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Rearrangement and the weighted logarithmic Sobolev

inequality

JIANG Ming-hong RUAN Jian-miao ZHU Xiang-rong∗

Abstract. Here we consider some weighted logarithmic Sobolev inequalities which can be used

in the theory of singular Riemannian manifolds. We give the necessary and sufficient conditions

such that the 1-dimension weighted logarithmic Sobolev inequality is true and obtain a new

estimate on the entropy.

§1 Introduction

Suppose that (M, g) is an n-dimension Riemannian manifold and Σ is a k-dimension sub-

manifold of M,k < n. Let φ be a positive function on M that may take ∞ on Σ. The singular

manifold (M,φg) is of importance in geometry and PDE. Naturally, the analysis on (M,φg)

leads us to studing the following weighted Sobolev inequality

(

∫
M

|f(x)|qu(x)dV )
1
q ≤ C(

∫
M

|∇f(x)|pv(x)dV )
1
p , 1 ≤ p ≤ q ≤ ∞

where u, v are determined by φ and may take ∞ on Σ. In most cases, this inequality can be

reduced to

(

∫
Rn

|f(x)|qu(x)dx)
1
q ≤ C(

∫
Rn

|∇f(x)|pv(x)dx)
1
p , 1 ≤ p ≤ q ≤ ∞.

In [2] and ([16], Chapter 2), the necessary and sufficient conditions were given such that the

above inequality is true when n = 1 and n > 1. But, when n > 1, the conditions given in ([16],

Chapter 2) are difficult to check in general. So in [8,14,15], they gave some other sufficient

conditions. There are many other works [4,1,12,13] on this problem and its applications.

It is well-known that the critical index plays an important role in the Sobolev embedding

theorem. For the critical index, we usually need more dedicate estimates, such as the logarith-

mic Sobolev inequalities. There are some different forms of the weighted logarithmic Sobolev

inequalities. See [3,5,10]. Most of them are tightly related with the notion of entropy. The
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notion of entropy was first introduced by Boltzmann in the kinetic theory of gases, and since

then played a critical role in many fields, such as statistical physics, information theory and

mathematics. For f ∈ L1(X,µ), the entropy of f is defined as

Ent(f) =

∫
X

|f(x)| ln |f(x)|
∥f∥L1(X,µ)

dµ.

By Jessen’s inequality, when µ(X) ≤ 1, the entropy of f is nonnegative. But if µ(X) > 1, the

entropy of f may be negative. There are many works [3,5,6,7,9] on the estimates of entropies.

Here we consider the following weighted logarithmic Sobolev inequality

(

∫
Rn

|f(x)|q lnλ( |f(x)|q∫
Rn |f(y)|qu(y)dy

+ e)u(x)dx)
1
q ≤ C(

∫
Rn

|∇f(x)|pv(x)dx)
1
p

where 1 ≤ p ≤ q ≤ ∞, λ > 0. When n = 1, we get the necessary and sufficient conditions such

that this weighted logarithmic Sobolev inequality holds. Our main result is stated as

Theorem 1.1. Assume that u, v are nonnegative and locally integrable on [0,∞), λ > 0, 1 ≤
p ≤ q < ∞. Then

(

∫ ∞

0

|f(x)|q lnλ( |f(x)|q∫∞
0

|f(y)|qu(y)dy
+ e)u(x)dx)

1
q ≤ C(

∫ ∞

0

|f ′(x)|pv(x)dx)
1
p (1)

holds for some C > 0 and all f ∈ C1
0 ([0,∞)) if and only if

sup
r>0

(

∫ r

0

u(x)dx)
1
q ln

λ
q (

1∫ r

0
u(x)dx

+ e)∥v−
1
p ∥

L
p

p−1 ([r,∞))
< ∞. (2)

Obviously, the entropy of f on ([0,∞), µ) is controlled by
∫∞
0

|f(x)| ln( |f(x)|∫ ∞
0

|f(y)|dµ(y) +

e)dµ(x). With the help of this theorem, we can generalize some known results for the en-

tropies when n = 1. For example, we can get the following corollary.

Corollary 1.2. Set dµ(x) = (1+x2)−βdx and w(x) = (1+x2)2. Then for any β < 3
2 , we have

Entµ(f
2) =

∫ ∞

0

|f(x)|2 ln |f(x)|2∫∞
0

f2dµ
dµ(x) ≤ C

∫ ∞

0

|f ′(x)|2w(x)dµ(x).

Remark. When β ≥ 1 , the above inequality was proved in [1, Theorem 3.4]. Thus, this

indicates that the estimation in corollary 1.2 holds true for any β ∈ R. Note that one can easily

show the corresponding inequality in Theorem 1.1 is not true when β ≥ 3. So there are some

essential differences between the entropy and the quantity that we consider here. Certainly, in

this problem, by virtue of this theorem we can get more generations. We omit the details here.

In Section 2 we shall introduce some definitions and lemmas. The proofs of Theorem 1.1

and Corollary 1.2 will be given in the last section.

Throughout the paper, C, c are used to denote positive constants that are independent of

all essential variables and may vary in the different occurrences. We also use the notation a ≈ b

to mean that there exist two constants C and c such that ca ≤ b ≤ Ca.

§2 Some definitions and lemmas

In this section we give some definitions and lemmas.
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For a real-valued function f on the measure space (X,µ), the distribution and the rear-

rangement of f are defined as

µf (a) = µ({x : |f(x)| > a}),

f∗(t) = inf{a : µf (a) ≤ t}.
As µf is right-continuous, one can check that f and f∗ have the same distributions, i.e., for

any a ≥ 0, there holds

|{t : f∗(t) > a}| = µf (a).

It is easy to see that in order to prove that a non-increasing nonnegative function g is the

rearrangement of f , we only need to show that g and f have the same distributions. Below we

always use f∗
µ to denote the rearrangement of f on the space ([0,∞), µ).

The following proposition is probably well-known, but we can not find the related literature.

For the sake of completeness, here we give a direct proof, which may be generated to some Orlicz

spaces.

Proposition 2.1. Let µ be a nonnegative Borel measure, λ > 0 and f∗ be the non-increasing

rearrangement of f . Then we have∫ ∞

0

f∗(t) lnλ(
1

t
+ e)dt ≈

∫
Rn

|f(x)| lnλ( |f(x)|∫
Rn |f(y)|dµ(y)

+ e)dµ(x).

Proof. As the integrals are linear, without no generality, we may assume that∫
Rn |f(x)|dµ(x) = 1. Set

Ek = {x : ek < |f(x)| ≤ e1+k}, tk = µ(Ek), ak =

∞∑
j=k

tj .

As ekak ≤
∞∑
j=k

ejµ(Ej) ≤
∫
Rn |f(x)|dµ(x) = 1, one get that ak ≤ e−k. On the other hand, by

the definition of ak and the rearrangement, it is easy to see that

µf (e
k) = ak, e

k < f∗(t) ≤ e1+k when ak+1 < t < ak.

At first, we give a fundamental inequality. For 0 ≤ b < a ≤ e−1, there holds∫ a

b

lnλ
1

t
dt ≤ Cλ(a− b) lnλ

1

a
. (3)

For any ϵ > 0, as tϵ ln 1
t is increasing on (0, e−

1
ϵ ) and decreasing on (e−

1
ϵ , 1), for 0 < t < a < e−1

there holds tϵ ln 1
t < aϵ ln 1

a when a < e−
1
ϵ or

tϵ ln
1

t
≤ 1

eϵ
, aϵ ln

1

a
≥ e−ϵ when e−

1
ϵ ≤ a < e−1.

In both cases, we have tϵ ln 1
t ≤ eϵ−1

ϵ aϵ ln 1
a = Cϵa

ϵ ln 1
a which means that

ln
1

t
≤ Cϵ(

t

a
)−ϵ ln

1

a
. (4)

Take ϵ = 1
2λ in (4), some direct computations yield that∫ a

b

lnλ
1

t
dt ≤ Cλ

∫ a

b

(
t

a
)−

1
2 lnλ

1

a
dt

≤ Cλ(a− b) lnλ
1

a
.



210 Appl. Math. J. Chinese Univ. Vol. 36, No. 2

So we get the inequality in (3).

Now we return to the main proof. As ak ≤ e−k ≤ e−1 when k ≥ 1, we have∫ ∞

0

f∗(t) lnλ(
1

t
+ e)dt

=
∞∑

k=−∞

∫ ak

ak+1

f∗(t) lnλ(
1

t
+ e)dt

≤
∞∑
k=1

∫ ak

ak+1

ek+1 lnλ
1

t2
dt+

∫ 1

a1

e lnλ(
1

t
+ e)dt+

∫ ∞

1

f∗(t) lnλ(1 + e)dt

≤
∞∑
k=1

2λek+1

∫ ak

ak+1

lnλ
1

t
dt+ e

∫ 1

0

lnλ(
1

t
+ e)dt+ lnλ(1 + e)

∫ ∞

0

f∗(t)dt

≤ Cλ(
∞∑
k=1

ek
∫ ak

ak+1

lnλ
1

t
dt+ 1)

≤ Cλ(

∞∑
k=1

ektk ln
λ 1

ak
+ 1). (5)

Here we use the fact that 1
t + e < 1

t2 when t < e−1 in the first inequality,
∫∞
0

f∗(t)dt =∫
Rn |f(x)|dµ(x) = 1 and

∫ 1

0
lnλ( 1t + e)dt < ∞ in the third inequality, and (3) in the last

inequality.

For the first term in (5), we need some further estimates.∑
k≥1

ektk ln
λ 1

ak

= (
∑

k≥1,ak>e−2k

+
∑

k≥1,ak≤e−2k

)ektk ln
λ 1

ak

≤
∑

k≥1,ak>e−2k

(2k)λektk +
∑

k≥1,ak≤e−2k

ekak ln
λ 1

ak

≤ 2λ
∑
k≥1

kλektk +
∑

k≥max{1,λ2 }

eke−2k lnλ
1

e−2k
+

∑
max{1,λ2 }>k≥1

eke−λ lnλ
1

e−λ

≤ 2λ
∑
k≥1

kλektk +
∑

k≥max{1,λ2 }

e−k(2k)λ +
∑

λ
2 >k≥1

ek−λλλ

≤ Cλ(
∑
k≥1

kλektk + 1). (6)

In the second inequality we use the fact that t lnλ 1
t is increasing on (0, e−λ) and decreasing on

(e−λ, 1). From (5) and (6), we can get that∫ ∞

0

f∗(t) lnλ(
1

t
+ e)dt ≤ Cλ(

∑
k≥1

kλektk + 1). (7)

On the other hand, one can yield that∫
Rn

|f(x)| lnλ(|f(x)|+ e)dµ(x) ≥
∞∑

k=−∞

∫
Ek

ek lnλ(ek + e)dµ(x) ≥
∞∑

k=−∞

kλektk. (8)
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Obviously, there holds
∫
Rn |f(x)| lnλ(|f(x)|+ e)dµ(x) ≥ 1. So, by (7) and (8) we have∫ ∞

0

f∗(t) lnλ(
1

t
+ e)dt ≤ Cλ(

∑
k≥1

kλektk + 1)

≤ Cλ(

∫
Rn

|f(x)| lnλ(|f(x)|+ e)dµ(x) + 1)

≤ Cλ

∫
Rn

|f(x)| lnλ(|f(x)|+ e)dµ(x). (9)

To complete the proof of this proposition, it is left for us to show that∫
Rn

|f(x)| lnλ(|f(x)|+ e)dµ(x) ≤ Cλ

∫ ∞

0

f∗(t) lnλ(
1

t
+ e)dt. (10)

When k ≥ 1 and x ∈ Ek, as ak ≤ e−k, we obtain that ek+1 + e < ( 1
ak

+ e)2 and

|f(x)| lnλ(|f(x)|+ e) ≤ e1+k lnλ(e1+k + e) ≤ e1+k2λ lnλ(
1

ak
+ e) ≤ Cλe

k lnλ(
1

ak
+ e).

By virtue of the fact that ek < f∗(t) ≤ e1+k for ak+1 < t < ak and ak − ak+1 = tk = µ(Ek), we

can get that ∫
Rn

|f(x)| lnλ(|f(x)|+ e)dµ(x)

= (
∑
k≥1

+
∑
k≤0

)

∫
Ek

|f(x)| lnλ(|f(x)|+ e)dµ(x)

≤
∑
k≥1

Cλe
k lnλ(

1

ak
+ e)tk +

∑
k≤0

∫
Ek

|f(x)| lnλ(e+ e)dµ(x)

≤ Cλ(
∑
k≥1

∫ ak

ak+1

f∗(t) lnλ(
1

t
+ e)dt+

∫
Rn

|f(x)|dµ(x))

≤ Cλ(

∫ ∞

0

f∗(t) lnλ(
1

t
+ e)dt+ 1).

It is easy to see that
∫∞
0

f∗(t) lnλ( 1t + e)dt ≥
∫∞
0

f∗(t)dt = 1. So we prove (10).

From (9) and (10), we obtain that

cλ

∫ ∞

0

f∗(t) lnλ(
1

t
+ e)dt ≤

∫
Rn

|f(x)| lnλ(|f(x)|+ e)dµ(x) ≤ Cλ

∫ ∞

0

f∗(t) lnλ(
1

t
+ e)dt.

The proof of this proposition is completed.�

The following lemma is fundamental.

Lemma 2.2. Suppose that u is nonnegative and locally integrable on [0,∞) and

dµ(x) = u(x)dx. Set µ−1(t) = sup{a :
∫ a

0
u(x)dx ≤ t}, t > 0. If f is nonnegative and non-

increasing on (0,∞), then the rearrangement of f on ([0,∞), µ) is

f∗
µ(t) = f ◦ µ−1(t) = f(µ−1(t)), a.e. t ∈ (0,∞).

Remark. From the definition we can see that µ−1(t) = ∞ when t ≥
∫∞
0

u(x)dx. If

0 < t <
∫∞
0

u(x)dx, by the continuity of integral, µ−1(t) is well-defined and∫ µ−1(t)

0

u(x)dx = t. (11)
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It is easy to check that µ−1 is strictly increasing when 0 < t <
∫∞
0

u(x)dx.

Proof. Because f is nonnegative and non-increasing on (0,∞), f(∞) = lim
x→∞

f(x) can be

defined suitable.

As µ−1 : (0,∞) → (0,∞] is increasing and f is non-increasing on (0,∞], we know that

f ◦ µ−1 is nonnegative and non-increasing on (0,∞). So, it left for us to show that f ◦ µ−1 on

(0,∞) and f on ((0,∞), µ) have the same distributions, i.e., for any a > 0, there holds

|{t : f ◦ µ−1(t) > a}| = µf (a).

Set r = sup{x : f(x) > a} and t =
∫ r

0
u(x)dx. As f is non-increasing on (0,∞), we have

f(x) > a for 0 < x < r and f(x) ≤ a when x > r. The fact that u is locally integrable implies

that µ({r}) = 0, so there holds

µf (a) = µ((0, r)) =

∫ r

0

u(x)dx = t. (12)

On the other hand, if 0 < s < t, as 0 < s < t =
∫ r

0
u(x)dx ≤

∫∞
0

u(x)dx, we have∫ µ−1(s)

0

u(x)dx = s < t =

∫ r

0

u(x)dx

which yields that µ−1(s) < r. So we have

f ◦ µ−1(s) = f(µ−1(s)) > a.

If s > t and
∫∞
0

u(x)dx ≤ s, then µ−1(s) = ∞ > r. If s > t and
∫∞
0

u(x)dx < s, then∫ µ−1(s)

0

u(x)dx = s > t =

∫ r

0

u(x)dx

which means that µ−1(s) > r. So in both cases we get that µ−1(s) > r when s > t and

f ◦ µ−1(s) = f(µ−1(s)) ≤ a.

Therefore we prove that (0, t) ⊂ {s : f ◦ µ−1(s) > a} ⊂ (0, t] which yields that

|{s : f ◦ µ−1(s) > a}| = t = µf (a).

So we complete the proof of this lemma.�

Lemma 2.3. ([2], P407, Theorem 2) Assume that w, v are nonnegative and locally integrable

on [0,∞) and 1 ≤ p ≤ q < ∞. Then

(

∫ ∞

0

(

∫ ∞

x

|g(t)|dt)qw(x)dx)
1
q ≤ C(

∫ ∞

0

|g(x)|pv(x)dx)
1
p

holds for some C > 0 and all g ∈ Lloc([0,∞)) if and only if

sup
r>0

(

∫ r

0

w(x)dx)
1
q ∥v−

1
p ∥

L
p

p−1 ([r,∞))
< ∞. (13)

Remark. In [2], they proved the dual form of this lemma and this lemma was considered

as a corollary. In fact, if we set w(x) = x−2w̃(x−1), v(x) = x2p−2ṽ(x−1) and g(x) = x−2g̃(x−1),

then this lemma can be derived from Theorem 1 in ([2], P405) directly.
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§3 The main proof

Now we give the proof of our main theorem. At first, we show that

(2) ⇒ (1).

For λ > 0, a > e−1, there holds∫ a

0

lnλ(
1

t
+ e)dt ≤

∫ a

e−1

lnλ(e+ e)dt+

∫ e−1

0

lnλ(
1

t
+ e) ≤ Cλa ln

λ(
1

a
+ e).

Therefore, by (3), for any a > 0 we get that

a lnλ(
1

a
+ e) ≤

∫ a

0

lnλ(
1

t
+ e)dt ≤ Cλa ln

λ(
1

a
+ e). (14)

Set a = µ(r) =
∫ r

0
u(x)dx in (14), we have

(

∫ r

0

u(x) lnλ(
1∫ x

0
u(y)dy

+ e)dx)
1
q ≈ (

∫ r

0

u(x)dx)
1
q ln

λ
q (

1∫ r

0
u(x)dx

+ e).

So, the inequality in (2) is equivalent to

sup
r>0

(

∫ r

0

u(x) lnλ(
1∫ x

0
u(s)ds

+ e)dx)
1
q ∥v−

1
p ∥

L
p

p−1 ([r,∞))
< ∞. (15)

Take dµ(x) = u(x)dx. By Proposition 2.1, we know that∫ ∞

0

|f(x)|q lnλ( |f(x)|q∫∞
0

|f(y)|qu(y)dy
+ e)u(x)dx ≈

∫ ∞

0

f∗
µ(t)

q lnλ(
1

t
+ e)dt.

So (1) is equivalent to

(

∫ ∞

0

f∗
µ(t)

q lnλ(
1

t
+ e)dt)

1
q ≤ C(

∫ ∞

0

|f ′(x)|pv(x)dx)
1
p . (16)

As f ∈ C1
0 ([0,∞)), there holds |f(t)| ≤ G(t) =

∫∞
t

|f ′(s)|ds, t ∈ (0,∞). By Lemma 2.2, we

have

f∗
µ(t) ≤ G∗

µ(t) = G(µ−1(t)) =

∫ ∞

µ−1(t)

|f ′(s)|ds. (17)

Set x = µ−1(t). From the remark of Lemma 2.2, when 0 < t <
∫∞
0

u(s)ds, there holds

t = µ(x) =
∫ x

0
u(s)ds. On the other hand, when t ≥ µ(∞) =

∫∞
0

u(s)ds, we have µ−1(t) = ∞
and f∗

µ(t) ≤ G(µ−1(t)) = G(∞) = 0. So we obtain that∫ ∞

0

f∗
µ(t)

q lnλ(
1

t
+ e)dt

≤
∫ µ(∞)

0

(

∫ ∞

µ−1(t)

|f ′(s)|ds)q lnλ(1
t
+ e)dt

=

∫ ∞

0

(

∫ ∞

x

|f ′(s)|ds)q lnλ( 1

µ(x)
+ e)dµ(x)

=

∫ ∞

0

(

∫ ∞

x

|f ′(s)|ds)qu(x) lnλ( 1∫ x

0
u(s)ds

+ e)dx. (18)

Take g(x) = |f ′(x)|, w(x) = u(x) lnλ( 1∫ x
0

u(s)ds
+ e) in Lemma 2.3. We get that if (15) holds,

then

(

∫ ∞

0

(

∫ ∞

x

|f ′(s)|ds)qu(x) lnλ( 1∫ x

0
u(s)ds

+ e)dx)
1
q ≤ C(

∫ ∞

0

|f ′(x)|pv(x)dx)
1
p .



214 Appl. Math. J. Chinese Univ. Vol. 36, No. 2

From (18), we get the inequality in (16). So one can obtain that

(2) ⇒ (15) ⇒ (16) ⇒ (1).

At last, we prove that

(1) ⇒ (2).

When p > 1, for any r > 0, set

fr(x) =

{ ∫∞
r

v(s)−
1

p−1 ds, 0 ≤ x < r;∫∞
x

v(s)−
1

p−1 ds, x ≥ r.

By approximation, here we may assume that v−1 is continuous on [0,∞), so fr ∈ C1
0 ([0,∞))

and it is non-increasing on (0,∞). By Lemma 2.2, if t < µ(r) =
∫ r

0
u(s)ds, then µ−1(t) < r and

(fr)
∗
µ(t) = fr(µ

−1(t)) =

∫ ∞

r

v(s)−
1

p−1 ds.

Some direct computations yield that

(

∫ ∞

0

(fr)
∗
µ(t)

q lnλ(
1

t
+ e)dt)

1
q

≥ (

∫ µ(r)

0

(fr)
∗
µ(t)

q lnλ(
1

t
+ e)dt)

1
q

= (

∫ µ(r)

0

(

∫ ∞

r

v(s)−
1

p−1 ds)q lnλ(
1

t
+ e)dt)

1
q

= (

∫ r

0

lnλ(
1

µ(x)
+ e)dµ(x))

1
q (

∫ ∞

r

v(s)−
1

p−1 ds)

= (

∫ r

0

u(x) lnλ(
1∫ x

0
u(s)ds

+ e)dx)
1
q ∥v−

1
p ∥

p
p−1

L
p

p−1 ([r,∞))
.

On the other hand, f ′
r(x) = v(x)−

1
p−1χ(r,∞)(x), so (16) implies that

(

∫ r

0

u(x) lnλ(
1∫ x

0
u(s)ds

+ e)dx)
1
q ∥v−

1
p ∥

p
p−1

L
p

p−1 ([r,∞))

≤ C(

∫ ∞

r

v(s)−
p

p−1+1ds)
1
p

= C∥v−
1
p ∥

1
p−1

L
p

p−1 ([r,∞))

which means that

(

∫ r

0

u(x) lnλ(
1∫ x

0
u(s)ds

+ e)dx)
1
q ∥v−

1
p ∥

L
p

p−1 ([r,∞))
≤ C.

On the other hand, when p = 1, for any r > 0, there holds

|{x ∈ (r,∞) : v−1(x) ≥
2∥v−1∥L∞([r,∞))

3
}| > 0

which implies that |{x ∈ (r,∞) : v(x) ≤
3∥v−1∥−1

L∞([r,∞))

2 }| > 0. So, by the differential theorem,

we always can find an interval (a, b) ⊂ (r,∞) such that∫ b

a

v(x)dx < 2(b− a)∥v−1∥−1
L∞([r,∞)).

By approximation, we may set f ′
r = χ(a,b). Then for any x < r we have fr(x) = b− a. In this
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case, if t < µ(r), by Lemma 2.2, then µ−1(t) < r and

(fr)
∗
µ(t) = fr(µ

−1(t)) = b− a.

Some simple computations yield that

(

∫ ∞

0

(fr)
∗
µ(t)

q lnλ(
1

t
+ e)dt)

1
q

≥ (b− a)(

∫ µ(r)

0

lnλ(
1

t
+ e)dt)

1
q

= (b− a)(

∫ r

0

u(x) lnλ(
1∫ x

0
u(s)ds

+ e)dx)
1
q .

Obviously, there holds∫ ∞

0

|f ′
r(x)|v(x)dx =

∫ b

a

v(x)dx < 2(b− a)∥v−1∥−1
L∞([r,∞)).

So (16) implies that

(b− a)(

∫ r

0

u(x) lnλ(
1∫ x

0
u(s)ds

+ e)dx)
1
q

≤ C(b− a)∥v−1∥−1
L∞([r,∞))

which means that

(

∫ r

0

u(x) lnλ(
1∫ x

0
u(s)ds

+ e)dx)
1
q ∥v−1∥L∞([r,∞)) ≤ C.

Now, whether p > 1 or p = 1, we both obtain that

(

∫ r

0

u(x) lnλ(
1∫ x

0
u(s)ds

+ e)dx)
1
q ∥v−

1
p ∥

L
p

p−1 ([r,∞))
≤ C.

Since r is arbitrary, we obtain that

(1) ⇒ (16) ⇒ (15) ⇒ (2).

The proof of Theorem 1.1 is completed. �

Finally, we show how to get Corollary 1.2. Take p = q = 2, u(x) = (1 + x2)−β and

v(x) = (1 + x2)2−β . Then by Theorem 1.1,∫ ∞

0

|f(x)|2 ln( |f(x)|2∫∞
0

f2(y)(1 + y2)−βdy
+ e)(1 + x2)−βdx ≤ C

∫ ∞

0

|f ′(x)|2(1 + x2)2−βdx

holds if and only if

sup
r>0

[

∫ r

0

(1 + x2)−βdx][ln(
1∫ r

0
(1 + x2)−βdx

+ e)][

∫ ∞

r

(1 + x2)β−2dx] < ∞.

Some simple computations yield that

∫ r

0

(1 + x2)−βdx ≈


r, r ≤ 2;

1, r > 2, β > 1
2 ;

ln r, r > 2, β = 1
2 ;

r1−2β , r > 2, β < 1
2 .

In particular, for r > 2 and any β ∈ R we obtain that

c ≤
∫ r

0

(1 + x2)−βdx ≤ Cmax{ln r, r1−2β}. (19)
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On the other hand, when β < 3
2 , we have∫ ∞

r

(1 + x2)β−2dx ≈

{
1, r ≤ 2;

r2β−3, r > 2.

Now, when β < 3
2 , 0 < r ≤ 2, there holds

[

∫ r

0

(1 + x2)−βdx][ln(
1∫ r

0
(1 + x2)−βdx

+ e)][

∫ ∞

r

(1 + x2)β−2dx] ≤ Cr ln(
1

r
+ e) ≤ C.

When β < 3
2 and r > 2, from (19) one can get that

[

∫ r

0

(1 + x2)−βdx][ln(
1∫ r

0
(1 + x2)−βdx

+ e)][

∫ ∞

r

(1 + x2)β−2dx]

≤ Cmax{ln r, r1−2β} ln(1
c
+ e)r2β−3

≤ Cmax{r2β−3 ln r, r−2} ≤ C.

So we derive that

sup
r>0

[

∫ r

0

(1 + x2)−βdx][ln(
1∫ r

0
(1 + x2)−βdx

+ e)][

∫ ∞

r

(1 + x2)β−2dx] < ∞

which implies that∫ ∞

0

|f(x)|2 ln( |f(x)|2∫∞
0

f2(y)(1 + y2)−βdy
+ e)(1 + x2)−βdx ≤ C

∫ ∞

0

|f ′(x)|2(1 + x2)2−βdx.

Obviously, Entµ(f
2) is controlled by

∫∞
0

|f(x)|2 ln( |f(x)|2∫ ∞
0

f2dµ
+ e)dµ(x) where dµ(x) = (1 +

x2)−βdx. So the proof is completed. �
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