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Optical soliton and elliptic functions solutions of

Sasa-satsuma dynamical equation and its applications

Aly R. Seadawy1,∗ Naila Nasreen2 LU Dian-chen2

Abstract. The Sasa-satsuma (SS) dynamical equation interpret propagation of ultra-short and

femto-second pulses in optical fibers. This dynamical model has important physical significance.

In this article, two mathematical techniques namely, improved F-expansion and improved aux-

iliary methods are utilized to construct the several types of solitons such as dark soliton, bright

soliton, periodic soliton, Elliptic function and solitary waves solutions of Sasa-satsuma dynamical

equation. These results have imperative applications in sciences and other fields, and construc-

tive to recognize the physical structure of this complex dynamical model. The computing work

and obtained results show the influence and effectiveness of current methods.

§1 Introduction

Several complex physical phenomena are modeled via nonlinear partial differential equa-

tions (NLPDEs). The NLPDEs have been ussed to describe the physical structures in various

fields, for example, ocean wave, chemistry, plasma physics optics, atmospheric waves, physics of

condensed matters and so on [1–8]. Owing to the stability among modulation of self-Phase and

dispersion of group velocity in nonlinear optics, the non-linear Schrdinger equations (NLSEs)

have been utilized to describe the promulgation of soliton pulses. Due to the wide application

of optical solitons, this area has gained much attention from researchers. Optical soliton pulses

basically constitute for soliton communication technology such as transoceanic distances and

transcontinental data transferring across the telecommunications industry, optical bers, optical

communication systems and all-optical switching strategies [9–15].

These advances have provoked further inclusive research in the areas from engineering,

applied mathematics. Nowadays the most prominent study area is examining these model a-

long fibers non-linearities, for example, NLSE with nonlinearity of quadratic-cubic, Schrdinger-

Hirota equation, Kaup-Newell model, Ginzburg-Landau equation, schrödinger dynamical model
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having weak non-linearity, FokasLenells equation, Kadomtsev-Petviashvili dynamic equation,

Zakharov-Kuznetsov model, KdV-Zakharov-Kuznetsov model, and many more [16–22]. Fur-

thermore, SS equation also known as a form that explains optical soliton propagation phe-

nomenon in optical fibers. This model is an extension of NLSE that contains dispersion of

third-order, self-Steepening, moreover the effects of stimulated Raman Scattering in mono-mode

optical bers. Furthermore, The SS equation portrays the dissemination pulses of femto-second

in fiber optics, and also analyzes the connection and propagation of ultra-short Pulses in the

femtosecond or sub pico-second system. So finding solutions of optical soliton pulses of these

models becomes very attractive for the researchers.

Several powerful methods have been developed by different authors to find the exact so-

lution of various types of NLSEs such as simple equation technique, Jacobi elliptic function

expansion method, Riccati mapping equation technique, the homogeneous balancing technique,

the Sine-Cosine technique, simple and modified simple equation techniques, Auxiliary equation

technique, rational expansion technique, extended direct algebraic scheme, homotopy pertur-

bation method, (G′/G)-expansion technique, Soliton ansatz technique, Backlund transform

technique, Elliptic function scheme, Hirotas bilinear scheme, Extended tanh method, Rational

expansion technique and many more [21–25, 27–42]. It is an observation that all these above

methods have some advantages as well as some disadvantages with respect to the non-linear

problems to be taken and there is no specific techniques which handle all kinds of nonlinear

partial differential equations. Some authors used various techniques on the Sasa-Satsuma equa-

tion and exact solutions in different have been constructed such as Trial equation approach [17],

modified simple equation methodology [25, 26] and Darboux transformation [43], F-expansion

scheme [44], Lie algebra method [45,46].

In this paper, we construct the solitons, elliptic function, and other exact solutions by uti-

lizing two techniques namely, improved F-expansion and improved auxiliary equation methods.

These solutions can be useful for physicist and mathematicians to understand the physical

structures of this complex model. The remaining detail steps of achieving solutions for the

aforesaid observing models are given in the following work.

§2 Governing Sasa-Satsuma Dynamical Equation

The governing model of SS [25,26] has the form as

i
∂u

∂t
+ a

∂2u

∂x2
+ b|u|2u+ i

(
α
∂3u

∂x3
+ β|u|2 ∂u

∂x
+ θ

∂|u|2

∂x
u

)
= 0, (1)

where the function u is dependent and the variables x, t are independent. In above equation,the

first terms gives the temporal evolution of soliton pulses and the coefficient b describe the Kerr

law non-linearity. Further, more the GVD term is given with the coefficient of a and the optical

soliton pulses profile is remunerated by u(x, t). Lastly, the Self-steepening, dispersion third-

order sequentially, Lastly, the self-Steepening, dispersion pf third-order sequentially, in addition

stimulated Raman Scattering are illustrated with the coefficients of β, α, θ respectively.
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2.1 Solution of Sasa-satmasa by F-expansion Method

We assuming the solution in the wave form as

u(x, t) = ψ(ξ)eiP , ψ(ξ) =
N∑

j=−N

bj (n+ F (ξ))
j
, (2)

where P = γx+ νt+ ϵ and ξ = kx+ωt. bj are real constants and F (ξ) satisfies the below ODE

F ′(ξ) = c0 + c1F (ξ) + c2F
2(ξ) + c3F

3(ξ), (3)

where c0, c1, c2 are real constants. Putting Eq.(2) and Eq.3 into Eq.(1) and making separate

into parts, got as(
3αγk2 − ak2

)
ψ′′(ξ) +

(
ν − αγ3 + aγ2

)
ψ(ξ) + (βγ − b)ψ3(ξ) = 0. (4)

αk3ψ(3)(ξ) +
(
2aγk − 3αγ2k + ω

)
ψ′(ξ)− (βk + 2θk)ψ2(ξ)ψ′(ξ) = 0. (5)

Integrating (5) and then the resulting equation is similar with Eq.(4), we have relation between

both as follows

α =
a(β + 2θ)

3(b+ 2γθ)
, ν = −2aγk(2γ(θ − β) + 3b)2 + 9ω(b− βγ)(b+ 2γθ)

3k(β + 2θ)(b+ 2γθ)
. (6)

By applying homogeneous balance principle on Eq.(4), we attain m = 1 and the solution has

form as

ψ(x, t) =
b−1

n+ F (ξ)
+ b0 + b1(n+ F (ξ)). (7)

Deputing Eqs.(7) and (3) into Eq.(4) and setting different Powers of F i to zero, we achieved

system of equations in b−1, b0, b1, k, γ, ν, ω, ϵ and b0, b1, b−1. the system of equations is solved

via using Mathematica. The followings solution cases are as

Case 1: If c0 = c3 = 0,

(17) b−1 = 0, b0 = −nb1, γ = −2ac22k
2 + b

2b21θ
,

ω =
−12a2c42k

4(β − 2θ)− 12abβb21c
2
2k

2 + b41(β + 2θ)
(
8c0c2θ

2k2 − 3b2
)

24b21c
2
2θ

2k
. (8)

The following solitary waves of Eq.(1) are attained from (17) as:

u11(x, t) =

(
− b1c1e

c1(ξ+d)

c2ec1(ξ+d) − 1

)
ei(γx+νt+ϵ), c1 > 0. (9)

u12(x, t) =

(
− b1c1e

c1(ξ+d)

c2ec1(ξ+d) + 1

)
ei(γx+νt+ϵ), c1 < 0. (10)

Case 2: If c1 = c3 = 0,

Set 1:

b−1 = 0, b0 =
1

2
b1

(
c1
c2

− 2n

)
,

ω = −
12a2c42k

4(β − 2θ) + 12abβb21c
2
2k

2 + b41(β + 2θ)
(
3b2 + 2c21θ

2k2
)

24b21c
2
2θ

2k
, γ = −

2ac22k
2

b21
+ b

2θ
.

(11)
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Figure 1. Solitary waves in 3-dim and 2-dim are plotted of Case 1 solutions.

Set 2:

b1 = 0, γ =
b

β
. (12)

The following solitary waves of Eq.(1) are attained from Set 1 as

u21(x, t) =

(
b1
(
2
√
c0c2 tan

(√
c0c2(ξ + d)

)
+ c1

)
2c2

)
ei(γx+νt+ϵ), c0c2 > 0. (13)

u22(x, t) =

(
b1 (c1 − 2

√
−c0c2 tanh (

√
−c0c2(ξ + d)))

2c2

)
ei(γx+νt+ϵ), c0c2 < 0. (14)

More solitary waves results of Eq.(1) can be obtained from set 2.

Case 3: If c3 = 0,

Set 1:

b−1 = 0, b0 =

√
ak (c1 − 2c2n)√
2
√
−b− 2γθ

, b1 =

√
2ac2k√

−b− 2γθ
,

ω =
ak
(
6γ(γ(β − 2θ)− 2b) +

(
c21 − 4c0c2

)
k2(β + 2θ)

)
6(b+ 2γθ)

. (15)

Set 2:

b−1 = 0, b0 = −
√
ak (c1 − 2c2n)√
2
√
−b− 2γθ

, b1 = −
√
2ac2k√

−b− 2γθ
,

ω =
ak
(
6γ(γ(β − 2θ)− 2b) +

(
c21 − 4c0c2

)
k2(β + 2θ)

)
6(b+ 2γθ)

. (16)
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The following solitons solutions of Eq.(1) from sets 1 and 2 are attained as

u31(x, t) =


√
ak

(
2c1 −

√
4c0c2 − c21 tan

(√
4c0c2−c21

2 (ξ + d)

))
√

2 (−b− 2γθ)

 , 4c0c2 > c21. (17)

u32(x, t) =

−

√
a (4c0c2 − c21)k tan

(√
4c0c2−c21

2 (ξ + d)

)
√
2 (−b− 2γθ)

 , 4c0c2 > c21. (18)

Case 4: If c0 = c2 = 0,

Figure 2. Solitary waves in 3-dim and 2-dim forms are plotted solutions (13) and (18).

Set 1:

b1 = 0, γ =
b

β
(19)

Set 2:

b−1 = 0, ω = −
k
(
−3aβγ2 + 6abγ + 6aγ2θ + 2βb20γθ + bβb20 + 4b20γθ

2 + 2bb20θ
)

3(b+ 2γθ)
.

The below solitary waves of Eq.(1) from set 1 are attained as

u41(x, t) =
b−1

ec
3/2
1 ξ√

1−c3e2c1ξ
+ n

+ b0e
i(γx+νt+ϵ), c1 > 0. (20)
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q42(x, t) =

 b−1

e(−c1)3/2(−ξ)√
1−c3e−2c1ξ

+ n
+ b0

 ei(γx+νt+ϵ), c1 < 0. (21)

Similarly, more solitary waves and solitons solutions of Eq.(1) from Set 2 can be obtained.

2.2 Solution of Sasa-satmasa by Auxiliary Method

Assuming the solution in wave form of this model as

u(x, t) = ψ(ξ)eiP , ψ(ξ) =
N∑

i=−N

ai (b+ F (ξ))
i
, P = γx+ νt+ ϵ, ξ = kx+ ωt, (22)

where F satisfies the below ODE

(F ′(ξ))
2
= c0 + c1F (ξ) + c2F

2(ξ) + c3F
3(ξ) + c4F

4(ξ), (23)

where c0, c1, c2 are real constants. Putting Eq.(22) and Eq.23 into Eq.(1) and making separate

into parts, got as(
3αγk2 − ak2

)
ψ′′(ξ) +

(
ν − αγ3 + aγ2

)
ψ(ξ) + (βγ − b)ψ3(ξ) = 0. (24)

αk3ψ(3)(ξ) +
(
2aγk − 3αγ2k + ω

)
ψ′(ξ)− (βk + 2θk)ψ2(ξ)ψ′(ξ) = 0. (25)

Integrating (24) and then the resulting equation is similar with Eq.(4), we have relation between

both as follows

α =
a(β + 2θ)

3(b+ 2γθ)
ν = −2aγk(2γ(θ − β) + 3b)2 + 9ω(b− βγ)(b+ 2γθ)

3k(β + 2θ)(b+ 2γθ)
(26)

Applying balancing principle on Eq.(24), got N = 1 and considering the solution of (24) as

ψ(ξ) = A−1(B + F (ξ))−1 +A0 +A1(B + F (ξ)). (27)

Substituting equations (27) and (23) into (24) and arranging the coefficients of F i(ξ)F (j)(ξ)

to zero, we achieved a eqations system in A−1, A0, A1, B, c0, c1, c2, c3, c4, γ, k, ν and ω . Math-

ematica Software is used for solving the equations system. The below cases of solutions as

Case 1: In this family we take c0 = c1 = 0,

Set 1:

A−1 = −2A0c2
c3

, A1 = 0, B =
2c2
c3
, γ = − 1

2θ

2ac2

(
4c2c4
c23

− 1
)
k2

A2
0

+ b

 ,

ω =

12a2c2(c23−4c2c4)k4(β−2θ)

c23
− 12aA2

0bβk
2 +

A4
0c

2
3(β+2θ)(4c2θ2k2−3b2)

c2(4c2c4−c23)

24A2
0θ

2k
. (28)

Set 2:

A−1 = 0, γ =
b

β
. (29)

The soliton solutions of equation (1)from case 1 are obtained as follows:

u11(ξ) =

(
A0c3√

∆cosh
(√
c2ξ
)
+ c3 − c4

)
ei(γx+νt+ϵ), c2 > 0, ∆ > 0. (30)

u12(ξ) =

(
A0c3

−
√
∆cosh

(√
c2ξ
)
+ c3 − c4

)
ei(γx+νt+ϵ), c2 > 0, ∆ > 0. (31)
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u13(ξ) =

(
A0c3√

−∆sinh
(√
c2ξ
)
+ c3 − c4

)
ei(γx+νt+ϵ), c2 > 0, ∆ < 0. (32)

u14(ξ) =

(
A0c3

−
√
−∆sinh

(√
c2ξ
)
+ c3 − c4

)
ei(γx+νt+ϵ), c2 > 0, ∆ < 0. (33)

where ξ = kx+ ωt and ∆ = c23 − 4c2c4.

Similarly, we can obtained more general solutions of equation (1) from set 2.

Figure 3. Exact solutions are plotted in various form of solutions (30) and (32).

Case 2: In this family we take c0 = c1 = c3 = 0,

Set 1

A−1 = 0, A0 = A1(−B), γ = −
2ac4k

2

A2
1

+ b

2θ

ω =
−12a2c4k

4(β−2θ)
A2

1
− 12abβk2 +

A2
1(β+2θ)(4c2θ2k2−3b2)

c4

24θ2k
. (34)

Set 2

A−1 = 0, γ =
b

β
. (35)

The solitons of equation (1) from solution (34) are obtained as follows:

u21(ξ) =

(
A1

√
−c2
c4

sec
(√

−c2ξ
))

ei(γx+νt+ϵ), c2 < 0, c4 > 0. (36)
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u22(ξ) =

(
A1

√
−c2
c4

sech (
√
c2ξ)

)
ei(γx+νt+ϵ) c2 > 0, c4 < 0. (37)

Similarly, we can obtained more general solutions of equation (1) from set 2.

Case 3: Here we take parameters as c0 = c1 = c4 = 0,

Set 1:

A−1 =
2
√
2ac

3/2
2 k

c3
√
b+ 2γθ

, A0 = −
√
2ac2k√
b+ 2γθ

, A1 = 0,

B =
2c2
c3
, ω = −

ak
(
3γ(−βγ + 2b+ 2γθ) + c2k

2(β + 2θ)
)

3(b+ 2γθ)
. (38)

Set 2:

A−1 = − 2
√
2ac

3/2
2 k

c3
√
b+ 2γθ

, A0 =

√
2ac2k√
b+ 2γθ

,

A1 = 0, B =
2c2
c3
, ω = −

ak
(
3γ(−βγ + 2b+ 2γθ) + c2k

2(β + 2θ)
)

3(b+ 2γθ)
. (39)

The solitons solutions of equation (1) fron set 1 and 2 are constructed as

u31(ξ) =

(√
2ac2k sec (

√
−c2ξ)√

b+ 2γθ

)
ei(γx+νt+ϵ), c2 < 0. (40)

u32(ξ) =

(√
2ac2ksech

(√
c2ξ
)

√
b+ 2γθ

)
ei(γx+νt+ϵ), c2 > 0. (41)

Similarly, we can obtained more general solutions of equation (1) from case 2.

Case 4: In this family we take c0 = c1 = c2 = 0,

A−1 = 0, γ =
b

β
. (42)

The soliton solutions in the following form of equation (1) from case 1 of case 4 solutions are

obtained as

u41(ξ) =

(
A1

(
B +

4c3
c23ξ

2 − 4c4

)
+A0

)
ei(γx+νt+ϵ), c2 > 0, c4 > 0. (43)

Case 5: In this family we take c0 =
c22
4c4
, c1 = c3 = 0,

Set 1

A−1 = 0, A0 = 0, A1 =

√
2ac4k√

−b− 2γθ
,

B = 0, ω = −
ak
(
3γ(−βγ + 2b+ 2γθ) + c2k

2(β + 2θ)
)

3(b+ 2γθ)
. (44)

Set 2

A−1 =

√
ac2k√

2c4(−(b+ 2γθ))
, A0 = 0, A1 = −

√
2ac4k√

−b− 2γθ
, B = 0
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Figure 4. Exact waves are plotted in various form of solutions (40) and (43).

ω =

ak
(
3c2k

2(β + 2θ)
√
c4(−(b+ 2γθ)) +

√
c4
√
−b− 2γθ

(
3γ(−βγ + 2b+ 2γθ) + c2k

2(β + 2θ)
))

3
√
c4(−b− 2γθ)3/2

.

(45)

The soliton solutions in the following form of equation (1) from case 1 of family 5 solutions are

obtained as

u51(ξ) = ±
√
ac2k tan

(√
c2√
2
ξ
)

√
−b− 2γθ

ei(γx+νt+ϵ), c2 > 0, c4 > 0. (46)

u52(ξ) = ±

√
−ac2k tanh

(√
−c2√
2
ξ
)

√
−b− 2γθ

ei(γx+νt+ϵ), c2 < 0, c4 > 0. (47)

More novel solutions in generalized form of equation (1) from case 2 can be constructed in same

way. Case 6: we take in this family c1 = c3 = 0, c0 =
c22r

2

c4(r2+1)2
, & 0 < r < 1,

set 1

A−1 = 0, A0 = A1(−B), ω =
A2

1

(
3γ(−βγ + 2b+ 2γθ) + c2k

2(β + 2θ)
)

6c4k
, a = −A

2
1(b+ 2γθ)

2c4k2
.

set 2

A−1 = 0, A0 = 0, B = 0, ω =
A2

1

(
3γ(−βγ + 2b+ 2γθ) + c2k

2(β + 2θ)
)

6c4k
, a = −A

2
1(b+ 2γθ)

2c4k2
.

The exact solution in the form of Jacobi elliptic function of equation (1) from case 1 are
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constructed as

u61(ξ) =

(
±A1

√
− c22r

2

c4 (r2 + 1)
sn

(
ξ

√
− c2
r2 + 1

∣∣∣∣ r)
)
ei(γx+νt+ϵ), h2 < 0, h4 > 0. (48)

u62(ξ) = A1

√
c22r

2

c4 − 2c4r2
cn

(
ξ

√
c2

2r2 − 1

∣∣∣∣ r) ei(γx+νt+ϵ), h4 < 0. (49)

Figure 5. Exact waves are plotted in various form of solutions (40) and (43).

§3 Results and Discussions

The exact results constructed from present methods are different and novel from other tech-

niques which are utilized by other researchers. The exact results are constructed via employing

improved F-expansion and improved auxiliary equation methods. In this paper, we obtain a

family of solitons and solitary waves results containing unidentified parameters. The construct-

ed exact solutions show diverse kinds of solitons and solitary waves when specific values are

given to unidentified parameters, such as bright and dark solitons, combined with bright soli-

ton, solitary wave, etc. The authors used other techniques such as trial equation approach [17],

modified simple equation methodology [25, 26], F-expansion scheme [44] to construct bright-

dark solitons and periodic solitary waves. Thus, many constructed results are novel and not

exist in the previous study.

The three-dimensional and 2-dimensional plots for some achieved outcomes of this model are

demonstrated. The physical structures of some results are depicted out by giving appropriate

values to the parameters. The Figures 1 show the exact waves in dissimilar forms, Figure(1-

A) and Figure(1-B) shows bright soliton in 3D and 2D from the solution(9), Figure(1-C) and
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(1-D) shows kink soliton from solutions (10).In Figures 2, the Figure(2-A) and Figure(2-B)

demonstrate the 3D and 2D periodic solitary wave from solution (13). where Figure(2-c) and

Figure(2-D) illustrate dark soliton in 3D and 2D from solution (18).

In Figures 3, the solution achieved from the auxiliary method the Figure(3-A), Figure(3-B)

shows the bright solitary wave from solution (30), and (3-C) and (3-D) demonstrate periodic

traveling solitary waves of solution of(32)in 3D and contours plot. In Figure(4-A) and (4-B)

demonstrate combined bright and dark soliton in 3D and 2D of solution (40). In Figure (4-c)

and (4-D) shows traveling wave in 3D and 2D of solution (43).

§4 Conclusion

We have fruitfully employed the improved F-expansion and improved auxiliary equation

techniques for constructing solitons, solitary waves, Jacobi elliptic function and other solutions

of Sasa-satsuma dynamical equation. This dynamical equation portrays the propagation in

optical fibers of femto-second pulses, and also analyzes the connection and propagation of

the pulses of ultra-short in the femtosecond or sub pico-second system. The achieved exact

solitons and other solutions of a different kind such as dark-bright solitons, periodic soliton, and

solitary waves have been derived that have key applications in engineering, physics, and applied

mathematics. We have also shown some obtained results graphically, by giving appropriate

values to the parameters which facilitate to recognize the physical phenomena of this nonlinear

model. All the achieved results are novel and do not exist in literature. This has been shown

that the proposed techniques are concise, effective and can be employed on other NLPDE.

References

[1] G P Agrawal. Nonlinear Fiber Optics, 5th ed, New York, 2013.

[2] D W Zuo, Y T Gao, Y J Feng, L Xue. Rogue-wave interaction for a higher-order nonlinear

Schrödinger Maxwell-Bloch system in the optical-fiber communication, Nonlinear Dyn, 2014, 78:

2309-2318.

[3] Z Z Lan, Y T Gao, J W Yang, C Q Su, B Q Mao. Solitons, Bäcklund transformation and Lax pair
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