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Central limit theorem for linear processes generated by

IID random variables under the sub-linear expectation

LIU Wei ZHANG Yong∗

Abstract. In this paper, we investigate the central limit theorem and the invariance principle

for linear processes generated by a new notion of independently and identically distributed

(IID) random variables for sub-linear expectations initiated by Peng [19]. It turns out that

these theorems are natural and fairly neat extensions of the classical Kolmogorov’s central limit

theorem and invariance principle to the case where probability measures are no longer additive.

§1 Introduction

Based on the framework of classical probability theory established by Kolmogorov, proba-

bility and expectation are both linear. Classical limit theorems only hold in the case of model

certainty. Motivated by modeling uncertainty in practice, Peng ( [16]- [21]) introduced a new

notion of sub-linear expectation. As an alternative to the traditional probability/expectation,

capacity/sub-linear expectation has been studied in many fields such as statistics, finance, eco-

nomics, and measures of risk (see Denis and Martini [9], Gilboa [7], Marinacci [14], Peng [16]

etc.). Peng ( [16]- [21]) introduced the reasonable framework of the sub-linear expectation of

random variables in a general function space by relaxing the linear property of the classical

linear expectation to the sub-additivity and positive homogeneity. In addition, the notion of in-

dependent identically distributed (IID for short) random variable under sub-linear expectation

is introduced. He also introduced the notion of G-normal distribution and G-Brownian motion

as the counterpart of normal distribution and Brownian motion in linear case, respectively. G-

expectation space is the most important sub-linear expectation space introduced by Peng [18],

which takes the role of Wiener space in classical.
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The classical central limit theorem (CLT for short) is a fundamental result in probability

theory. In recent years, the limit theorems of the sub-linear expectation have received more and

more attention and extensive research. Peng [19] initiated the CLT for sub-linear expectation for

a sequence of independent identical distribution random variables with finite (2+α)-moments

for some α > 0. The CLT for sub-linear expectation has gotten considerable development. Hu

and Zhang [5] obtained a CLT for capacity. Hu [6] extended Pengs CLT by weakening the as-

sumptions of test functions. Hu and Zhou [24] presented some multi-dimensional CLTs without

assumption of identical distribution. Li [23] proved a CLT for sub-linear expectation for a se-

quence of m-dependent random variables. Rokhlin [3] gave a CLT under the Lindeberg condition

under classical probability with variance uncertainty. Zhang [10] gained a CLT for sub-linear

expectation under a moment condition weaker than (2+α)-moments. Zhang [11] established a

martingale CLT and functional CLT for sub-linear expectation under the Lindeberg condition.

Wu and Chen [15] obtained a general invariance principle of G-Brownian motion for the law of

the iterated logarithm for continuous bounded independent and identically distributed random

variables in G-expectation space. Zhang [12] proved a new Donsker’s invariance principle for

independent and identically distributed random variables under the sub-linear expectation.

As we all know, the linear processes are specially important in time series analysis and

they arise from a wide variety of contexts (see, e.g., Hannan [4]). Applications to economics,

engineering and physical sciences are extremely broad and a vast amount of literature is devoted

to the study on linear processes under a variety of circumstances.

A natural question is: Can the classical CLT and invariance principle for linear processes be

generated by IID random variables under Peng’s framework? The main purpose of this paper is

to establish a central limit theorem and an invariance principle for linear processes generated by

IID random variables under the sub-linear expectation. The discovered phenomenon plays the

same important role in the theory of sub-linear expectation as that of the CLT and invariance

principle in classic probability theory. In the classical case, the CLT of partial sum is established

by decomposing the linear process. We will find that this way is also valid for proving CLT for

linear process in the sub-linear expectation space, though there are some differences. The main

difference is that the probability space (Ω,F , P ) of Kolmogorov probability axiom system is

replaced by the sub-linear expectation space (Ω,H, Ê). Intuitively, it is sub-linear expectation

that plays a decisive role in our proof.

Our paper is organized as follows: we introduce some basic settings and notations in Section

2. In Section 3, based on the framework introduced by Peng ( [16]- [21]), the main results and

proofs are given. C denotes a positive constant, which may take different values whenever it

appears in different expressions.

§2 Basic settings and lemmas

We use the framework and notation of Peng ( [16]- [21]). Let (Ω,F) be a given measurable

space. Let H be a linear space of real functions defined on Ω such that if X1, X2, ..., Xn ∈ H



LIU Wei, ZHANG Yong. Central limit theorem for linear processes generated by... 245

then φ(X1, X2, ..., Xn) ∈ H for each φ ∈ Cl,Lip(Rn) where φ ∈ Cl,Lip(Rn) denotes the linear

space of local Lipschitz continuous functions φ satisfying

|φ(x)− φ(y)| ≤ C(1 + |x|m + |y|m)|x− y|, ∀x, y ∈ Rn,

for some C > 0, m ∈ N depending on φ. H contains all IA where A ∈ F . We also denote

φ ∈ Cb,Lip(Rn) as the linear space of bounded Lipschitz continuous functions φ satisfying

|φ(x)− φ(y)| ≤ C|x− y|, ∀x, y ∈ Rn,

for some C > 0.

Definition 2.1 A function Ê : H → R is said to be a sub-linear expectation if it satisfies for

∀X,Y ∈ H,

(a) Monotonicity: X ≥ Y implies Ê[X] ≥ Ê[Y ].

(b) Constant preserving: Ê[c] = c, ∀c ∈ R.
(c) Sub-additivity: Ê[X+Y ] ≤ Ê[X]+Ê[Y ] whenever Ê[X]+Ê[Y ] is not of the from +∞−∞

or −∞+∞.

(d) Positive homogeneity: ÊλX] = λÊ[X], ∀λ > 0.

Here R = [−∞,+∞]. The triple (Ω,H, Ê) is called a sub-linear expectation space. Give a sub-

linear expectation Ê, let us denote the conjugate expectation Ê of Ê by Ê [X] := −Ê[−X], ∀X ∈
H.

Remark 2.1. (i) The sub-linear expectation Ê[·] satisfies translation invariance: Ê[X + c] =

Ê[X] + c, ∀c ∈ R.
(ii) From the definition, it is easily shown that Ê [X] ≤ Ê[X] and Ê[X−Y ] ≥ Ê[X]−Ê[Y ], ∀X,Y ∈
H with Ê[Y ] being finite.

(iii) Furthermore, if Ê[|X|] is finite, then Ê[X] and Ê [X] are both finite. We also call Ê[X] and

Ê [X] the upper expectation and lower expectation of X, respectively.

Definition 2.2 (Independence) In a sub-linear expectation space (Ω,H, Ê), a random vec-

tor Y = (Y1, ..., Yn)(Yi ∈ H) is said to be independent to another random vector X =

(X1, ..., Xm)(Xi ∈ H) under Ê if for each test function φ ∈ Cl,Lip(Rm × Rn) we have

Ê[φ(X,Y )] = Ê[Ê[φ(x, Y )]|x=X ],

whenever φ(x) := Ê[|φ(x, Y )|] <∞ for all x and Ê[|φ(x)|] <∞.

{Xn, n ≥ 1} is said to be a sequence of independent random variables if Xn+1 is independent

of (X1, ..., Xn) for each n ≥ 1.

As shown by Peng [19], it is important to note that under sub-linear expectations the

condition that Y is independent to X does not imply automatically that X is independent to

Y .

Remark 2.2. (Zhang [13]) From the definition of independence, it is easily seen that, if Y is

independent to X, and X,Y ∈ H, X ≥ 0, Ê[Y ] ≥ 0, then

E[XY ] = Ê[X]Ê[Y ],
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Furthermore, if Y is independent to X and 0 ≤ X,Y ∈ H, then

Ê [XY ] = Ê [X]Ê [Y ].

Let X be an n-dimensional random variable on a sub-linear expectation space (Ω,H, Ê).
We define a functional on Cl,Lip(Rn) such that

FX [φ] := Ê[φ(X)], φ ∈ Cl,Lip(Rn) → R,

Then FX [·] can be regard as the distribution of X under Ê and it characterizes the uncer-

tainty of the distribution of X.

Definition 2.3 (Identical distribution) Let X1 and X2 be two n-dimensional random vectors

defined respectively in sub-linear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2). They are

called identically distributed, denoted by X1
d
= X2, if

Ê1[φ(X1)] = Ê2[φ(X2)], ∀φ ∈ Cl,Lip(Rn),

whenever the sub-expectations are finite. A sequence of random variables {Xn, n ≥ 1} is said

to be identically distributed if Xi
d
= X1 for each i ≥ 1.

Definition 2.4 (IID random variables) A sequence of random variables {Xn, n ≥ 1} is said

to be independent and identically distributed (IID), if Xi
d
= X1 and Xi+1 is independent to

(X1, ..., Xi) for each i ≥ 1.

Definition 2.5 (G-normal distribution) A random variable ξ ∈ H under sub-linear expectation

Ê with σ2 = Ê[ξ2], σ2 = −Ê[−ξ2] is called G-normal distribution, denoted by N (0; [σ2, σ2]), if

for any function φ ∈ Cl,Lip(R), u(t.x) := Ê[φ(x+
√
tξ)], (t, x) ∈ [0,∞)×R, then u is the unique

viscosity solution of PDE: {
∂t −G(∂xxu) = 0,

u|t=0 = φ,

where G(α) = 1
2 (σ

2α+ − σ2α−) and α+ := max(α, 0), α− := (−α)+.

Remark 2.3. The G-normal distributed random variables ξ satisfies aξ+bξ
d
=

√
a2 + b2ξ, ∀a, b ≥

0, where ξ
d
= ξ and ξ is independent of ξ. This implies Ê[ξ] = Ê[−ξ] = 0.

Let C[0, 1] be a function space of continuous functions on [0, 1] equipped with the super-

norm ∥ x ∥= sup0≤t≤1 |x(t)| and Cb{C[0, 1]} is the set of bounded continuous functions h(x) :

C[0, 1] → R. The modulus of the continuity of an element x ∈ C[0, 1] is defined by

ωδ(x) = sup
|t−s|<δ

|x(t)− x(s)|.

Denis et al. [2] showed that there is a sub-linear expectation space (Ω̃, H̃, Ẽ) with Ω̃ =

C[0, 1] and Cb{C[0, 1]} ⊂ H̃ such that Ẽ is countably sub-additive, and the canonical process

W (t)(ω) = ωt(ω ∈ Ω̃) is a G-Brownian motion with W (1) ∼ N(0; [σ2, σ2]) under Ẽ, i.e., for all
0 ≤ t1 < ... < tn ≤ 1, φ ∈ Cb,lip(Rn),

Ẽ
[
φ
(
W (t1), ...,W (tn−1), W (t1)−W (tn−1)

)]
= Ẽ

[
ψ
(
W (t1), ...,W (tn−1)

)]
,
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where ψ(x1, ..., xn−1) = Ẽ
[
φ
(
x1, ..., xn−1,

√
tn − tn−1W (1)

)]
.

Denis et al. [2] also showed the following representation of the G-Brownian motion (c.f. [2,

Proposition 49]).

Lemma 2.1. Let (Ω,F , P ) be a probability measure space and [B(t)]t≥0 is a P-Brownian mo-

tion. Then for all φ ∈ Cb(Ω̃),

Ẽ[φ(W )] = sup
θ∈Θ

Ep[φ(Wθ)], Wθ(t) =

∫ 1

0

θ(s)dB(s),

where

Θ = {θ : θ(t) is Ft − adapted process such that σ ≤ θ(s) ≤ σ},
Ft = σ{B(s) : 0 ≤ s ≤ t} ∨ N , N is the collection of P-null subsets.

The following two lemmas are useful for the proof of Lemma 3.1.

Lemma 2.2. (Linero and Rosalsky [1]) (Kronecker Lemma). Let {xn, n ≥ 1} and {bn, n ≥ 1}
be sequences of real numbers with 0 < bn ↑ ∞. If the series

∑∞
k=1

xk

bk
converges, then

lim
n→∞

n∑
k=1

xk
bn

= 0.

Lemma 2.3. (Xu and Zhang [8])(Rosnethal’s inequality). Let {Xn, n ≥ 1} be a sequence of

independent random variables on the sub-linear expectation space (Ω,H, Ê), and denote Sk =

X1+X2+ ...+Xk, S0 = 0. If both the upper expectation Ê[Xk] and the lower expectation Ê [Xk]

are zeros, k = 1, 2, ... , then

Ê
[
max
k≤n

|Sk|p
]
≤ 2

n∑
k=1

Ê[|Xk|p], for 1 ≤ p ≤ 2.

Zhang [10] obtained the following central limit theorem for independent and identically dis-

tributed random variables with only finite variances, which improves the central limit theorem

of Peng [19] and is of independent interest. Let {Xn, n ≥ 1} be a sequence of random variables

in (Ω,H, Ê), set Sn = 0, Sn =
∑n

k=1Xk.

Theorem 2.1. Suppose that {Xn, n ≥ 1} is a sequence of independent and identically distribut-

ed random variables with Ê[X1] = Ê[−X1] = 0 and limc→∞ Ê[(X2
1−c)+] = 0. Write σ2 = Ê[X2

1 ]

and σ2 = Ê [X2
1 ]. Then for any continuous function φ satisfying |φ(x)| ≤ C(1 + x2),

lim
n→∞

Ê[φ(
Sn√
n
)] = Ẽ[φ(ξ)], (1)

where ξ ∼ N (0; [σ2, σ2]) under Ẽ. Furthermore, if p > 2 and Ê[|X1|p] < ∞, then (1) holds for

any continuous function φ satisfying |φ(x)| ≤ C(1 + |x|p).

Zhang [12] obtained a new Donsker’s invariance principle for independent and identically

distributed random variables under the sub-linear expectation. The sequence {Xn, n ≥ 1}
of the random variables is considered in (Ω,H, Ê) and Brownian motions are considered in
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(Ω̃, H̃, Ẽ). And suppose {Xn, n ≥ 1} is a sequence of independent and identically distributed

random variables in (Ω,H, Ê) with Ê[X1] = Ê[−X1] = 0, σ2 = Ê[X2
1 ] and σ2 = Ê [X2

1 ], and

supposeW (t) is a G-Brownian motion on (Ω̃, H̃, Ẽ) withW (1) ∼ N (0; [σ2, σ2]). Denote S0 = 0,

Sn =
∑n

k=1Xk.

Define the C[0, 1]-valued random variable Wn by setting

Wn(t) =


Sk/

√
n, if t = k/n(k = 0, 1, ..., n);

extended by linear interpolation in each interval[
[k − 1]/n, k/n

]
.

Theorem 2.2. Suppose Ê[(ε21 − b)+] = 0 as b→ ∞. Then for all bounded continuous function

φ : C[0, 1] → R,

Ê[φ(Wn)] → Ẽ[φ(W )]. (2)

§3 Main results and proofs

In the sequel of this paper, consider a linear process of the form

Xt =

∞∑
j=−∞

αjεt−j , t ≥ 1, (3)

defined on a sub-linear expectation space (Ω,H, Ê), where {εj , j ∈ Z} is a sequence of IID

random variables with Ê[ε1] = Ê[−ε1] = 0, σ2 = Ê[ε21] and σ2 = Ê [ε21], {αj , j ∈ Z} is a

sequence of real numbers with
∞∑

j=−∞
|αj | <∞. (4)

Define A =
∑∞

j=−∞ αj ̸= 0,

Tn =

n∑
t=1

Xt. (5)

Zn(t) =


Tk/

√
n, if t = k/n(k = 0, 1, ..., n);

extended by linear interpolation in each interval[
[k − 1]/n, k/n

]
.

(6)

Put

X̃t = Aεt = (

∞∑
j=−∞

αj)εt, T̃n =

n∑
t=1

X̃t. (7)

Z̃n(t) =


T̃k/

√
n, if t = k/n(k = 0, 1, ..., n);

extended by linear interpolation in each interval[
[k − 1]/n, k/n

]
.

(8)
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Now we give the main results:

Theorem 3.1. Suppose Ê[(ε21− b)+] = 0 as b→ ∞. Then for all bounded continuous Lipschitz

function φ : R → R,

lim
n→∞

Ê[φ(
1

A
√
n
Tn)] = Ẽ[φ(ξ)], (9)

where ξ ∼ N (0; [σ2, σ2]) under Ẽ.

Theorem 3.2. Suppose Ê[(ε21− b)+] = 0 as b→ ∞. Then for all bounded continuous Lipschitz

function φ : C[0, 1] → R,

Ê[φ(
Zn

A
)] → Ẽ[φ(W )], (10)

where W (t) is a G-Brownian motion under Ẽ with W (1) ∼ N (0; [σ2, σ2]).

For proving Theorem 3.1 and Theorem 3.2, we need the following lemma.

Lemma 3.1. Let {εj , j ∈ Z} be a sequence of IID random variables on the sub-linear expec-

tation space (Ω,H, Ê). We further assume that Ê[ε1] = Ê[−ε1] = 0, and 0 < σ2 = Ê[ε21], σ2 =

Ê [ε21]. If
∑∞

j=−∞ |αj | <∞, then

1√
n
Ê
[
max

1≤k≤n
|T̃k − Tk|

]
→ 0, (11)

where Tk, T̃k are defined as (5) and (7).

Proof Set Xt = Xt,1 + Xt,2, X̃t = X̃t,1 + X̃t,2, Tk = Tk,1 + Tk,2, T̃k = T̃k,1 + T̃k,2, where

Xt,1 =
∑∞

j=0 αjεt−j ; Xt,2 =
∑∞

j=1 α−jεt+j ; X̃t,1 =
∑∞

j=0 αjεt; X̃t,2 =
∑∞

j=1 α−jεt; Tk,1 =∑k
t=1Xt,1; Tk,2 =

∑k
t=1Xt,2; T̃k,1 =

∑k
t=1 X̃t,1; T̃k,2 =

∑k
t=1 X̃t,2.

Note that (11) is equivalent to the following
1√
n
Ê
[
max

1≤k≤n
|T̃k,1 − Tk,1|

]
→ 0, (12)

1√
n
Ê
[
max

1≤k≤n
|T̃k,2 − Tk,2|

]
→ 0. (13)

We first want to prove (12), based on the above assumptions, we have

T̃k,1 =

k∑
t=1

(

∞∑
j=0

αj)εt

=
k∑

t=1

(
k−t∑
j=0

αj)εt +
k∑

t=1

(
∞∑

j=k−t+1

αj)εt

=
k∑

t=1

(
t−1∑
j=0

αjεt−j) +
k∑

t=1

(
∞∑

j=k−t+1

αj)εt,

thus

T̃k,1 − Tk,1 = −
k∑

t=1

(

∞∑
j=t

αjεt−j) +

k∑
t=1

(

∞∑
j=k−t+1

αj)εt
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, Ik + IIk. (14)

So
1√
n
Ê
[
max

1≤k≤n
|T̃k,1 − Tk,1|

]
=

1√
n
Ê[ max

1≤k≤n
|Ik + IIk|]

≤ 1√
n
Ê[ max

1≤k≤n
|Ik|] +

1√
n
Ê[ max

1≤k≤n
|IIk|].

First to estimate 1√
n
Ê[max1≤k≤n |Ik|], by(14), Lemma 2.1 and Lemma 2.2, we get

1√
n
Ê[ max

1≤k≤n
|Ik|] =

1√
n
Ê
[

max
1≤k≤n

|
k∑

t=1

(
∞∑
j=t

αjεt−j)|
]

≤ 1√
n

∞∑
j=1

|αj |
(
Ê
[

max
1≤k≤n

|
j∧k∑
t=1

εt−j |2
]) 1

2

≤
∞∑
j=1

|αj |
(
Ê[ε21](

j ∧ n
n

)

) 1
2

≤ Ê[ε21]
( n∑

j=1

|αj |(
j

n
)

1
2 +

∞∑
j=n+1

|αj |
)

= o(1). (15)

Next to estimate 1√
n
Ê[max1≤k≤n |IIK |], we write

IIk = IIk1 + IIk2,

so we have
1√
n
Ê
[
max

1≤k≤n
|IIk|

]
=

1√
n
Ê
[
max

1≤k≤n
|IIk1 + IIk2|

]
≤ 1√

n
Ê
[
max

1≤k≤n
|IIk1|

]
+

1√
n
Ê
[
max

1≤k≤n
|IIk2|

]
where

IIk1 = α1εk + α2(εk + εk−1) + · · ·+ αk(εk + · · ·+ ε1),

and

IIk2 = (αk+1 + αk+2 + · · ·)(εk + · · ·+ ε1),

and let pn be a sequence of positive integers such that

pn → ∞ and pn/n→ 0 as n→ ∞,

then

1√
n
Ê
[
max

1≤k≤n
|IIk2|

]
≤ (

∞∑
j=0

|αj |)
1√
n
Ê
[

max
1≤k≤pn

|ε1 + · · ·+ εk|
]

+ (
∑
j>pn

|αj |)
1√
n
Ê
[
max

1≤k≤n
|ε1 + · · ·+ εk|

]
≤ (

∞∑
j=0

|αj |)
1√
n

(
Ê
[

max
1≤k≤pn

|ε1 + · · ·+ εk|2
]) 1

2
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+ (
∑
j>pn

|αj |)
1√
n

(
Ê
[
max

1≤k≤n
|ε1 + · · ·+ εk|2

]) 1
2

≤ (
∞∑
j=0

|αj |)(Ê[ε21](pn/n))
1
2 + (

∑
j>pn

|αj |)
1√
n
(nÊ[ε21])

1
2

= o(1). (16)

It remains to show that
1√
n
Ê
[
max

1≤k≤n
|IIk1|

]
= o(1). (17)

For each m ≥ 1, define

IIk1,m = b1εk + b2(εk + εk−1) + · · ·+ bk(εk + · · ·+ ε1),

where bk = αk for k ≤ m and bk = 0 otherwise.

First note that, for each m,
1√
n

max
1≤k≤n

|IIk1,m| ≤ 1√
n
(|α1|+ |α2|+ · · ·+ |αm|)(|ε1|+ |ε2|+ · · ·+ |εm|),

then by Lemma 2.2 we have

1√
n
Ê
[
max

1≤k≤n
|IIk1,m|

]
≤ 2√

n

m∑
j=1

|αj |Ê
[
|ε1|+ |ε2|+ · · ·+ |εm|

]
≤ 2√

n

m∑
j=1

|αj |m(Ê[ε21])
1
2 . (18)

Note
1√
n

max
1≤k≤n

|IIk1,m − IIk1|

=
1√
n

max
1≤k≤n

|
k∑

i=1

(αi − bi)(εk + · · ·+ εk−i+1)|.

Since

|
k∑

i=1

(αi − bi)(εk + · · ·+ εk−i+1)| =


0, k ≤ m,

|
k∑

i=m+1

αi(εk + · · ·+ εk−i+1)|, otherwise,

then
1√
n

max
1≤k≤n

|IIk1,m − IIk1|

=
1√
n

max
1≤k≤n

|
k∑

i=1

(αi − bi)(εk + · · ·+ εk−i+1)|

≤ 1√
n

max
m<k≤n

( k∑
i=m+1

|αi||εk + · · ·+ εk−i+1|
)

≤ 1√
n

max
m<k≤n

k∑
i=m+1

|αi| max
m<i≤k

|εk + · · ·+ εk−i+1|
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≤ 1√
n

∑
i>m

|αi| max
m<k≤n

max
m<i≤k

(|ε1 + · · ·+ εk|+ |ε1 + · · ·+ εk−i|)

≤ 1√
n

∑
i>m

|αi|
(

max
m<k≤n

|εk + · · ·+ ε1|+ max
m<k≤n

max
m<i≤k

|ε1 + · · ·+ εk−i|
)

≤ 1√
n

∑
i>m

|αi|
(

max
1<j≤n

|ε1 + · · ·+ εj |+ max
1≤j≤n

|ε1 + · · ·+ εj |
)

≤ 2
1√
n

∑
i>m

|αi| max
1≤j≤n

|ε1 + · · ·+ εj |.

Therefore
1√
n
Ê
[
max

1≤k≤n
|IIk1,m − IIk1|

]
≤ C

1√
n

∑
i>m

|αi|Ê
[
max
1≤j≤n

|ε1 + · · ·+ εj |
]

≤ C
1√
n

( ∑
i>m

|αi|
)(
Ê
[
max
1≤j≤n

|ε1 + · · ·+ εj |2
]) 1

2

≤ C
1√
n

( ∑
i>m

|αi|
)
(nÊ[ε21])

1
2

= C
( ∑
i>m

|αi|
)
. (19)

Let m = [n
1
3 ], from (18) and (19), we obtain (17). Combining with (16) and (17), we have

1√
n
Ê
[
max

1≤k≤n
|IIk|

]
≤ 1√

n
Ê
[
max

1≤k≤n
|IIk1|

]
+

1√
n
Ê
[
max

1≤k≤n
|IIk2|

]
= o(1), (20)

and together with (15), then follows (12), the proof method of (13) is similar to that of (12).

Therefore Lemma 3.1 is proved.

Proof of Theorem 3.1. In order to prove (9), it suffices to prove

|Ê[φ( Tn
A
√
n
)]− Ẽ[φ(ξ)]| → 0, n→ ∞, (21)

by the Remark 2.1(ii), for ∀φ ∈ Cb,Lip(Rn) we have∣∣∣∣Ê[φ( Tn
A
√
n
)]− Ẽ[φ(ξ)]

∣∣∣∣ =

∣∣∣∣Ê[φ( Tn
A
√
n
)]− Ê[φ(

T̃n
A
√
n
)] + Ê[φ(

T̃n
A
√
n
)]− Ẽ[φ(ξ)]

∣∣∣∣
≤

∣∣∣∣Ê[φ( Tn
A
√
n
)]− Ê[φ(

T̃n
A
√
n
)]

∣∣∣∣+ ∣∣∣∣Ê[φ( T̃n
A
√
n
)]− Ẽ[φ(ξ)]

∣∣∣∣
≤

∣∣∣∣Ê[φ( Tn
A
√
n
)− φ(

T̃n
A
√
n
)]

∣∣∣∣+ ∣∣∣∣Ê[φ( T̃n
A
√
n
)]− Ẽ[φ(ξ)]

∣∣∣∣
≤ C

1√
n
Ê[|Tn − T̃n|] +

∣∣∣∣Ê[φ( T̃n
A
√
n
)]− Ẽ[φ(ξ)]

∣∣∣∣.
Since X̃t = Aεt = (

∑∞
j=−∞ αj)εt, T̃n =

∑n
t=1 X̃t, by Theorem 2.1, we have |Ê[φ( T̃n

A
√
n
)] −

Ẽ[φ(ξ)]| → 0. We can just prove 1√
n
Ê|T̃n − Tn| → 0 to get (21), and the proof of Theorem 3.1

is completed through Lemma 3.1.
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Proof of Theorem 3.2. By the Remark 2.1(ii), for ∀φ ∈ Cb,Lip(Rn) we have

|Ê[φ(Zn

A
)]− Ẽ[φ(W )]| = |Ê[φ(Zn

A
)]− Ê[φ(

Z̃n

A
)] + Ê[φ(

Z̃n

A
)]− Ẽ[φ(W )]|

≤ CÊ
[

sup
0≤t≤1

|Zn(t)− Z̃n(t)|
]
+ |Ê[φ( Z̃n

A
)]− Ẽ[φ(W )]|

≤ C
1√
n
Ê
[
max

1≤k≤n
|T̃k − Tk|

]
+ |Ê[φ( Z̃n

A
)]− Ẽ[φ(W )]|. (22)

Since X̃t = Aεt, note that {X̃t} satisfies conditions of Theorem 2.1. From (6) and (8), it implies

that Theorem 2.2 holds for the sequence {Z̃n}. Then by Theorem 2.2 we obtain

|Ê[φ( Z̃n

A
)]− Ẽ[φ(W )]| → 0, n→ ∞. (23)

By Lemma 3.1 we have
1√
n
Ê
[
max

1≤k≤n
|T̃k − Tk|

]
→ 0, n→ ∞. (24)

Combining (22), (23) and (24), it follows that

|Ê[φ(Zn

A
)]− Ẽ[φ(W )]| → 0, n→ ∞.

The proof of Theorem 3.2 now completes.

Remark 3.1. Obviously, if in Lemma3.1, Theorem 3.1 and Theorem 3.2 the sub-linear ex-

pectations were substituted by usual expectations, our results still holds. Remark 3.4 of the

Peng [22] show that if σ2 = σ2 then the G-normal distribution becomes the classical nor-

mal distribution, and the CLT (see Theorem 3.1 in Chapter II of Peng [22]) in the form of

“ lim
n→∞

Ê[φ( 1√
n

∑n
i=1 εi)] = Ẽ[φ(ξ)]” becomes a classical central limit theorem. This implies that

our results can also be regarded as an extension of CLT of linear process generated by IID

random variable sequence in classical framework.

Remark 3.2. Note that if α0 = 1, αj = 0, j ̸= 0, Theorem 3.1 can be regarded as Theorem

2.1, Theorem 3.2 can be regarded as Theorem 2.2.
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