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A popular reaction-diffusion model fractional

Fitzhugh-Nagumo equation: analytical and numerical

treatment

Orkun Tasbozan

Abstract. The main objective of this article is to obtain the new analytical and numerical

solutions of fractional Fitzhugh-Nagumo equation which arises as a model of reaction-diffusion

systems, transmission of nerve impulses, circuit theory, biology and the area of population

genetics. For this aim conformable derivative with fractional order which is a well behaved,

understandable and applicable definition is used as a tool. The analytical solutions were got by

utilizing the fact that the conformable fractional derivative provided the chain rule. By the help

of this feature which is not provided by other popular fractional derivatives, nonlinear fractional

partial differential equation is turned into an integer order differential equation. The numerical

solutions which is obtained with the aid of residual power series method are compared with the

analytical results that obtained by performing sub equation method. This comparison is made

both with the help of three-dimensional graphical representations and tables for different values

of the γ.

§1 Introduction

The subject of nonlinear dynamical systems has settled the mind of many people in the

last decade, due to their wider occurrence in daily life. This subject involves many areas in

the fields of science, engineering and technology. For instance, the topic includes dynamics,

non-equilibrium processes in physics, complex matter and networks, computational biology,

fluctuations and random processes, self-organization, social phenomena, fractal geometry, media

with self-similar properties; technology and other interesting subject close related to nonlinear

dynamical system [25–29]. To comprehend and estimate the forthcoming behavior of these

complex problems, scientists trust mathematical models, which depend most of the time on

mathematical tools known as differential and integral operators.
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One can find in the existing literature two groups of differential and integral operators

involving classical and non-conventional. In addition, with many proofs in published research

papers the classical are more appropriate for classical mechanics and suppose to describe only

those processes known as memoryless, which implies, these differential operators forecasts the

future with no memory. This is a highly misleading, as many real world problems do not

follow Markovian processes, rather they mostly follow a non-Markovian scenario. To solve this

problem, the second group of differential operators has been suggested and they can be identified

as differential operators with arbitrary order called fractional derivatives. These derivatives have

some advantages over the traditional integer order Newtonian concept derivative. For instance

fractional calculus can easily predict the future of the event by using the historical dependence of

the evolution of system analysis and taking the global correlation into consideration, but integer

calculus is not convenient to represent this process. Theoretical model results considered with

integer calculus often fail to coincide with the experimental results. On the contrary, fractional

calculus models overcome this critical defect of integer calculus. In addition fractional calculus

has a clearer physical significance and a simpler expression when describing complicated physical

mechanics problems, compared with the integer order model. Because of these benefits it has

gained a great demand and significance in the past few decades in several fields of science and

engineering. Efficient analytical and numerical methods have been improved but still need

specific attention.

Recently a well behaved, feasible and comprehensible fractional derivative and integral defi-

nition called ”conformable fractional derivative and integral” are introduced by Khalil et al. [1].

Definition Let the function f be defined as f : [0,∞) → R be a function. The γth order

”conformable fractional derivative” (CFD) [1] of f can be declared as,

Dγ(f)(t) = lim
ε→0

f(t+ εt1−γ)− f(t)

ε
,

for all t > 0, γ ∈ (0, 1). Then let f be a γ-differentiable function in some (0, a), a > 0 and

lim
t→0+

f (γ)(t) exists and so f (γ)(0) = lim
t→0+

f (γ)(t).

The ”conformable fractional integral” of the function f starting from a ≥ 0 is expressed as:

Iaγ (f)(t) =

t∫
a

f(x)

x1−γ
dx

where the integral denotes the Riemann improper integral, and γ ∈ (0, 1]. The properties that

satisfied by the CFD are given as follows [1].

Theorem 1.1. Let γ ∈ (0, 1] and assume that f, g are γ-differentiable at point t > 0. Then

1. Dγ(cf + dg) = cDγ(f) + cDγ(g) where c, f ∈ R.

2. Dγ(t
p) = ptp−γ where p ∈ R.

3. Let λ be a constant then Dγ(λ) = 0.

4. Dγ(fg) = fDγ(g) + gDγ(f).
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5. Dγ

(
f
g

)
=

gDγ(f)−fDγ(g)
g2 .

From the theorem it is understood that CFD satisfies the basic conditions [2] to be a

fractional derivative operator. To take the advantage of these situation many numerical and

analytical methods are applied to fractional partial differential equations involving conformable

derivative [3–7]. One of the most important advantages of conformable fractional derivative is

that it provides the chain rule [8], so the analytical solution of the nonlinear fractional partial

differential equations can be produced. This is one of the most important features not provided

by the other fractional derivatives.

In this article new analytical and numerical solutions of conformable fractional Fitzhugh-

Nagumo equation

Dγ
t u−D2

xu = u(u− α)(1− u) (1)

is usually used to model the transmission of nerve impulses [9, 10]; also used in circuit theory,

biology and the area of population genetics [11] and an important nonlinear reactiondiffusion

equation. Fitzhugh-Nagumo equation became a favorite model for reaction-diffusion systems

which simulate propagation of waves in excitable media, such as heart tissue or nerve fiber.

To the best of our knowledge all the obtained results are seen firstly in the literature. To get

the exact and numerical solutions we employed sub equation method and residual power series

method respectively.

The rest of article is organized as follows. In second chapter brief description of implemented

methods are given. In the third chapter the exact and approximate analytical solutions of con-

formable fractional Fitzhugh-Nagumo equation are given. Also some graphical representations

and comparative tables for numerical results are expressed.

§2 Brief Description of Implemented Methods

2.1 Sub Equation Method

Sub equation method [19] built on the Riccati equation

φ′(ξ) = σ + (φ(ξ))
2
. (2)

First of all consider the following nonlinear time fractional partial differential equation

P
(
u,Dγ

t u,Dxu,D
2
xu, ...

)
= 0 (3)

where Dγ
t u indicates conformable derivative of function u(x, t) with fractional order. With the

aid of the fractional wave transformation [15]

u(x, t) = U(ξ), ξ = kx+ w
tγ

γ
(4)

where k,w are arbitrary constants are going to be evaluated and the chain rule [8], Eq. (3)

changes into integer order nonlinear ODE

G(U(ξ), U ′(ξ), U ′′(ξ), ...) = 0. (5)
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Assuming Eq. (5) has the solution as follows

U(ξ) =
N∑
i=0

aiφ
i(ξ), aN ̸= 0, (6)

where ai (0 ≤ i ≤ N) are constants are going to examined and N is going to be evaluated by

balancing principle [18] in equation (5) and φ(ξ) is the solution of Riccati equation (2). Some

of the solutions of the equation (2) can be given below.

φ(ξ) =



−
√
−σ tanh

(√
−σξ

)
, σ < 0

−
√
−σ coth

(√
−σξ

)
, σ < 0

√
σ tan (

√
σξ) , σ > 0

−
√
σ cot (

√
σξ) , σ > 0

− 1
ξ+ϖ , ϖ is a cons., σ = 0

(7)

Gathering all the obtained data sets we acquire a polynomial including φ(ξ). Equating all the

coefficients of φi(ξ) (i = 0, 1, ..., N) to zero led to a algebraic system in k,w, ai (i = 0, 1, ..., N).

Evaluating the solution of these algebraic system we get the values of w, k, ai (i = 0, 1, ..., N).

Using all the obtained values in the formulas (7) we get the analytical results for equation (3).

2.2 Residual Power Series Method

To illustrate the basics of RPSM [13,14], handle the following fractional partial differential

equation [17]:

Tγu(x, t) +N [x]u(x, t) + L[x]u(x, t) = c(x, t), (8)

where n− 1 < nγ ≤ n, x ∈ R, t > 0 and given with the initial condition

f0(x) = u(x, 0) = f(x). (9)

Here, L[x] symbolizes a linear, N [x] denotes a nonlinear operator and c(x, t) are continuous

functions.

The RPSM method based upon evaluating the solution of the equation (8) with the initial

condition (9) by expanding a fractional power series around t = 0.

f(n−1)(x) = T
(n−1)γ
t u(x, 0) = h(x) (10)

The expanded form of the approximate solution is shown as

u(x, t) = f(x) +
∞∑

n=1

fn(x)
tnγ

γnn!
. (11)

Then, the k. truncated series of u(x, t), called uk(x, t) can be rewritten as follows:

uk(x, t) = f(x) +
k∑

n=1

fn(x)
tnγ

γnn!
. (12)

Since the 1st approximate solution u1(x, t) is

u1(x, t) = f(x) + f1(x)
tγ

γn
(13)
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then uk(x, t) might be rearranged as

uk(x, t) = f(x) + f1(x)
tγ

γn
+

k∑
n=2

fn(x)
tnγ

γnn!
, k = 2, 3, 4, ... (14)

for 0 < γ ≤ 1, 0 ≤ t < R 1
v , x ∈ I.

Initially we express the residual function and the k − th residual function

Resu(x, t) = Tγu(x, t) +N [x]u(x, t) + L[x]u(x, t)− c(x, t), (15)

Resuk(x, t) = Tγuk(x, t) +N [x]uk(x, t) + L[x]uk(x, t)− g(x, t), k = 1, 2, 3, ... (16)

respectively. Obviously, Res(x, t) = 0 and lim
k→∞

Resuk(x, t) = Resu(x, t) for each x ∈ I and

t ≥ 0. Indeed this bring about ∂(n−1)γ

∂t(n−1)γ Resuk(x, t) = 0 for n = 1, 2, 3, ..., k. [12, 16]. Solving

the equation ∂(n−1)γ

∂t(n−1)γ Resuk(x, 0) = 0 concludes the required fn(x) coefficients. So the un(x, t)

solutions can be acquired by this way. Also some different versions of the RPS newly studied

in various studies [20–24].

§3 Solutions of the Fitzhugh-Nagumo Equation

3.1 Analytical Solutions of the Fitzhugh-Nagumo Equation

Regard the time fractional Fitzhugh-Nagumo Equation (1). Performing the chain [8] and

wave transform (4) the Eq. (1), we acquire integer order nonlinear differential equation as

follows.

wU ′(ξ)− k2U ′′(ξ)− U(ξ)(1− U(ξ))(U(ξ)− α) = 0. (17)

Suppose that the solution of Eq. (17) is given in terms of φ(ξ) where is the exact solutions of

equation (2) as follows.

U(ξ) =
N∑
i=0

aiφ
i(ξ), aN ̸= 0. (18)

Employing the balancing principle [18], we have N = 1. Evaluating all the obtained data in Eq.

(17), an algebraic equation system arises with respect to k,w, a0, a1. By solving this system

solution set is obtained as follows

a0 =
α+ 1

2
, a1 =

√
(α− 1)2

2
√
−σ

,w = −
(α+ 1)

√
(α− 1)2

4
√
−σ

, k = ±
√
(α− 1)2

2
√
−2σ

. (19)

When σ < 0, using (7) and (4) the traveling wave solutions of Eq. (1) can be deducted

u1,2(x, t) =
α+ 1

2
− 1

2
(α− 1) tanh

((
1− α2

)
tγ

4γ
± (α− 1)x

2
√
2

)
, for α > 1,

u3,4(x, t) =
α+ 1

2
− 1

2
(α− 1) coth

((
1− α2

)
tγ

4γ
± (α− 1)x

2
√
2

)
, for α > 1,
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u5,6(x, t) =
α+ 1

2
− 1

2
(1− α) tanh

((
α2 − 1

)
tγ

4γ
± (α− 1)x

2
√
2

)
, for α < 1,

u7,8(x, t) =
α+ 1

2
− 1

2
(1− α) coth

((
α2 − 1

)
tγ

4γ
± (α− 1)x

2
√
2

)
, for α < 1.

Similar solutions are obtained with the above solutions when σ > 0.

3.2 Approximate Solutions of the Fitzhugh-Nagumo Equation

Consider the nonlinear time-fractional F-N equation

Dγ
t u−D2

xu = u(u− α)(1− u) (20)

where u = u(x, t), t ≥ 0, 0 < α ≤ 1. The initial condition obtained from the exact solution is

u(x, 0) =
1

2

(
α+ (α− 1) tanh

(
(α− 1)x

2
√
2

)
+ 1

)
(21)

For residual power series

u(x, t) = f(x) +
∞∑

n=1

fn(x)
tnγ

γnn!
(22)

and k. truncated series of u(x, t)

uk(x, t) = f(x) +
k∑

n=1

fn(x)
tnγ

γnn!
, k = 1, 2, 3, ... (23)

Therefore, the k-th residual functions of time-fractional F-N equation is:

Resuk(x, t) = t1−γ (uk)t (x, t)− uk(x, t) (1− uk(x, t)) (uk(x, t)− α)− (uk)xx (x, t). (24)

To determine the coefficient f1(x), in u1(x, t), we should replace the 1st truncated series

u1(x, t) = f(x) + f1(x, y)
tγ

γ into the first truncated residual function as

Resu1(x, t) = f1(x)− f ′′(x)−
(
−f1(x)t

γ

γ
− f(x) + 1

)(
f1(x)t

γ

γ
+ f(x)

)
×
(
−α+

f1(x)t
γ

γ
+ f(x)

)
− tγf ′′

1 (x)

γ
. (25)

Now for the substitution of t = 0 through the equation Resu1(x, t) to obtain

f1(x) = (f ′′)
2 − αf(x)− f(x)3 + f(x)2. (26)

Thus, we acquire the 1st RPS approximate results for time-fractional F-N equation as

u1(x, t) =
tγ
(
(f ′′)

2 − αf(x)− f(x)3 + f(x)2
)

γ
+ f(x). (27)

Again, to determine the second unknown coefficient f2(x), we replace the 2nd truncated series

solution u2(x, t) = f(x) + f1(x)
tγ

γ + f2(x)
t2γ

2γ2 into the 2nd truncated residual function and
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obtain

Resu2(x, t) = −f ′′(x)− t2γf ′′
2 (x)

2γ2
+ t1−γ

(
f1(x)t

γ−1 +
f2(x)t

2γ−1

γ

)
− tγf ′′

1 (x)

γ

+

(
f2(x)t

2γ

2γ2
+

f1(x)t
γ

γ
+ f(x)

)(
−
(
−f2(x)t

2γ

2γ2
− f1(x)t

γ

γ
− f(x) + 1

))
×
(
−α+

f2(x)t
2γ

2γ2
+

f1(x)t
γ

γ
+ f(x)

)
(28)

Now, applying Tα on both sides of Resu2(x, t) and equating to 0 for t = 0 gives:

f2(x) = 2αf1(x)f(x)− αf1(x) + f ′′
1 (x)− 3f1(x)f(x)

2 + 2f1(x)f(x). (29)

So the 2nd RPS approximate solutions of time-fractional F-N equation is:

u2(x, t) = f(x) +
f1(x)t

γ

γ

+
t2γ
(
2αf1(x)f(x)− αf1(x) + f ′′

1 (x)− 3f1(x)f(x)
2 + 2f1(x)f(x)

)
2γ2

. (30)

Similarly, we rerun the same technique for n = 3 and 4 to get the below expressed results.

f3(x) = 2αf2(x)f(x) + 2αf1(x)
2 − αf2(x) + f ′′

2 (x)− 3f2(x)f(x)
2

−6f1(x)
2f(x) + 2f2(x)f(x) + 2f1(x)

2, (31)

u3(x, t) = f(x) +
f1(x)t

γ

γ
+

f2(x)t
2γ

2γ2
+

t3γ
(
2αf2(x)f(x) + 2αf1(x)

2 − αf2(x)
)

6γ3

+
t3γ
(
+f ′′

2 (x)− 3f2(x)f(x)
2 − 6f1(x)

2f(x) + 2f2(x)f(x) + 2f1(x)
2
)

6γ3
, (32)

f4(x) = 6αf2(x)f1(x)− αf3(x) + 2αf(x)f3(x) + f ′′
3 (x)− 6f1(x)

3

−18f(x)f2(x)f1(x) + 6f2(x)f1(x)− 3f(x)2f3(x) + 2f(x)f3(x), (33)

u4(x, t) = f(x) +
f2(x)t

2γ

2γ2
+

f1(x)t
γ

γ
+

f3(x)t
3γ

6γ3
+

t4γf(x)f3(x)

12γ4

+
t4γ
(
f ′′
3 (x)− 6f1(x)

3 − 18f(x)f2(x)f1(x) + 6f2(x)f1(x)− 3f(x)2f3(x)
)

24γ4

+
t4γ (6αf2(x)f1(x)− αf3(x) + 2αf(x)f3(x))

24γ4
. (34)

In Table 1, the fourth-order RPSM solutions of time fractional F-N equation are compared

with the analytical solution

u(x, t) =
1

2

(
α+ (α− 1) tanh

(
(α− 1)x

2
√
2

)
+ 1

)
. (35)

As it can clearly seen from the table and 3D graphical illustrations, both of the solutions are

in good agreement. The absolute errors are in admissible norms.

Also, Tablo 1 states that, as γ increases the absolute error between numerical and analytical

solution decreases. This means while γ −→ 1 the solutions becomes more accurate. In the other

words, the numerical results and the analytical results will be compatible if we use integer order

derivation for this problem. The graphical representations confirm that the absolute errors

arising in the approximate solutions are reasonable.



Orkun Tasbozan. A popular reaction-diffusion model fractional Fitzhugh-Nagumo... 225

Table 1. RPSM approximate results and comparison with the exact solutions by absolute errors
for α = 0.2 and t = 0.1.

γ = 0.25 γ = 0.50 γ = 0.75
x RPSM Exact Abs. Error RPSM Exact Abs. Error RPSM Exact Abs. Error
0.0 0.79496 0.79715 2.18743E-3 0.66025 0.66025 4.25769E-6 0.62274 0.62273 3.17819E-8
0.1 0.80351 0.80559 2.08224E-3 0.67126 0.67126 4.17753E-6 0.63399 0.63399 3.14221E-8
0.2 0.81185 0.81380 1.95180E-3 0.68215 0.68216 4.04180E-6 0.64520 0.64520 3.06396E-8
0.3 0.81996 0.82176 1.79890E-3 0.69293 0.69293 3.85363E-6 0.65633 0.65633 2.94526E-8
0.4 0.82784 0.82947 1.62673E-3 0.70356 0.70356 3.61726E-6 0.66737 0.66737 2.78882E-8
0.5 0.83550 0.83694 1.43882E-3 0.71403 0.71404 3.33795E-6 0.67831 0.67831 2.59815E-8
0.6 0.84292 0.84416 1.23889E-3 0.72434 0.72434 3.02181E-6 0.68912 0.68912 2.37750E-8
0.7 0.85010 0.85114 1.03079E-3 0.73447 0.73447 2.67554E-6 0.69981 0.69981 2.13162E-8
0.8 0.85705 0.85787 8.18338E-4 0.74441 0.74441 2.30629E-6 0.71034 0.71034 1.86570E-8
0.9 0.86375 0.86436 6.05275E-4 0.75415 0.75415 1.92138E-6 0.72071 0.72071 1.58513E-8
1.0 0.87022 0.87061 3.95126E-4 0.76367 0.76367 1.52814E-6 0.73090 0.73090 1.29540E-8

(a) RPSM solution (b) Exact solution

Figure 1. RPSM solution and exact solution for α = 0.2 and γ = 0.25.

(a) RPSM solution (b) Exact solution

Figure 2. RPSM solution and exact solution for α = 0.2 and γ = 0.50.

§4 Conclusion

The paper indicated the new approximate and analytical solutions of a popular reaction-

diffusion model called Fitzhugh-Nagumo equation. All the obtained results show that acquired

solutions are compatible. To show compatibleness of the acquired results, 3D graphical illus-

trations and tables are given for the different values of γ. It is clearly understood that both

sub equation and residual power series method are efficient, accurate and reliable tools for ob-

taining the exact and numerical solutions of nonlinear models arising in mathematical physics.
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(a) RPSM solution (b) Exact solution

Figure 3. RPSM solution and exact solution for α = 0.2 and γ = 0.75.

We hope that our work will be very useful in better understanding the solution structures of

the fractional models arising in as a model of reaction-diffusion systems, transmission of nerve

impulses, circuit theory, biology and the area of population genetics. We believe our manuscript

is very timely and will interest the broad range of scientists who study on these areas. At the

same time, this study will help scientists working in related fields to develop a new view point.
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