
;

E|R1| ≤ Cn−1/2k; (39)

E
∣∣∣ 1
2λ

E((Wn −W ′
n)

2|X)− 1
∣∣∣2 ≤ Cn−1/k; (40)

E
∣∣∣ 1
2λ

E((Wn −W ′
n)

2|X)− 1
∣∣∣2 ≤ Cn−1. (41)

Here C depends on β and b. Thus g(x) = H(2k)(0)
(2k−1)! x

2k−1 = 2kc2x
2k−1 and λ = n−2+ 1

2k . By

(39),(40), (41) and Theorem 2, we obtain (34).

Acknowledgement

We thank Prof. Qiman Shao for helpful comments and suggestions.

References

[1] S Chatterjee. A new method of normal approximation, Ann Probab, 2008, 36: 1584-1610.

[2] S Chatterjee. A short survey of Stein’s method, Proceedings of the International Congress of

Mathematicians-Seoul, 2014, 2014, IV: 1-24.

[3] S Chatterjee, Q Shao. Nonnormal approximation by Stein’s method of exchangeable pairs with

application to the Curie-Weiss model, Ann Appl Probab, 2014, 21: 464-483.

[4] L Chen, Q Shao. A non-uniform Berry-Esseen bound via Stein’s method, Probab Theory Related

Fields, 2001, 32: 1985-2028.

[5] L Chen, Q Shao. Normal approximation under local dependence, Ann Probab, 2004, 20: 236-254.

[6] Y Chen, Q Shao. Berry-Esseen inequality for unbounded exchangeable pairs, Probability approx-

imations and beyond, Lect Notes Stat, Springer, New York, 2012, 205: 13-30.

[7] P de Jong. A central limit theorem for generalized quadratic forms, Probab Theory Related

Fields, 1987, 75: 261-277.



268 Appl. Math. J. Chinese Univ. Vol. 36, No. 2

[8] R Ellis, C Newman. Limit theorems for sums of dependent random variables occurring in statis-

tical mechanics, Z Wahrsch Verw Gebiete, 1978, 44: 117-139.

[9] R Ellis, C Newman. The statistics of Curie-Weiss models, J Statist Phys, 1978, 19: 149-161.

[10] F Götze, A Tikhomirov. Asymptotic distribution of quadratic forms, Ann Probab, 1999, 27:

1072-1098.

[11] Q Shao, Z Su. The Berry-Esseen bound for character ratios, Proc Amer Math Soc, 2006, 134:

2153-2159.

[12] Y Rinott, V Rotar. On coupling constructions and rates in the CLT for dependent summands

with applications to the antivoter model and weighted U-statistics, Ann Appl Probab, 1997, 7:

1080-1105.

[13] Q Shao, Z Zhang. Berry-Esseen bounds of normal and nonnormal approximation for unbounded

exchangeable pairs, Ann Probab, 2019, 47: 61-108.

[14] Q Shao, M Zhang, Z Zhang. Cramér-type moderate deviation theorems for non-normal approxi-

mation, 2019, arXiv:1809.07966.

[15] C Stein. A bound for the error in the normal approximation to the distribution of a sum of

dependent random variables, Proceedings of the Sixth Berkeley Symposium on Mathematical

Statistics and Probability, Probability theory, 1972, II: 583-602.

1Institute for Financial Studies, Shandong University, Jinan 250100, China.
2School of Mathematics, Shandong University, Jinan 250100, China.
3Institute for Financial Studies, Shandong University, Jinan 250100, China.
4School of Mathematics, Shandong University, Jinan 250100, China.

Email: wanghanchao@sdu.edu.cn


